Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 120091 dokumen yang sesuai dengan query
cover
Hendrik
"Carbon Nanotube (CNT) merupakan material multifungsi yang akan dibutuhkan dalam jumlah besar di masa depan. Terdapat metode yang sangat menjanjikan untuk memproduksi CNT dalam jumlah besar yaitu dengan Chemical Vapor Deposition (CVD) dalam reaktor unggun terfluidisasi. Oleh karena itu, penelitian ini difokuskan untuk dapat menghasilkan model reaktor unggun terfluidsasi sehingga dapat dikembangkan menjadi reaktor skala pabrik yang mampu memproduksi CNT dalam skala besar secara efisien. Persamaan peristiwa perpindahan untuk fenomena fisik yang berlangsung dalam reaktor akan dikombinasikan dengan persamaan kinetika reaksi dengan menggunakan Computational Fluid Dynamics (CFD) dalam COMSOL Multiphysics sehingga dihasilkan sebuah model reaktor. Selanjutnya model akan disimulasikan dengan variasi parameter proses.
Hasil simulasi menunjukkan bahwa profil konsentrasi metana dipengaruhi oleh suhu dinding reaktor, rasio umpan, laju alir gas, tekanan umpan, dan ukuran katalis. Konversi metana dan yield karbon meningkat seiring dengan peningkatan suhu dinding reaktor, kandungan hidrogen dalam umpan, dan kecepatan fluida di dalam reaktor. Sedangkan konversi metana menurun seiring meningkatnya tekanan umpan dan ukuran katalis. Konversi metana pada model reaktor unggun terfluidisasi yang disimulasikan adalah sebesar 77% dengan Yield CNT yang dihasilkan sebesar 0.66 gCNT/gCat dalam waktu reaksi selama 5 jam.

Carbon Nanotube (CNT) is well known material having an unique properties and will become future materials. Promising way to synthesize a large scale of CNT is through the Chemical Vapor Deposition in fluidized bed reactor. Focus of this research is to get fluidized bed reactor model which representate the condition and performance in the real reactor. Method of this research is develop model of mathematic equation based on mass, momentum, and energy balance. COMSOL Multiphysics is used to develop the model and for running simulation for several process parameter such as temperature, pressure, etc.
The simulation results show that the methane concentration profile is influenced by the temperature of the walls of the reactor, the feed ratio, gas flow rate, feed presure, and radius of catalyst particles. Conversion of methane and carbon yield increases with increasing temperature of the reactor wall, the addition hydrogen in reactant and the velocity of the fluid in the reactor. Conversion of methane decreases with increasing of feed pressure and radius of catalyst particles. In this model, conversion of methane was about 77% and Yield of CNT was about 0.66 gCNT/gCat for 5 hours of reaction.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63460
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wihardi Setyo Wicaksono
"Carbon nanotube (CNT) adalah bentuk baru dari karbon murni yang memiliki banyak kegunaan. Perengkahan metana adalah salah satu proses untuk sintesis hidrogen dan CNT yang memiliki kelebihan tidak menghasilkan karbon monoksida dan karbon dioksida. Sebelum memproduksi CNT dan hidrogen berbasis reaksi dekomposisi katalitik metana dengan skala pabrik, diperlukan simulasi dan pemodelan dari hasil eksperimen reaktor lab.
Tujuan dari penelitian ini adalah untuk mendapatkan model matematika tak berdimensi reaktor unggun tetap yang valid dan menganalisis pengaruh dari variasi kondisi operasi terhadap konversi metana. Metode untuk penelitian adalah mengembangkan model persamaan-persamaan matematika berdasarkan neraca massa, momentum, dan energi. Persamaan-persamaan tersebut kemudian di-running pada perangkat lunak COMSOL Multiphysics® versi 4.4.
Konversi metana pada waktu reaksi 315 menit adalah 97,1% dan yield karbon yang didapatkan setelah 315 menit adalah 1,12 g karbon/g katalis. Kenaikan pada tekanan umpan, laju alir umpan, dan fraksi mol hidrogen akan memperkecil konversi metana. Kenaikan temperatur dinding reaktor dan panjang reaktor akan memperbesar konversi metana.

Carbon Nanotube (CNT) is a new form of pure carbon that have a lot of usefulness. Methane cracking is one of process for the synthesis of hydrogen and CNT which have advantage to not produce carbon monoxide and carbon dioxide. Before producing CNT and hydrogen base on the reaction of methane catalytic decomposition in plant scale, it is needed to done simulation and modelling from result of lab reactor experiment.
