Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 127473 dokumen yang sesuai dengan query
cover
Andri Surya
"Studi penelitian ini membandingkan hasil perbaikan pengelasan (welding repair) antara metode Friction Stir Welding (FSW) dengan Gas Tungsten Arc Welding pada sambungan las Aluminium 5083 tebal 6 mm. Empat sampel Aluminium dilas dengan metode FSW menggunakan mesin frais dengan kecepatan las 29 mm/menit, kecepatan rotasi 1555 rpm dan panjang pin tool 5,0 mm berbentuk silinder berulir. Dua sampel dari hasil pengelasan tersebut dilas perbaikan dengan metode FSW dengan kondisi sama dengan proses awal, dengan satu sampel dengan kondisi posisi terbalik yang mana bagian akar las dijadikan bagian muka las perbaikan. Satu sampel lainnya dilas perbaikan dengan metode GTAW seluruhnya.
Dari pengujian menunjukkan bahwa kekuatan tarik, kekerasan, makro dan struktur mikro hasil pengelasan repair GTAW lebih baik dari proses FSW. Hal ini disebabkan masukan panas (temperatur) dari pengelasan FSW kurang maksimal, sehingga mengakibatkan terjadnya ketidaksempurnaan pada hasil lasannya.

This research study to compare the results of repair welding (welding repair) the method of Friction Stir Welding (FSW) with Gas Tungsten Arc Welding the weld joints 6 mm thick 5083 aluminum. Four samples of aluminum welded with FSW method using a milling machine with a welding speed of 29 mm / min, the rotational speed of 1555 rpm and a length of 5.0 mm pin tool cylindrical threaded. Two samples of the weld the welded repairs to the FSW method with the same conditions with the initial process, with one sample with the conditions upside down which part of the root weld is made part of the face of the weld repair. One other sample GTAW welded repair method entirely.
From the test showed that the tensile strength, hardness, macro and microstructure results GTAW welding repair is better than FSW process. This is due to the input of heat (temperature) of the welding FSW less than the maximum, resulting in terjadnya imperfections on weld join results.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T45363
UI - Tesis Membership  Universitas Indonesia Library
cover
Rifqo Anwarie
"Studi ini membandingkan hasil pengelasan plat aluminium seri 5083 dengan ketebalan 6 mm menggunakan Friction Stir Welding (FSW) dengan variasi welding speed, yaitu 22, 29 dan 38 mm/menit dengan hasil pengelasan konvensional Gas Tungsten Arc Welding (GTAW). Pengelasan FSW dilakukan dengan menggunakan mesin frais. Hasil FSW dan GTAW diidentifikasi menggunakan uji tarik, uji kekerasan, struktur mikro dan SEM-EDS. Dari identifikasi hasil analisa struktur mikro dan SEM-EDS menunjukkan terbentuknya presipitat Mg2Si dan alumina (Al2O3) yang menyebabkan naiknya nilai kekerasan pada daerah Lasan. Kemudian dari hasil pengujian struktur mikro diperoleh grain size hasil pengelasan FSW lebih kecil dari GTAW. Hal ini menyebabkan kekerasan hasil FSW lebih tinggi dibandingkan dengan GTAW. Berikutnya dari analisa struktur makro diperoleh bahwa semua hasil pengelasan FSW terdapat cacat incomplete fusion yang diakibatkan oleh kurang sempurna proses pengelasan. Hal ini mengakibatkan hasil pengujian tarik GTAW lebih baik dari FSW.

