Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 99623 dokumen yang sesuai dengan query
cover
Yislam
"ABSTRAK
Perkembangan Internet di Indonesia cukup pesat, hal ini ditandai dengan meningkatnya penggunaan jejaring sosial, khususnya Twitter. Untuk mengetahui pandangan masyarakat terhadap suatu pemerintahan dapat digunakan analisis sentimen menggunakan data Twitter. Penelitian ini melakukan analisis sentimen terhadap pemerintahan Jokowi dalam bidang politik, ekonomi dan hukum. Metode untuk mengklasifikasikan sentimen pada tweet berdasarkan kamus leksikon. Data twitter dikumpulkan selama satu bulan dari tanggal 1 sampai 31 Oktober 2015 berjumlah 6489, 3967 dan 8018 untuk bidang politik, ekonomi dan hukum. Pengklasifikasian twitter menjadi tiga kelompok, positif, negatif dan netral. Secara umum hasil uji coba menunjukkan bahwa sebagian besar data twitter diklasifikasikan sebagai netral. Jika dilihat hanya sentimen positif dan sentimen negatif maka untuk bidang politik dan ekonomi sentimen positif lebih tinggi, sedangkan untuk bidang hukum sentimen negatif lebih tinggi.

ABSTRACT
The development of the Internet in Indonesia is quite rapid, it is marked by the increasing use of social networks, especially Twitter. To find out the public?s view of a government may use sentiment analysis using Twitter data. This research analyzes citizen sentiment to Indonesian government in the fields of politics, economics and law. The method to classify sentiment in a tweet based on lexicon of those fields. We collect data Twitter during one month in October 2015, the number of data are 6489, 3967 and 8018 for the fields of politics, economics and law, respectively. We classify the data into three groups: positive, negative and neutral. In general, results of experiments showed that most of the data twitter classified as neutral. When only include positive and negative sentiment, there is higher positive sentiment on politics and economic fields, while negative sentiment higher for the laws field.
"
2016
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Mardeni Mihardi
"Kampanye merupakan salah satu momen dalam pemilu yang paling ditunggu. Masa kampanye adalah saat dimana calon kepala daerah memperkenalkan diri kepada masyarakat luas, terutama visi dan misinya. Untuk mengetahui pandangan masyarakat terhadap suatu kampanye politik digunakan analisis sentimen menggunakan data Twitter. Penelitian ini melakukan analisis sentimen terhadap kampanye politik pasangan calon gubernur dan wakil gubernur DKI Jakarta tahun 2017. Program yang digunakan untuk klasifikasi yaitu sentiStrength dengan menggunakan pendekatan berbasis leksikon. Dataset yang digunakan untuk klasifikasi yaitu kicauan tweet pengguna yang ditujukan untuk to membalas kicauan akun ofisial calon gubernur dan wakil gubernur, dan kicauan yang menyebut mention akun ofisial calon gubernur dan wakil gubernur pada saat masa kampanye putaran 1 dari tanggal 28 Oktober 2016 sampai 11 Februari 2017 dengan total kicauan yang terkumpul sebanyak 158.517 kicauan dan putaran 2 dari tanggal 7 Maret sampai 15 April 2017 dengan total kicauan yang terkumpul sebanyak 117.074 kicauan. Pengklasifikasian terbagi menjadi 3 kelas yaitu positif, negatif, dan netral. Hasil penelitian menunjukkan bahwa secara umum sentimen positif mendominasi sentimen negatif untuk tiap-tiap calon gubernur dan wakil gubernur, dan hasil perolehan sentimen positif di media sosial Twitter dengan hasil perolehan suara yang didapat oleh pasangan calon gubernur dan wakil gubernur DKI Jakarta 2017 baik pada putaran 1 maupun 2 memiliki urutan yang sama.