Purpose of this research is to get valid dimensionless model of fixed bed reactor and to analyze the variation effect of operation condition to methane conversion. Method for this research is develop model of mathematic equations based on mass, momentum, and energy balance. Software COMSOL Multiphysics® version 4.4 then used to running the equations.
Methane conversion at 315 minutes reaction time is 97.1% and carbon yield obtained after 315 minutes reaction time is 1.12 g carbon/g catalyst. Increasing feed pressure, velocity, and hydrogen mole fraction will decrease methane conversion. Increase of reactor wall temperature and reactor length will increase methane conversion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59617
UI - Skripsi Membership  Universitas Indonesia Library
cover
Puguh Setyopratomo
"Carbon nanotubes CNT dipandang sebagai media yang potensial untuk penyimpan gas hidrogen. Untuk mempercepat pengembangan metode dan teknik-teknik produksi CNT skala komersial, maka pada penelitian ini akan dilakukan produksi CNT dengan metode chemical vapor deposition menggunakan reaktor fluidized bed, dengan katalis Fe-Co-Mo/MgO dan sumber karbon LPG. Tujuan penelitian adalah untuk mengetahui kefektifan katalis Fe-Co-Mo/MgO, mengetahui kinerja reaktor fluidized bed dan menguji kinerja CNT yang dihasilkan dalam aplikasinya sebagai penyimpan gas hidrogen.
Dari hasil penelitian diperoleh bahwa katalis dengan loading logam 10 b/b menghasilkan yield CNT tertinggi. Katalis tersebut tetap menunjukkan keaktifan yang tinggi dan terhindar dari deaktifasi akibat sintering sampai suhu reaksi 950 oC. Katalis juga mampu mempertahankan keaktifannya sampai 5 jam waktu reaksi. Meningkatkan rasio massa katalis terhadap laju alir gas umpan berakibat pada turunya yield CNT karena unggun katalis menjadi lebih padat sehingga mengurangi ketersediaan ruang untuk pertumbuhan CNT. Partikel katalis Fe-Co-Mo/MgO memiliki ukuran dalam rentang 135 ndash; 227 nm dan memiliki karakteristik sulit difluidisasi.
Fluidisasi terjadi setelah terjadinya pertumbuhan CNT. Pada reaktor fluidized bed yang dirancang, diperlukan zona preheating untuk mengkondisikan zona reaksi berada pada suhu yang diperlukan untuk terjadinya sintesa dan pertumbuhan CNT. Adsorpsi gas hidrogen pada produk CNT mengikuti model Langmuir. Purifikasi as-grown CNT secara signifikan meningkatkan kapasitas adsorpsinya terhadap gas hidrogen dimana pada suhu 30 oC mencapai 32,7 m mol H2/g CNT. Pada kasus ini, penggunaan siklon sebagai alat bantu untuk memisahkan produk CNT yang terbawa aliran gas ke luar reaktor terbukti efektif dalam meningkatkan kapasitas sintesa CNT dengan reaktor fluidized bed.

Carbon nanotubes are considered as a potential media for hydrogen storage. To accelerate the development of methods and techniques of commercial-scale CNT production, this research will produce CNT by chemical vapor deposition method using fluidized bed reactor with Fe-Co-Mo/MgO catalyst and LPG as carbon source. The objectives of the study are to determine the effectiveness of Fe-Co-Mo/MgO catalyst, to observe the performance of fluidized bed reactor and to investigate the performance of the CNT product in the application as a hydrogen gas storage.
From the result of the research, it is found that the catalyst with metal loading 10 w demonstrate the highest CNT yield. The catalyst continues to exhibit high activation and avoid rapid deactivation due to sintering until the reaction temperature reach 950 oC. The catalyst is also able to maintain its activity up to 5 hours reaction time. Increasing the mass ratio of the catalyst to the feed gas flow rate results in the decrease in the CNT yield because the catalyst bed becomes more compact thus reducing the space available for CNT growth. Fe-Co-Mo/MgO catalyst particles have sizes in the range of 135-222 nm and has a characteristic that is difficult to fluidize.