This study compares the results of welding 5083 series aluminum plate with a thickness of 6 mm using the Friction Stir Welding (FSW) with a variation of welding speed, namely 22, 29 and 38 mm / min with the results of conventional welding Gas Tungsten Arc Welding (GTAW). FSW welding is done by using a milling machine. Results FSW and GTAW identified using tensile test, hardness test, microstructure and SEM-EDS. The identification results of the analysis of microstructure and SEM-EDS showed the formation of precipitates Mg2Si and alumina (Al2O3) which resulted in higher hardness values at weld zone. Then the microstructure of the test results obtained FSW welds grain size smaller than GTAW. It causes hardness of FSW results higher than the GTAW. The next of the macro structure analysis showed that all FSW welds are incomplete fusion defects caused by imperfect welding process. This resulted in GTAW tensile test results better than FSW."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T45359
UI - Tesis Membership  Universitas Indonesia Library
cover
Hasudungan, Eric Mamby
"Karakterisasi hasil proses pengelasan dengan metode Gas Metal Arc Welding, Gas Tungsten Arc Welding dan Plasma Arc Welding pada baja lembaran berlapis seng dibandingkan untuk mengetahui pengaruh seng terhadap hasil lasannya. Perbedaan besar butir yang sangat jauh antara daerah fusion zone, yaitu 32 μm, dan daerah HAZ, yaitu 90 μm, pada proses pengelasan dengan metode Gas Metal Arc Welding menyebabkan penggetasan dan perpatahan di fusion line pada pengujian tarik dan pengujian tekuk. Hasil pengelasan dengan metode Plasma Arc Welding memiliki sifat fisik yang paling optimum di antara kedua metode lainnya, dengan kekuatan tarik sebesar 352 N/mm² dan struktur butir mikro yang relatif halus. Terdapat pelarutan seng ke daerah fusion zone, dengan kandungan paling besar pada metode pengelasan Plasma Arc Welding.

The characterization of weldments produced by Gas Metal Arc Welding, Gas Tungsten Arc Welding and Plasma Arc Welding methods in joining zinc coated steel sheet is compared to know the effect of Zinc on the properties of weldments. The grain size difference between the fusion zone, which is 32 μm, and HAZ area, which is 90 μm, on Gas Metal Arc Welding method is causing the brittleness and cracking at the fusion line while testing with tensile and bending test. Weldments produced by Plasma Arc Welding have the optimum physical property among the two other welding process, with tensile strength 352 N/mm² and relatively fine microstructure. There is some zinc dilution in fusion zone, with the biggest concentration occurs in Plasma Arc Welding process."
Depok: Fakultas Teknik Universitas Indonesia, 2008
T25122
UI - Tesis Open  Universitas Indonesia Library
cover
Monica Ayu Wibowo
"Pengelasan Tungsten Inert Gas (TIG) merupakan salah satu metode pengelasan yang cukup popular dan sering digunakan dalam industri manufaktur. Dalam Upaya meningkatkan efisiensi dari pengelasan TIG ini, metode Wire Arc Additive Manufacturing (WAAM) pun telah diperkenalkan. Metode WAAM merupakan metode pengelasan yang menggunakan busur listrik (arc welding) dengan menggunakan pengumpan kawat tambahan atau biasa dikenal dengan wire feeder. Mesin TIG-WAAM terdiri dari komponen-komponen berupa sumber daya TIG, welding torch, kawat pengumpan atau wire feeder, dan sistem pengendali untuk mengontrol parameter pengelasan. Oleh karena itu, welding torch merupakan komponen yang penting dalam pengelasan penelitian ini dilakukan. Perancangan desain pada penelitian ini kemudian akan dilanjutkan pada perhitungan analitik dan simulasi menggunakan software Autodesk Inventor 2021 untuk memastikan apakah konstruksi mesin las TIG dapat menahan beban welding torch yang didesain. Penelitian ini akan lebih berfokus pada kekuatan mesin konstruksi mesin las TIG menahan beban sebelum dan setelah welding torch dirancang yang kemudian akan dibandingkan dengan hasil perhitungan simulasi menggunakan software Inventor. Hasil tegangan von miss yang didapatkan melalui perhitungan analitik pada konstruksi mesin sebelum welding torch sebesar 1,49 MPa dan pada simulasi sebesar 0,24 MPa, sedangkan perhitungan analitik setelah welding torch diberikan sebesar 0,167 MPa dan pada simulasi sebesar 0,27 MPa.