The campaign is one of the most awaited moments in elections. The campaign period is the time when the candidate head of the region introduces himself to the public, especially his vision and mission. To find out the public view of a political campaign used sentiment analysis using Twitter data. This study analyzes the sentiment toward the political campaign of candidate pair of governor and vice governor of DKI Jakarta in 2017. The program used for classification is sentiStrength by using lexicon based approach. The dataset used for classification is the tweets of users intended to respond to the tweets of the official accounts of candidates for governors and vice governors, and tweets that mention the official accounts of candidates for governor and vice governor during the campaign period round 1 from October 28, 2016 to February 11, 2017 with a total of tweets gathered as many as 158,517 tweets, and round 2 from March 7 to April 15, 2017 with a total tweet gathered 117,074 tweets. Classification is divided into 3 classes of positive, negative, and neutral. The results showed that in general the positive sentiment dominates the negative sentiment for each candidate of governor and vice governor, and the result of positive sentiments in social media Twitter with the result of vote earned by the couple of candidates for governor and vice governor of DKI Jakarta 2017 both on round 1 and 2 have the same order.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Syahrul Amrie
"Perkembangan media sosial telah berkembang pesat, tidak hanya sebagai alat komunikasi sosial antar individu. Fungsi dan kegunaannya semakin berkembang serta banyak dimanfaatkan organisasi swasta maupun pemerintah untuk mengukur tingkat layanan. Ditjen Imigrasi selaku organisasi pemerintah merupakan salah satu organisasi yang memanfaatkan media sosial, salah satu fungsinya untuk mengetahui apakah layanan yang diberikan telah diterima dengan baik oleh masyarakat. Selain melalui media sosial, Imigrasi juga telah meluncurkan aplikasi M-Paspor di platform Google Play Store, di platform tersebut Imigrasi juga dapat mengetahui tingkat efektivitas dari aplikasi yang telah diluncurkan. Berdasarkan survei yang dilakukan oleh Balitbangham yang merupakan internal dari Kemenkumham, layanan yang diberikan oleh imigrasi mendapat nilai sangat baik, namun faktanya pada media sosial maupun google play store banyak komentar maupun ulasan yang kurang puas dengan pelayanan pihak imigrasi. Hal tersebut menjadi kontradiksi antara hasil survei Balitbangham dan data di media sosial. Namun, akan sulit untuk melakukan analisis data media sosial dikarenakan jumlah yang banyak. Oleh karena itu, perlu dilakukan untuk mengusulkan sistem untuk melakukan analisis sentimen menggunakan data teks komentar dan ulasan. Sehingga pihak Imigrasi dapat mengambil langkah terbaik untuk dapat memperbaiki layanan yang masih belum maksimal. Dataset yang digunakan berupa data yang diambil dari media sosial Twitter dan Instagram serta ulasan pada Google Play Store. Hasil penelitian menunjukan jika fitur ekstraksi TF-IDF Unigram yang dipadukan dengan algoritma Support Vector Machine (SVM) serta SMOTE menghasilkan performa paling tinggi dibandingkan dengan nave Bayes (NB) maupun Random Forest (RF). dalam melakukan klasifikasi, SVM menghasilkan dengan hasil Precision 72%, Recall 69%, Accurasy 69, serta F1-Score sebesar 68%. Model tersebut dapat digunakan Imigrasi untuk mengetahui umpan balik pelayanan dari masyarakat yang dapat digunakan sebagai pertimbangan dalam melakukan perbaikan pelayanan serta merumuskan strategi pelayanan oleh Direktorat terkait agar pelayanan lebih efisien untuk kedepannya. Sehingga, Imigrasi akan mampu dengan cepat merespon kendala yang dihadapai oleh masyarakat.

The development of social media has grown rapidly, not only as a means of social communication between individuals. Its functions and uses are growing and are widely used by private and government organizations to measure service levels. The Directorate General of Immigration as a government organization is one of the organizations that utilizes social media. Its function is to find out whether the services provided have been well received or not by the public. Apart from social media, Immigration has also launched the M-Passport application on the Google Play Store platform, on the platform, Immigration officials can also find out the effectiveness of the applications that have been launched. Based on a survey conducted by Balitbangham which is internal to the Ministry of Human Rights, the services provided by immigration get a very good score, but the fact is that on social media and the Google Play Store some many comments and reviews are not satisfied with the services of the immigration authorities. This is a contradiction between the results of the Balitbangham survey and data on social media. However, it will be difficult to analyze social media data due to the large number. Therefore, it is necessary to propose a system to perform sentiment analysis using commentary and reviewing text data. So that Immigration can take the best steps to be able to improve services that are still not optimal. The dataset used is in the form of data taken from social media Twitter and Instagram as well as reviews on the Google Play Store. The results show that the TF-IDF Unigram extract feature combined with the Support Vector Machine (SVM) and SMOTE algorithms produces the highest performance compared to Naïve Bayes (NB) and Random Forest (RF). In classifying, SVM produces 72% Precision, 69% Recall, 69% Accuracy, and 68% F1-Score. This model can be used by Immigration to find out service feedback from the community as a consideration in making service improvements and formulating more efficient service strategies for the future. Thus, Immigration will be able to quickly respond to the obstacles faced by the community."