Fluidization occurs after CNT growth occurs. on the designed fluidized bed reactor, a preheating zone is required to heat up the reaction zone until it reaches the temperature required for the synthesis and growth of the CNT. Adsorption of hydrogen gas on CNT products follows Langmuir model. As-grown CNT purification significantly increases the adsorption capacity of hydrogen gas in which at 30 oC reach 32.7 m mol H2/g CNT. In this case, the use of cyclone as a tool for separating CNT products carried by gas streams exit the reactor proven effective in increasing the capacity of CNT synthesis in fluidized bed reactors.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2453
UI - Disertasi Membership  Universitas Indonesia Library
cover
Bernadet Valentine
"ABSTRAK
Produksi nanotube karbon jenis Single Walled Nanotube Carbon (SWNT) dan
Few Walled Nanotube Carbon (FWNT) masih sulit untuk dilakukan. Salah satu
penyebab utama adalah pemilihan katalis yang kurang tepat. Penelitian ini
menggunakan katalis Fe/Mo/MgO untuk menghasilkan SWNT atau FWNT
(diameter luar nanotube karbon kurang dari 10 nm). Katalis Fe/Mo/MgO
dipreparasi dengan metode sol gel/spray coating. Nanokarbon akan dihasilkan
melalui reaksi dekomposisi katalitik metana pada suhu 850oC dengan katalis
Fe/Mo/MgO. Hasil penelitian menunjukkan konversi metana tertinggi mencapai
97,64% dan yield karbon sebesar 1,48 gc/gkat. Nanokarbon kemudian
dikarakterisasi dengan Transmission Electron Microscope (TEM). Nanokarbon
yang dihasilkan pada penelitian ini terdiri atas nanotube karbon jenis FWNT
(range diameter luar 4,5 nm ? 10 nm). Selain itu, MWNT (Multi Walled Nanotube
Carbon, range diameter luar 10 nm ? 89,5 nm), carbon nanofiber, coil nanotube,
dan bamboo-shaped carbon juga telah dihasilkan. Jenis nanokarbon yang
dihasilkan bukan hanya jenis nanotube karbon disebabkan oleh waktu reaksi yang
terlalu panjang serta diameter partikel katalis 20 nm hingga 100 nm yang
terdeteksi dari hasil X-Ray Diffraction (XRD) dan Field Emmision Scanning
Electron Microscope (FE SEM). Untuk memperbaiki hasil ini, running pada
penelitian ini dilakukan sekali lagi dengan waktu reaksi 30 menit dengan waktu
reduksi 30 menit di suhu 850oC dan suhu kalsinasi 550oC di udara. Hasil
nanokarbon yang diperoleh memiliki range diameter luar yang lebih kecil dan
berkisar antara 8,5 nm hingga 66,85 nm yang terukur pada FE SEM. Namun, jenis
nanokarbon belum diketahui berupa FWNT atau MWNT atau nanokarbon
lainnya.

Abstract
Production of Single Walled Nanotubes Carbon (SWNT) dan Few Walled
Nanotubes Carbon (FWNT) is really hard to do recently. It occured due to
inappropriate catalyst selection. Fe/Mo/MgO catalyst, used in literature, was used
to make nanotubes carbon. Fe/Mo/MgO catalyst was prepared by sol gel/spray
coating method and it would be reacted with methane in 850oC (methane
decomposition catalytic reaction). The research result shows that the highest
methane conversion reached 97,64% and carbon yield is 1,48 gc/gkat.
Transmission Electron Microscope (TEM) indicated that the synthesized product
was FWNT (carbon nanotubes with outer diameter between 4,5 nm ? 10 nm),
MWNT (Multi Walled Nanotubes Carbon, outer diameter between 10 nm ? 89,5
nm), coil nanotube, carbon nanofiber, dan bamboo-shaped carbon. It is happened
due to longer time reaction and catalyst diameters have range between 20 nm ?
100 nm which detected by XRD and SEM characterization. Then, methane
decomposition catalytic reaction to get nanotube carbon was done once again in
shorter times (30 minutes), longer time of reduction (40 minutes), and lower
calcination temperature (550oC) in air. FE SEM indicated that range of outer
diameter nanocarbon between 8,5 nm ? 66,85 nm but its types can not be
determined by FE SEM."