Tungsten Inert Gas (TIG) welding is a popular and widely used welding method in the manufacturing industry. To improve the efficiency of TIG welding, the Wire Arc Additive Manufacturing (WAAM) method has been introduced. WAAM is a welding method that utilizes an electric arc welding process with the use of an additional wire feeder. A TIG-WAAM machine consists of components such as a TIG power source, welding torch, wire feeder, and control system to regulate welding parameters. Therefore, the welding torch is an important component in this research on welding.

The designed which has been designed in this research, will then be analyzed through analytical calculations and simulations using Autodesk Inventor 2021 software to verify the construction of the TIG welding machine can withstand the load of the designed welding torch. This research will primarily focus on the strength of the TIG welding machine's construction to withstand the load after the welding torch is designed, and then compare the results with the simulation calculations using Inventor software. Analytical load calculations are essential to ensure the safety and strength of the equipment in performing its function. The results of the von mises stress through analytical and simulation before welding torch are 1,49 MPa and 0,24 MPa. Meanwhile the analytical and simulation after welding torch are 0,167 MPa and 0,27 MPa."

Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Albert Ahmad
"Unalloyed titanium atau biasa disebut commercially pure (CP) titanium banyak dipakai pada aplikasi yang memerlukan tingkat ketahan korosi tinggi sedangkan dengan kekuatan tinggi tidak diperlukan. Pada aplikasinya, titanium membutuhkan pengelasan dengan kualitas baik. Pengelasan titanium dengan metode GTAW konvensional, yaitu constant current GTAW (C-GTAW) menghasilkan pengkasaran butir pada fusion zone dan daerah pengaruh panas (HAZ). Hal ini menyebabkan turunnya sifat mekanis dan juga mempengaruhi perilaku korosi. Pulsed current GTAW (P-GTAW) merupakan salah satu teknologi pengelasan yang menghasilkan kekuatan mekanik yang lebih baik dari pada C-GTAW.
Penelitian ini bertujuan melihat pengaruh parameter P-GTAW, yaitu pulse current, background current, dan pulse-on-time pada perilaku korosi CP titanium grade 2. Uji korosi celup dengan 3,5 M HCl dan polarisasi dengan 1 M HCl dilakukan untuk mengukur laju korosi dan melihat perilaku sample hasil pengelasan. Uji kekerasan mikro (Vickers Hardness Test) dilakukan pada sample hasil pengelasan untuk melihat pengaruh parameter P-GTAW terhadap kekerasan. Pengamatan dengan menggunakan mikroskop optik untuk melihat pengaruh panas pada strukturmikro, yaitu pada logam dasar, daerah pengaruh panas (HAZ), dan fusion zone. Morfologi permukaan dan komposisi sample pasca uji korosi celup diamati dengan scanning electron microscope (SEM) dan energy dispersive x-ray (EDX).
Nilai open circuit potential (OCP) dan potensial korosi (Ecorr) hasil PGTAW lebih rendah dari C-GTAW, namun masih berada di daerah kesetimbangan TiO2. Perilaku elektrokimia hasil pengelasan P-GTAW, C-GTAW, dan parent material, menunjukan daerah aktif, passive dan transpassive. Uji korosi celup dan uji polarisasi potensiodinamik menunjukan terjadi preferential weld corrosion pada hasil pengelasan P-GTAW dan C-GTAW. Laju korosi hasil pengelasan P-GTAW lebih rendah dari pada C-GTAW. Hasil uji kekerasan mikro menunjukan kekerasan hasil P-GTAW lebih tinggi dari hasil C-GTAW.

Unalloyed titanium or commercially pure (CP) titanium is widely used in applications that require high corrosion resistant, while the high strength is not required. In its application, titanium weld with high quality is needed. To weld titanium with the conventional method, i.e. constant current GTAW (C-GTAW), produces grain coarsening at the fusion zone and heat affected zone (HAZ). This affects the mechanical properties and corrosion behavior of weldment. Pulsed current GTAW (P-GTAW) is one technology that produces better mechanical strength than the C-GTAW.