Jakarta: Fakultas Ilmu Kompter Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Prahardika Prihananto
"ABSTRAK
Skripsi ini bertujuan untuk mengetahui kepuasan pelanggan layanan data operator CDMA di Indonesia dengan menggunakan pesan tweet sebagai data kepuasan pelanggan real time. Data tersebut diolah menggunakan text mining dan sentiment analysis dengan membuat model klasifikasi teks. Tingkat akurasi model yang dibuat untuk memprediksi sentimen dari pesan tweet mencapai 80 %. Hasil penelitian menunjukkan bahwa pelanggan data operator CDMA di Indonesia baik secara umum maupun pada masing-masing operator cenderung tidak puas dengan layanan data yang diberikan. Secara umum kriteria kemudahan koneksi paling mempengaruhi ketidakpuasan pelanggan layanan data operator CDMA di Indonesia. Sedangkan kriteria kemudahan koneksi paling mempengaruhi ketidakpuasan pelanggan layanan data operator CDMA 1. Kemudian kriteria kemudahan koneksi dan kehandalan jaringan paling mempengaruhi ketidakpuasan pelanggan layanan data operator CDMA 2.

ABSTRACT
This thesis aims to gain insight of customer satisfaction of Indonesian CDMA data services operators by using tweets as real time customer satisfaction data. The data is processed using text mining and sentiment analysis by creating text classification model. The model accuracy to predict sentiment of a tweet achieve 80%. The results showed that Indonesia CDMA data subcribers in general or to individual operators tend to not satisfied with the service provided. Connection easiness criteria most influencing customer dissatisfaction of Indonesia CDMA data service operators in general. While, the connection easiness criteria most influencing customer dissatisfaction of CDMA data service operator 1. Then, Connection easiness and network reliability criteria most influencing customer dissatisfaction of CDMA data service operator 2."
Fakultas Teknik Universitas Indonesia, 2014
S56382
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanif Sudira
"Peran internet semakin penting dalam berbagai aspek kehidupan masyarakat. Kebutuhan akan internet menjadi peluang bagi penyedia internet, salah satunya Telkom dengan IndiHome. Sebagai BUMN, Telkom berperan sebagai penyedia layanan internet untuk memenuhi kebutuhan masyarakat. Berdasarkan survei kepuasan pelanggan tahun 2019 dan 2020, NPS IndiHome tidak mencapai target. Dari target besar atau sama dengan 5, tahun 2019 dan 2020, NPS IndiHome sebesar -1,67 dan 2,87. Hal ini karena pengerjaan permasalahan masih berdasarkan laporan, belum memiliki cara untuk mengetahui permasalahan yang terjadi dan belum memanfaatkan opini media sosial karena masih memanfaatkan survei. Penelitian ini membangun model analisis sentimen dam topic modelling IndiHome pada twitter & instagram. Data diambil dari bulan Maret 2019-April 2021. Model yang dihasilkan menggunakan metode SVM, twitter akurasi 70,13% dan instagram akurasi 73,55%. Sentimen mayoritas negatif, nilai NPS -79,49 pada twitter dan -56,12 pada Instagram. Dari twitter & instagram respons terhadap IndiHome memiliki indeks negatif, dimana masyarakat tidak puas dengan IndiHome. Hasil Topik diskusi negatif yaitu internet IndiHome mati mendadak, internet IndiHome lamban, internet IndiHome mati ketika terjadi hujan, biaya IndiHome mahal, pelayanan IndiHome tidak responsif, pelayanan IndiHome tidak solutif, sudah bayar internet diisolir, janji temu teknisi tidak sesuai waktu, dan ingin berhenti berlangganan atau pindah provider.