Fakultas Teknik Universitas Indonesia, 2012
S43615
UI - Skripsi Open  Universitas Indonesia Library
cover
Kamilia Nabila Huwaida
"Material semikonduktor TiO2 yang digunakan sebagai fotoelektroda hanya dapat diaktifkan pada daerah sinar UV karena memiliki energi band gap yang relative besar. Untuk memperbaiki respon cahaya fotoelektroda, dilakukan pengembangan metode yang dapat mengubah respon fotokatalisis dari sinar UV ke sinar visible dengan menambahkan dopan karbon pada TiO2 nanotube. Menarik pula untuk diinvestigasi apabila sebelum dilakukan proses doping karbon, matriks TiO2 nanotube diperkaya terlebih dahulu dengan spesi Ti3+. Adanya spesi Ti3+ dapat memberikan hasil lebih baik daripada hanya menambahkan dopan karbon pada TiO2 nanotube. Spesi Ti3+ yang terdapat di dalam C-TiO2 nanotube diharapkan dapat memperkecil nilai energi band gap sehingga respon serapan sinar tampak lebih baik, arus cahaya yang dihasilkan lebih besar, dan meningkatkan kinerja fotoanoda dalam menghasilkan gas H2. Berdasarkan karakterisasi SEM, diameter tabung TiO2 nanotube yang dihasilkan rata-rata sebesar 68,92 nm. Dari karakterisasi XRD, didapatkan TiO2 nanotube yang berfasa anatase. Dari persamaan Kubelka-Munk, diperoleh nilai energi celah pita TiO2 nanotube sebesar 3,18 eV. Dari hasil MPA, arus cahaya TiO2 nanotube yang dihasilkan sinar UV (0,000011 mA/cm2) lebih tinggi daripada sinar visible (0,000007 mA/cm2). Hal ini menunjukkan bahwa TiO2 nanotube memiliki aktivitas fotokatalitik pada daerah sinar UV.

Material of TiO2 semiconductor as a photoelectrode can only be activated in the UV light region because it has a relatively large band gap energy. To improve the photoelectrode, an effort was developed to shift the photocatalytic response visible light by adding carbon dopant in to TiO2 nanotube. It is also interesting to investigate if before the carbon doping process is carried out, the TiO2 nanotube matrix is enriched first with the Ti3+ species. The presence of Ti3+ species can give better results than just adding carbon dopant to TiO2 nanotube. Ti3+ species contained in C-TiO2 nanotube are expected to reduce the band gap energy value better response in visible light absorption, resulting higher photocurrent, and improve the performance of photoanode in producing H2 gas. Based on SEM characterization, tube diameter of TiO2 nanotube on average is 68,92 nm. From XRD characterization, obtained TiO2 nanotube which has an anatase phase. From Kubelka-Munk equation, band gap energy of TiO2 nanotube is 3,18 eV. From MPA result, photocurrent of TiO2 nanotube produced by UV light (0.000011 mA/cm2) is higher than visible light (0.000007 mA/cm2). This shows that TiO2 nanotube has photocatalytic activity in the UV light region."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ikhsan Nur Rosid
"ABSTRAK
Carbon nanotube (CNT) memiliki struktur yang unik, sifat mekanik dan sifat elektrik yang unggul serta kekuatan yang tinggi. Sehingga metode sintesis CNT semakin banyak yang dikembangkan. Untuk membantu proses pengembangan dari skala laboratorium ke skala industry diperlukan pemodelan untuk meminimalisir kegagalan dan mengurangi biaya. Model didapatkan dengan menyusun persamaan neraca massa, energi dan momentum. Persamaan disusun berdasarkan data kinetika yang telah didapatkan dari penelitian sebelumnya. Program yang digunakan adalah COMSOL Multiphysycs sebuah perangkat lunak yang dapat melakukan pemodelan dengan metode Computational Fluid Dynamics. Untuk melakukan pemodelan pada COMSOL diperlukan geometri reaktor. Parameter serta variabel juga digunakan sebagai input untuk dapat menjalankan komputasi berdasarkan persamaan-persamaan yang telah ditentukan. Hasil simulasi menunjukkan bahwa profil konsentrasi metana dipengaruhi oleh suhu dinding reaktor, rasio umpan dan laju alir gas. Konversi metana dan yield karbon meningkat seiring dengan peningkatan suhu dinding reaktor, penambahan hidrogen dan kecepatan fluida di dalam reaktor. Berdasarkan hasil simulasi didapatkan konversi metana dan yield karbon tertinggi pada reaktor dengan suhu dinding 1023 K, rasio umpan 3:1 dan laju alir gas 5 liter/jam.

ABSTRACT
Carbon nanotubes (CNT) has a unique structure, mechanical properties and superior electrical properties and high strength. So the CNT synthesis methods are more developed nowadays. To help the process of development from laboratory scale to industrial scale requires modeling to minimize failures and reduce costs. The model is obtained by arranging the mass balance equation, energy and momentum. The equation is based on the kinetics data that have been obtained from previous researchs. The program used is COMSOL Multiphysycs a software that can perform modeling with Computational Fluid Dynamics methods. To perform the necessary modeling COMSOL needs an input of geometry of the reactor. Parameters and variables are also used as inputs to be able to run the computation based on the equations that have been determined. The simulation results show that the methane concentration profile is influenced by the temperature of the walls of the reactor, the feed ratio and gas flow rate. Conversion of methane and carbon yield increases with increasing temperature of the reactor wall, the addition of hydrogen and the velocity of the fluid in the reactor. Based on simulation results obtained the highest conversion of methane and carbon yield in the reactor with a wall temperature of 1023 K, the feed ratio of 3: 1 and a gas flow rate of 5 liters / hour.