This study examines the effect of P-GTAW parameters, namely pulse current, background current, and pulse on-time on the corrosion behavior of CP titanium grade 2. Immersion corrosion testing with 3.5 M HCl and potentiodynamic polarization method with 1 M HCl were carried out to measure the corrosion rate and to observe the corrosion behavior of the weldment. Microhardness testing was performed to see the effect of P-GTAW parameters on hardness. The surface morphology and constituent compositions of the sample after immersion corrosion test, was characterized with scanning electron microscope (SEM) and energy dispersive x-ray (EDX).
The open circuit potential (OCP) and corrosion potential (Ecorr) produced by P-GTAW were lower than the C-GTAW, but still in area of TiO2 equilibrium. The electrochemical behavior of welds produced by P-GTAW, the C-GTAW, and also parent material, shows the active, passive and transpassive. Corrosion immersion testing and potentiodynamic polarization testing showed preferential weld corrosion was occurred. Corrosion rate of sample which are produced by the P-GTAW were lower than the C-GTAW. The microhardness testing showed PGTAW welds were higher than the C-GTAW weld.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42836
UI - Tesis Membership  Universitas Indonesia Library
cover
Givi, Mohammad Kazem Besharati
"Friction-stir welding (FSW) is a solid-state joining process primarily used on aluminum, and is also widely used for joining dissimilar metals such as aluminum, magnesium, copper and ferrous alloys. Recently, a friction-stir processing (FSP) technique based on FSW has been used for microstructural modifications, the homogenized and refined microstructure along with the reduced porosity resulting in improved mechanical properties. Advances in friction-stir welding and processing deals with the processes involved in different metals and polymers, including their microstructural and mechanical properties, wear and corrosion behavior, heat flow, and simulation. The book is structured into ten chapters, covering applications of the technology, tool and welding design, material and heat flow, microstructural evolution, mechanical properties, corrosion behavior and wear properties. Later chapters cover mechanical alloying and FSP as a welding and casting repair technique; optimization and simulation of artificial neural networks; and FSW and FSP of polymers."
Amsterdam: Woodhead, 2014
e20426768
eBooks  Universitas Indonesia Library
cover
Yoga Dwi Adityaputra
"Pada era digital ini kebutuhan manusia dalam teknologi semakin berkembang pesat. Teknologi selalu dituntut untuk berkembang untuk memudahkan manusia dalam memenuhi segala aktivitas dan kebutuhannya. Teknologi proses manufaktur adalah salah satunya. Proses manufaktur yang paling banyak digunakan dalam industri saat ini adalah pengelasan. Salah satu contoh teknologi yang berkembang adalah pengelasan otomatis TIG (Tungsten Inert Gas). Pada penelitian ini, dilakukan pengelasan aluminium paduan AA1100 dengan menggunakan pengelasan Tungsten Inert Gas (TIG) otomatis untuk mendapatkan data training neural network sebagai bahan pengklasifikasian hasil pengelasan. Dimensi spesimen yang digunakan dalam penelitian ini yaitu panjang 14 cm, lebar 7 cm serta ketebalan 3,8 mm. Penelitian ini bertujuan untuk membuat sistem pengklasifikasian hasil las yang baik dan buruk (ada cacat) menggunakan machine vision dan neural network sebagai tahap awal dalam penerapan CNN dalam automatic TIG welding serta untuk mengetahui akurasi, presisi dan loss dari sistem vision tersebut dari pre-trained model ResNet-50 dan YOLOv5n. Penelitian ini dimulai dengan mempelajari segala sesuatu tentang metode pengelasan TIG, mempelajari pengaruh-pengaruh apa saja yang dapat menyebabkan pengelasan gagal serta mempelajari metode machine learning untuk mengklasifikasikan hasil pengelasan yang baik maupun hasil pengelasan yang gagal pada material Aluminium AA1100. Selanjutnya dilakukan pengelasan untuk mengambil data acuan sebagai bahan dasar klasifikasi hasil pengelasan, lalu