The role of the internet is increasingly important in various aspects of people's lives. The need for internet is an opportunity for internet providers, one of which is Telkom and IndiHome. As a BUMN, Telkom acts as a provider of internet services to meet the needs of the community. Based on customer satisfaction surveys in 2019 and 2020, IndiHome's NPS did not reach the target. Of the large target or equal to 5, in 2019 and 2020, IndiHome's NPS is -1.67 and 2.87. This is because the problem solving is still based on reports, does not have a way to find out the problems that occur and has not used social media opinions because they are still using surveys. This study builds a sentiment analysis model and IndiHome topic modeling on Twitter & Instagram. The data was taken from March 2019-April 2021. The resulting model used the SVM method, twitter 70.13% accuracy and instagram 73.55% accuracy. The majority sentiment is negative, the NPS score is -79.49 on Twitter and -56.12 on Instagram. From Twitter & Instagram, the response to IndiHome has a negative index, where people are not satisfied with IndiHome. The results of the negative discussion topics are IndiHome internet shuts down suddenly, IndiHome internet is slow, IndiHome internet shuts down when it rains, IndiHome costs are expensive, IndiHome services are unresponsive, IndiHome services are not solutive, already paid for the internet is isolated, technician appointments are not on time, and want to stop subscribe or switch providers."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Annisa Yuni Safira
"Analisis sentimen adalah studi komputasi yang bertugas mengelompokkan sentimen atau opini dari teks yang ada dalam dokumen, kalimat, atau pendapat ke kelas sentimen positif, negatif, atau netral. Terdapat banyak model deep learning yang terkenal untuk analisis sentimen, dua di antaranya adalah Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU), yang termasuk dalam Recurrent Neural Network (RNN). Bidirectional Gated Recurrent Unit (BiGRU) merupakan bagian dari Bidirectional Recurrent Neural Network (BiRNN) yang dapat bekerja secara dua arah dan memungkinkan untuk menangkap pola yang mungkin diabaikan oleh GRU. Untuk meningkatkan kinerja model menjadi lebih baik, beberapa peneliti mencoba menerapkan model hybrid dengan menggabungkan dua atau lebih model deep learning dasar. CNN memiliki keunggulan dalam mendapatkan fitur terpenting, sedangkan BiGRU dapat merepresentasikan kata dengan memperhatikan urutan dengan dua arah. Kedua model tersebut dapat digabungkan menjadi model CNN-BiGRU dan BiGRU-CNN. Implementasi kedua model dilakukan untuk data opini yang diambil dari Twitter mengenai tiga dompet digital, yaitu Gopay, OVO, dan ShopeePay. Hasil penelitian didapat bahwa kedua model memiliki kinerja yang berbeda untuk setiap dataset. Kemudian, didapat bahwa kedua model tersebut memiliki nilai akurasi dan f1 score yang tidak lebih tinggi dibandingkan model dasarnya.

Sentiment analysis is a computational study that is used to classify sentiments or opinions from texts in documents, sentences, or opinions into positive, negative, or neutral sentiment classes. There are many well-known deep learning models for sentiment analysis, two of which are the Convolutional Neural Network (CNN) and the Gated Recurrent Unit (GRU), which are included in the Recurrent Neural Network (RNN). The Bidirectional Gated Recurrent Unit (BiGRU) is part of the Bidirectional Recurrent Neural Network (BiRNN) which can work in both directions and allows for capturing patterns that the GRU might ignore. To improve model performance, some researchers are trying to implement a hybrid model by combining two or more basic deep learning models. CNN has the advantage of getting the most important features, while BiGRU can represent words by paying attention to the order in two directions. The two models can be combined into CNNBiGRU and BiGRU-CNN models. The implementation of the two models is used for opinion data taken from Twitter regarding three digital wallets, namely Gopay, OVO, and ShopeePay. The results showed that the two models have different performances for each dataset. Then, it was found that both models have an accuracy value and an f1 score that is not higher than the basic model.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Isnaeni Nurul Afra
"Komisi Pemberantasan Korupsi (KPK) memiliki kewenangan dalam melakukan pendaftaran dan pemeriksaan terhadap Laporan Harta Kekayaan Penyelenggara Negara (LHKPN). Pelaporan ini berfungsi untuk melakukan pengawasan kejujuran, integritas, dan deteksi kemungkinan adanya tindakan memperkaya diri secara melawan hukum oleh pejabat publik. Publikasi LHKPN sering menimbulkan prasangka negatif dan kecurigaan publik terhadap laporan harta kekayaan pejabat yang mengakibatkan kekhawatiran pejabat untuk melaporkan harta kekayaan secara lengkap dan benar. Persepsi ini menjadi kontraproduktif dengan upaya pencegahan korupsi yang dilakukan oleh KPK apabila tidak direspon dengan cepat. Penelitian ini bertujuan untuk membuat model analisis sentimen dan pemodelan topik yang dapat mengeksplorasi topik dari data media sosial Twitter. Indonesia memiliki jumlah pengguna aktif terbesar keenam di dunia dengan 15,7 juta pengguna yang didominasi kelompok usia 25-34 tahun. Dataset sejumlah 881 data diambil dari Twitter dengan kata kunci "lhkpn" dan "harta kekayaan pejabat" pada periode 1 Agustus sampai 5 November 2021. Penelitian ini mengekplorasi beberapa algoritma klasifikasi, representasi fitur unigram, bigram, dan trigram dengan CountVectorizer dan TFIDF, serta metode oversampling SMOTE. Algoritma klasifikasi dengan performa paling baik pada penelitian ini adalah Multilayer Perceptron dengan fitur unigram CountVectorizer dan metode oversampling dengan accuracy 76,60%, precision 78,19%, recall 76,60%, dan F1 score 76,95%. Hasil pemodelan topik menggunakan Latent Dirichlet Allocation pada kategori ‘negatif’ didominasi ekspresi kekecewaan dan kemarahan masyarakat terhadap meningkatnya harta kekayaan pejabat selama masa pandemi Covid-19 yang berbanding terbalik dengan meningkatnya utang negara dan kesulitan yang dihadapi masyarakat selama pandemi. Topik yang dihasilkan pada kategori ‘positif’ cukup beragam mulai dari aturan untuk melakukan pembuktian terbalik, usulan mengenai kewajiban pelaporan dan sanksi, permintaan untuk membuka laporan kekayaan kepada publik, serta pembahasan mengenai kewajaran penambahan harta kekayaan yang disebabkan oleh meningkatnya nilai aset tidak bergerak.

The Corruption Eradication Commission (KPK) has the authority to register and examine Public Officials Wealth Reports (LHKPN). This report serves to monitor honesty, integrity, and detect the possibility of illegal enrichment by public officials. Publication of LHKPN often creates negative prejudice and public suspicion of official wealth reports, which causes officials to worry about reporting assets completely and correctly. This perception is counterproductive to the efforts to prevent corruption carried out by the KPK if it is not responded to quickly. This study aims to create a sentiment analysis model and topic modelling that can explore topics from Twitter social media data. Indonesia has the sixth-largest number of active users in the world with 15.7 million users, dominated by the 25-34 year age group. A dataset of 881 data was taken from Twitter with the keywords "lhkpn" and "official assets" in the period August 1 to November 5, 2021. This study explores several classification algorithms, representation of unigram, bigram, and trigram features with CountVectorizer and TFIDF, as well as SMOTE oversampling methods. The classification algorithm with the best performance is the Multilayer Perceptron with the unigram CountVectorizer feature and the oversampling method with 76.60% accuracy, 78.19% precision, 76.60% recall, and 76.95% F1 score. The results of topic modelling using Latent Dirichlet Allocation in the 'negative' category are dominated by expressions of public disappointment and anger towards the increase in official wealth during the Covid-19 pandemic which is inversely proportional to the increase in state debt and the difficulties faced by the community during the pandemic. The topics generated in the 'positive' category are quite diverse, starting from the rules for conducting reverse verification, proposals on reporting obligations and sanctions, requests to disclose wealth reports to the public, as well as discussions on the reasonableness of adding to assets caused by the increase in the value of immovable assets."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Muhammad Zuhri Bayhaqi
"Analisis sentimen terhadap opini publik di Twitter dapat memberikan wawasan yang berharga dalam memahami dukungan dan pemikiran masyarakat terkait calon presiden dan isu-isu terkait Pilpres 2024. Penelitian ini bertujuan untuk mengembangkan sistem analisis sentimen terhadap opini publik tentang Pilpres Indonesia 2024 yang tersebar di media sosial Twitter dalam bahasa Indonesia. Algoritma yang digunakan dalam pengembangan sistem tersebut adalah Naïve Bayes, sebuah algoritma klasifikasi yang telah terbukti efektif dalam analisis sentimen. Data yang digunakan dalam penelitian ini adalah kumpulan tweet atau cuitan yang diperoleh dari Twitter dengan menggunakan teknik web scraping. Persentasi Akurasi pada uji coba setiap skenario yang dilakukan mendapatkan hasil terbaik dengan nilai 81,18% untuk Skenario 1, 72,58% untuk Skenario 2, 65,05% untuk Skenario 3, dan 80,11% untuk Skenario 4. Hasil evaluasi model sistem yang dikembangkan terhadap klasifikasi sebenarnya menunjukkan bahwa analisis sentimen menggunakan algoritma Naïve Bayes dapat memberikan hasil yang baik tentang sentimen opini publik terkait Pilpres Indonesia 2024 di media sosial Twitter. Pengembangan sistem yang dikerjakan memberikan hasil model yang dapat melakukan analisis sentimen secara mandiri dengan akurasi yang tinggi terhadap opini publik terkait Pilpres Indonesia 2024 dengan nilai rata-rata 81,18%. Hasil analisis sentimen ini dapat membantu pihak-pihak terkait, termasuk calon presiden dan tim kampanye mereka, untuk memahami sejauh mana opini publik mendukung atau menentang mereka.