dataset tersebut dilakukan labelling dan di training menggunakan pre-trained model ResNet-50 dan YOLOv5n. Dua model yang terbuat dari hasil training tersebut kemudian di uji coba menggunakan 70 data test. Hasil dari tes tersebut yaitu: Pada tes dengan model YOLOv5s (epoch 50, batch 16 dan learning rate 0.001) menghasilkan nilai akurasi sebesar 88,57% dengan nilai item yang benar 45/50 dan 17/20. Model ini juga menghasilkan loss sebesar 11,42% dan precision sebesar 90%. Pada tes dengan model YOLOv5s dengan hyperparameter (epoch 100, batch 32 dan learning rate 0.001) menghasilkan nilai akurasi sebesar 97,14% dengan nilai item yang benar 49/50 dan 19/20, model ini juga menghasilkan loss sebesar 2,8% dan nilai precision sebesar 98%. Pada tes dengan model yang menggunakan architecture ResNet-50 dengan (epoch 50, batch 16 dan learning rate 0.001) menghasilkan nilai benar 43/50 dan 16/20 dengan nilai accuracy sebesar 84,28%, nilai loss 15,7% dan precision 86%. Untuk model ResNet-50 dengan hyperparameter (epoch 100, batch 32 dan learning rate 0.001) menghasilkan nilai akurasi sebesar 94,28% dengan nilai item yang benar 47/50 dan 19/20, model ini juga menghasilkan loss sebesar 5,71% dan nilai precision sebesar 94%.

In this digital era, human needs in technology are growing rapidly. Technology is always required to develop to make it easier for humans to fulfill all their activities and needs. Manufacturing process technology is one of them. The most widely used manufacturing process in industry today is welding. One example of a developing technology is TIG (Tungsten Inert Gas) automatic welding. In this study, welding of aluminum alloy AA1100 was carried out using automatic Tungsten Inert Gas (TIG) welding to obtain neural network training data as a material for classifying welding results. The dimensions of the specimens used in this study were 14 cm long, 7 cm wide and 3.8 mm thick. Welding is carried out with a fixed current, namely 120A and using filler ER5356. This study aims to create a classification system for good and bad (defective) welds using machine vision and neural networks as an initial step in applying CNN in automatic TIG welding and to determine the accuracy, precision and loss of the vision system from pre-trained models ResNet-50 and YOLOv5n. This research began by learning everything about the TIG welding method, learning what influences can cause welding to fail and studying the machine learning method to classify good welding results and failed welding results on Aluminum AA1100 material. Next, welding is carried out to retrieve reference data as the basis for the classification of welding results, then the dataset is labeled and trained using the pre-trained ResNet-50 and YOLOv5n models. The two models made from the results of the training were then tested using 70 test data. The results of the test are: The test with the YOLOv5s model (epoch 50, batch 16 and learning rate 0.001) produces an accuracy value of 88.57% with correct item values 45/50 and 17/20. This model also produces a loss of 11.42% and a precision of 90%. In tests with the YOLOv5s model with hyperparameters (epoch 100, batch 32 and learning rate 0.001) it produces an accuracy value of 97.14% with correct item values 49/50 and 19/20, this model also produces a loss of 2.8% and precision value of 98%. In the test with a model that uses architecture ResNet-50 with (epoch 50, batch 16 and learning rate 0.001) it produces a correct score of 43/50 and 16/20 with an accuracy value of 84.28%, a loss value of 15.7% and a precision of 86 %. For the ResNet-50 model with hyperparameters (epoch 100, batch 32 and learning rate 0.001) it produces an accuracy value of 94.28% with correct item values 47/50 and 19/20, this model also produces a loss of 5.71% and precision value of 94%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Tedi Veradino