Sentiment analysis of public opinion on Twitter can provide valuable insight in understanding public support and thoughts regarding presidential candidates and issues related to the 2024 presidential election. This research aims to develop a sentiment analysis system for public opinion about the 2024 Indonesian Presidential Election shared on Twitter social media. in Indonesian. The algorithm used in developing the system is Naïve Bayes, a classification algorithm that has been proven effective in sentiment analysis. The data used in this research is a collection of tweets obtained from Twitter using web scraping techniques. The percentage of accuracy in testing each scenario carried out obtained the best results with a value of 81.18% for Scenario 1, 72.58% for Scenario 2, 65.05% for Scenario 3, and 80.11% for Scenario 4. Model evaluation results system developed for classification actually shows that sentiment analysis using the Naïve Bayes algorithm can provide good results regarding public opinion sentiment regarding the 2024 Indonesian Presidential Election on Twitter social media. The system development carried out provides model results that can carry out sentiment analysis independently with high accuracy regarding public opinion regarding the 2024 Indonesian Presidential Election. The results of this sentiment analysis can help related parties, including presidential candidates and their campaign teams, to understand the extent of opinion. they. society supports or opposes them."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ruchi Intan Tantra
"Kondisi pandemi saat ini membuat proses dan kegiatan belajar mengajar di Indonesia harus dilakukan secara daring menggunakan media digital. Proses pembelajaran secara daring ini berlangsung pada skala yang memang belum pernah terukur dan teruji sebelumnya. Kesenjangan akses pendidikan pun terjadi karena tidak setiap daerah di indonesia memiliki sarana dan prasarana serta pengetahuan akan teknologi yang memadai untuk keberlangsungan proses pembelajaran secara daring. Analisis sentimen terhadap pembelajan daring melalui twitter dapat membantu pemerintah dalam hal mengevaluasi kebijakan dan memperbaiki kualitas kebijakan-kebijakan yang tengah diterapkan saat ini.
Desain penelitian yang digunakan pada penelitian ini adalah Experimental research, dimana analisis sentimen yang dilakukan pada penelitian ini menggunakan dua metode berbeda, yaitu metode deep learning (CNN) dan metode tradisional (naïve bayes). Klasifikasi sentimen dibagi menjadi 3 kelas yaitu negatif, positif, dan netral. Selain itu model juga dibangun untuk mendeteksi tweets yang bersifat tidak relevan terhadap konteks penelitian terhadap sentimen pembelajaran daring. Hasil analisis sentimen yang dibangun menggunakan model CNN yang memiliki akurasi 63,34%. Sedangkan model yang dibangun menggunakan metode naïve bayes memiliki akurasi 63%. Hasil Analisis sentimen masyarakat dari bulan april hingga oktober 2020, menunjukkan sentimen masyarakat yang cenderung negatif dibandingkan positif dan netral.
Pemodelan topik dibangun menggunakan metode Latent Dirichlet Allocation (LDA) untuk menemukan isu dan topik yang menjadi perhatian masyarakat di sosial media twitter. Topik negatif yang didapatkan dari sentimen negatif terhadap pembelajaran daring antara lain berisi keluhan siswa mengenai tugas yang menumpuk, jaringan dan koneksi internet yang tidak stabil, dan keinginan untuk menjalani proses pembelajaran secara offline kembali. Sedangkan topik positif didapatkan dari sentimen positif terhadap pembelajaran daring yang secara garis besar berisi ungkapan kesenangan dan syukur atas kebijakan pemberian subsidi kuota internet gratis yang diberikan pemerintah untuk pelajar maupun mahasiswa.

The current pandemic condition makes several school and universities in Indonesia implements teaching and learning activities form distance or online using digital platform. This online learning process takes place on a scale that has never been measured and tested before. The disparity in access to education also occurs because not every region in Indonesia has adequate facilities, infrastructure, and technological knowledge for the continuity of the online learning process. Sentiment analysis on twitter towards the online learning, could assist the government in evaluating policies and improving the quality of policies currently being implemented.
The research design used in this study is experimental research, where the sentiment analysis uses two different methods, namely the deep learning method (CNN) and the traditional method (naïve Bayes). Sentiment classification is divided into 3 classes, namely negative, positive, and neutral. In addition, a model was also built to detect tweets that are irrelevant to the context of the research on online learning sentiment. The results of the sentiment analysis, were built using the CNN model, has an accuracy of 63.34%. Meanwhile, the model built using the naïve Bayes method has an accuracy of 63%. The results of the analysis of public sentiment from April to October 2020, on online learning process, show sentiments that tend to be negative compared to positive and neutral.
Topic modeling was built using the Latent Dirichlet Allocation (LDA) method to find issues and public concern on twitter. Negative topics obtained from negative sentiment towards online learning described as following: student complaints about piling up tasks, unstable network and internet connections, and the desire to undergo the offline learning process again. Meanwhile, positive topics, were obtained from positive sentiments towards online learning, mostly contained expressions of pleasure towards the government which has providing free internet quota subsidies for students.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Nina Jane Bustan
"Transjakarta-Busway merupakan moda transportasi umum dengan jalanan khusus yang sedang dikembangkan oleh Pemerintah Daerah Ibukota Jakarta. Sejak tahun 2012 jumlah pengguna layanan Transjakarta-Busway terus menurun. Media sosial Twitter yang merupakan media sosial bagi masyarakat untuk mencurahkan opini, menjadi obyek peneliti untuk mendapatkan sentimen pengguna terhadap pelayanan Transjakarta-Busway. Penelitian ini menggunakan metode text mining digunakan untuk proses klasifikasi (keamanan, kenyamanan, keselamatan, kesetaraan,keterjangkauan, keteraturan) dengan membandingkan metode Support Vector Machine (SVM) dan Naïve Bayes, serta data stemming maupun non-stemming.
Penelitian menunjukan klasifikasi paling akurat didapat dari data non-stemming dengan metode Support Vector Machine (SVM). Hasil Klasifikasi yang didapat dibandingkan signifikasinya terhadap sentimen masyarakat dengan menggunakan Uji Chi-Square dan Prosedur Marascuilo, sehingga didapat pengaruh paling besar didapat dari sector kelompok Keselamatan, diikuti skctor Keteraturan, Kenyamanan, Keamanan Keterjangkauan, dan Kesetaraan. Keadaan fisik Transjakarta-Busway adalah yang paling dikeluhkan karena dirasa tidak layak.

Transjakarta-Busway is one of the well-known public transportation with special track in Jakarta. Jakarta?s government has been developing Transjakarta-Busway since 2009. But from 2012, the number of passanger is decreasing. Twitter, the famous social media in Indonesia, that used by community to express their feeling and opinion, has been used in this research to get sentiment from customer about Transjakarta-Busway?s services. This research used text mining as a method to classifying sentiment into 6 different groups (equality, safety, comfort, affordability, order, and security) with a comparison between Support Vector Machine (SVM) method and Naïve Bayes method.
This research shows that the most accurate classification is using Support Vector Machine Method wih non-stemming data. After that, the signification of classification compared using Chi-Square Test and Marascuilo Procedure. The Research shows that the biggest influence to sentiment comes from safety sector, followed by order section, comfort section, security section, affordability section, and the least influence comes from equality section. Physical condition of Transjakarta-Busway is the most complained among all.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S60734
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>