"Pengelasan memiliki peran penting dalam industri konstruksi, manufaktur, serta oil and gas. Salah satu penerapan teknologi pengelasan dalam industri adalah pengelasan pada pipa. Dalam penelitian ini, pengelasan pipa orbital dilakukan dengan Gas Tungsten Arc Welding (GTAW) tanpa filler metal (autogenous) pada pipa baja tahan karat tipe SS316L. Dimensi material uji adalah diameter luar 114 mm dan ketebalan 3 mm. Pengujian pengelasan dilakukan untuk mengetahui kualitas pengelasan (lebar manik) dan kekuatan tarik. Parameter pengelasan yang digunakan adalah arus terpulsasi, kecepatan pengelasan sebesar 0,150 mm/s, 0,154 mm/s, dan 0,161 mm/s, serta 4 posisi sudut pipa saat pengelasan yaitu 0°, 90°, 180°, dan 270°. Tahapan pengujian yang dilakukan meliputi persiapan alat dan benda uji, pengelasan bahan uji, dan pengujian kekuatan tarik dan mikrokekerasan. Alat pengelasan yang digunakan adalah alat pengelasan pipa orbital prototipe dengan metode 5G. Selanjutnya, untuk material SS316L, setelah dilakukan pengelasan, dilakukan pembentukan benda uji kekuatan tarik dengan bentuk standar bahan uji menggunakan standar ASTM E-8M. Hasil pengukuran lebar manik paling lebar terjadi pada kecepatan pengelasan 0,154 mm/s dengan lebar manik 12,14 mm pada posisi 90°. Hasil pengujian kekuatan tarik tertinggi terjadi pada kecepatan pengelasan 0,150 mm/d dengan kekuatan tarik maksimum sebesar 571,07 MPa pada posisi 180° dengan arus sebesar 100A. 

Welding plays a significant role in the construction, manufacturing, and oil and gas industries. One application of welding technology in these industries is pipe welding. In this study, orbital pipe welding was conducted using Gas Tungsten Arc Welding (GTAW) without filler metal (autogenous) on SS316L stainless steel pipes. The test material had an outer diameter of 114 mm and a thickness of 3 mm. Welding testing was performed to assess the weld quality (bead width) and tensile strength. The welding parameters used were pulsed current, welding speed of 0.150 mm/s, 0.154 mm/s, and 0.161 mm/s, and four pipe corner positions during welding: 0°, 90°, 180°, and 270°. The testing stages included tool and sample preparation, welding of the test material, and tensile strength and microhardness testing. A prototype orbital pipe welding tool using the 5G method was employed. Additionally, for SS316L material, after welding, test specimens for tensile strength were formed using the standard shape of the test material following ASTM E-8M. The widest bead width measurement was obtained at a welding speed of 0.154 mm/s with a bead width of 12.14 mm at the 90° position. The highest tensile strength test results occurred at a welding speed of 0.150 mm/s with a maximum tensile strength of 571.07 MPa at the 180° position with a current of 100A."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maryati
"Friction stir welding (FSW) merupakan metode pengelasan yang baru dengan biaya yang murah dan kualitas yang baik. Aluminium 5083-7075 telah berhasil disambung menggunakan metoda friction stir welding (FSW) dengan bentuk sambungan butt joint. Kecepatan putaran tool merupakan salah satu parameter yang penting dalam FSW. Perubahan kecepatan putar akan berpengaruh pada karakteristik sifat mekanik dan struktur mikro. Parameter pengelasan yang digunakan adalah welding speed sebesar 29 mm/min dengan variasi kecepatan putaran sebesar 525 rpm, 680 rpm, 910 rpm, dan 1555 rpm. Untuk mengetahui kekuatan mekanik lasan dilakukan pengujian kekuatan tarik dan kekerasan serta untuk melihat mikrostrukturnya akan menggunakan mikroskop optik dan scanning electron microscope (SEM).
Hasil penelitian menunjukkan bahwa kekuatan tarik tertinggi diperoleh pada kecepatan putar 910 rpm yaitu 244,85 MPa dan nilai kekerasan meningkat pada sisi aluminium 5083 dengan memperoleh nilai tertinggi pada daerah stir zone sebesar 96 HV pada kecepatan putar 525 rpm, sedangkan pada sisi aluminium 7075 nilai kekerasannya mengalami penurunan untuk semua sampel di daerah stir zone. Selanjutnya, berdasarkan hasil pengujian struktur makro dan struktur mikro pada semua sampel terlihat adanya cacat yaitu incomplete fusion dan incomplete penetration dan menyebabkan terbentuknya onion ring sehingga hasil pengadukan dan penyambungan pada daerah las kurang sempurna.

Friction Stir Welding (FSW) is a new welding process which was promoted with little cost and good quality joining. Dissimilar aluminium 5083-7075 was successfully joined using Friction Stir Welding (FSW) process in a butt joint configuration. The rotational speed is one of an important factor in FSW. The change of rotational speed influences the characteristic of mechanical properties and microstructure. Welding parameter used is 29 mm/min with variation rotational speed 525 rpm, 910 rpm and 1555 rpm. To investigate mechanical welding strength, tensile strength and hardness tester are conducted, and to investigate micro structure, optical microscope scanning electron microscope (SEM) is used in this research.
The result of the research shows that the highest tensile strength was obtained at a tool rotational speed 910 rpm, which is 244,85 MP. The hardness in aluminium was increased 5083 with highest result 96 HV at stir zone on rotational speed 525 rpm, and found the decreased of hardness at stir zone area in aluminium side 7075. Based on the result of macro and micro structure for all samples obtained the deformity, they are incomplete fusion and incomplete penetration which caused the form of onion fusion so that the stirring and splicing result in welding area is not complete.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T44995
UI - Tesis Membership  Universitas Indonesia Library
cover
Agus Widyianto, authhor
"Sistem perpipaan merupakan salah satu yang sering digunakan diindustri seperti industri petrokimia untuk mentransmisikan bahan dasar berupa minyak, air maupun gas. Jenis pengelasan yang cocok untuk sistem perpipaan adalah pengelasan pipa orbital. Dalam penelitian ini dilakukan pengelasan pipa orbital dengan pengelasan Gas Tungsten Arc Welding (GTAW) tanpa logam pengisi (autogenous) pada pipa baja tahan karat tipe SS316L. Dimensi dari material uji adalah diameter luar 114 mm dan ketebalan 3 mm. Empat metode pengelasan diterapkan untuk mencari metode yang terbaik untuk menghasilkan kualitas lasan. Metode pengelasan diantaranya metode konvensional, arus pulsa, urutan pengelasan dan kontrol artificial neural network (ANN). Keempat metode ini dilakukan dengan alat pengelasan pipa orbital secara fully mechanized yang dijalankan oleh operator las. Kualitas hasil lasan meliputi geometri las (lebar manik dan kedalaman penetrasi), distorsi pada pipa, struktur makro, struktur mikro dan sifat mekanik (kekuatan tarik dan kekerasan mikro). Tahap pertama membandingkan pengelasan dengan metode konvensional dan kontrol ANN terhadap kualitas hasil lasan. Kemudian tahap kedua adalah membandingkan pengelasan dengan metode arus pulsa, urutan pengelasan dan kontrol ANN. Terakhir adalah mencari metode pengelasan serta parameter pengelasan yang optimal untuk menghasilkan kualitas lasan yang optimal.
Hasil penelitian ini menunjukkan bahwa pengelasan dengan metode kontrol ANN lebih baik daripada metode konvensional. Dilihat dari segi lebar manik lebih stabil dengan metode kontrol ANN yaitu 10±0,6 mm. Tetapi untuk kedalaman penetrasi lebih baik menggunakan metode konvensional. Kemudian untuk distorsi yang terjadi lebih kecil menggunakan metode kontrol ANN yang kurang dari 200 µm. Struktur mikro yang terbentuk untuk kedua metode ini hampir sama untuk daerah tengah lasan. Kekuatan tarik maksimal untuk setiap posisi pipa lebih stabil menggunakan metode kontrol ANN. Sedangkan kekerasan mikro lebih kecil jika menggunakan metode kontrol ANN.
Perbandingan kualitas hasil lasan dengan metode arus pulsa, urutan pengelasan dan kontrol ANN menunjukkan bahwa metode kontrol ANN lebih baik dalam beberapa aspek. Aspek lebar manik menunjukkan metode kontrol ANN menghasilkan lebar manik yang lebih seragam yaitu 10±0,6 mm. Namun untuk kedalaman penetrasi lebih baik dengan metode arus pulsa. Distorsi pipa dengan metode kontrol ANN juah lebih kecil dibandingkan dengan kedua metode lainnya. Selanjutnya untuk struktur mikro yang teramati tidak jauh berbeda antara ketiga metode pengelasan. Kekuatan tarik maksimal untuk metode kontrol ANN lebih stabil untuk setiap posisi pipa dan kekerasan mikro terendah terjadi di daerah lasan dengan metode kontrol ANN.
Metode optimasi yang diterapkan adalah response surface method (RSM) dan Taguchi method. Selain itu digunakan juga analysis of variance (ANOVA) untuk mengetahui tingkat signifikasi parameter pengelasan. Respon dari optimasi adalah kekuatan tarik yang maksimum, distorsi pipa yang minimum dan lebar manik yang ditargetkan 10 mm. Hasil metode optimasi menunjukkan bahwa metode kontrol ANN menghasilkan kualitas lasan yang paling baik diantara metode pengelasan lainnya. Metode kontrol ANN dengan parameter arus pengelasan 106 A dan kecepatan awal pengelasan 1,5 mm/d dapat menghasilkan kekuatan tarik maksimum sebesar 670 MPa, distorsi melintang, distorsi aksial, keovalan dan tapers masing-masing adalah 126 µm, 252 µm, 94 µm dan 168 µm serta lebar manik sebesar 9,97 mm.

The piping system is one that is often used in industries such as the petrochemical industry to transmit basic materials in the form of oil, water and gas. The type of welding suitable for piping systems is orbital pipe welding. In this study, welding of orbital pipes with Gas Tungsten Arc Welding (GTAW) welding without filler metal (autogenous) was carried out on stainless steel pipes of type SS316L. The dimensions of the test material are 114 mm outside diameter and 3 mm thickness. Four welding methods were applied to find the best method to produce quality welds. Welding methods include conventional methods, pulse current, welding sequences and artificial neural network (ANN) control. These four methods are carried out with an fully mechanized orbital pipe welding device operated by a welding operator. The quality of the welds includes weld geometry (bead width and penetration depth), pipe distortion, macrostructure, microstructure and mechanical properties (tensile strength and microhardness). In the first stage, comparing welding with conventional methods and ANN control on the quality of the welds. Then the second stage is to compare welding with pulse current method, welding sequence and ANN control. The last is to find the optimal welding method and welding parameters to produce optimal weld quality.
The results of this study indicate that the welding with the ANN control method is better than the conventional method. In terms of bead width, it is more stable with the ANN control method, which is 10±0.6 mm. But for the depth of penetration it is better to use conventional methods. Then for smaller distortion, use the ANN control method which is less than 200 m. The microstructure formed for both methods is almost the same for the center of the weld. The maximum tensile strength for each pipe position is more stable using the ANN control method. While the micro hardness is smaller when using the ANN control method.
Comparison of weld quality with pulse current, welding sequence and ANN control method shows that the ANN control method is better in several aspects. The bead width aspect shows that the ANN control method produces a more uniform bead width of 10±0.6 mm. However, the penetration depth is better with the pulse current method. The pipe distortion with the ANN control method is much smaller than the other two methods. Furthermore, the observed microstructure is not much different between the three welding methods. The maximum tensile strength for the ANN control method is more stable for each pipe position and the lowest microhardness occurs in the weld area with the ANN control method.
The optimization methods applied are the response surface method (RSM) and the Taguchi method. In addition, analysis of variance (ANOVA) is also used to determine the level of significance of welding parameters. The response of the optimization is maximum tensile strength, minimum pipe distortion and a targeted bead width of 10 mm. The results of the optimization method show that the ANN control method produces the best weld quality among other welding methods. The ANN control method with a welding current parameter of 106 A and an initial welding speed of 1.5 mm/s can produce a maximum tensile strength of 670 MPa, transverse distortion, axial distortion, ovality and tapers respectively 126 m, 252 m, 94 m and 168 m and a bead width of 9.97 mm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>