"
2014
S59776
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novi Andini
"Fabrikasi Dye-Sensitized Solar Cell (DSSC)menggunakan klorofil dan rhodamin B telah berhasil dilakukan.Bahan semikonduktor sebagai elektroda kerja dalam DSSC yang digunakan adalah TiO2nanotube yang ditumbuhkan pada plat titanium dengan teknik anodisasi, dilanjutkan dengan kalsinasi pada 500⁰C untuk membentuk fasa kristal TiO2. Karakterisasi terhadap Ti/TiO2-NT meliputi Field Emission Scanning Electron Microscope(FE-SEM), UV-VisDiffuse Reflectance Spectrometry (DRS), X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), dan Linear Sweep Voltametry (LSV). Gambar FE-SEM menunjukkan bahwa TiO2 bermorfologi tube dengan diameter 88.99nm. Pola XRD menunjukkan puncak TiO2 anatase pada sudut 2θ: 25, 37,48,54, dan 55 derajat. Karakterisasi UV-Vis menunjukkan nilai bandgap TiO2 sebesar 3.24 eV. Spektrum FTIR menunjukkan keberadaan vibrasi ikatan ~Ti-O-Ti~. Kurva LSV menunjukkan bahwa TiO2 aktif pada daerah UV. Plat Ti/TiO2 dilapisi oleh zat warna melalui teknik elektroforesis dengan variasi waktu 8,10,12, dan 14 menit. Spektrum UV-Vis DRS dari TiO2 yang terlapisi zat warna menghasilkan puncak khas dari masing-masing zat warna, menunjukkan bahwa zat warna telah menempel pada TiO2. Pengujian terhadap performa DSSC menunjukkan nilai efiensi sebesar 0.3565% untuk Ti/TiO2-NT/Klorofil; 0.4351% untuk Ti/TiO2-NT/Rhodamin B; dan 0.3963% untuk Ti/TiO2-NT/Klorofil-Rhodamin B.Indonesia

Fabrication of Dye-Sensitized Solar Cell (DSSC) employing chlorophyll and rhodamine B has been successfully carried out. TiO2 nanotubes which was grown on titanium plate by an anodizationtechniques, followed by calcination at 500⁰C to form a crystalline phase of TiO2, was used as working electrode in the DSSC. Characterization of the Ti/TiO2-NT included Field Emission Scanning Electron Microscope (FE-SEM), UV-Vis Diffuse Reflectance Spectrometry (DRS), X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Linear Sweep Voltametry (LSV). FE-SEM images showed the tube morphologies of TiO2 with a diameter of 88,99 nm. XRD pattern showed the TiO2 anatase peak at 2θ : 25, 37, 48, 54, dan 55 degree. UV-Vis DRS characterization revealed that the bandgap of the prepared TiO2is 3.24 eV. FTIR spectrum showed the presence of ~Ti?O-Ti~ vibration. LSV curves obtained indicate that the TiO2is active in the UV region . The Ti/TiO2 plate then was being coated with the dye through electrophoresis technique with time variation of 8, 10, 12, and 14 minutes. UV-Vis DRS spectrum of the dyes coated TiO2 showed that all typical dyes realted peaks were observed, indicate that the dyes was attached to the Ti/TiO2-NT. Performance tests of the assembled DSSC showed the efficiencies of 0.3565%for the Ti/TiO2-NT/Chlorophyll; 0.4351% for the Ti/TiO2-NT/Rhodamine B; and 0.3963% for the Ti/TiO2-NT/Chlorophyll/Rhodamine B respectively."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S56100
UI - Skripsi Membership  Universitas Indonesia Library
cover
Angga Maulana
"Pada penelitian ini, sintesis dan karakterisasi dari nanomaterial aerogel titania (TiO2) untuk tujuan aplikasi sel surya tersensitasi zat pewarna (DSSC) telah dilakukan. Aerogel TiO2 dengan luas permukaan yang tinggi telah berhasil dipreparasi melalui dua tahapan: proses sol–gel dengan rasio hidrolisis (Rw) 2.00, diikuti oleh proses ekstraksi super kritis kontinu menggunakan CO2. Untuk tujuan perbandingan, xerogel juga disintesis dengan metode pengeringan biasa pada temperatur ruang. Metode kalsinasi bertahap digunakan untuk merubah kedua sampel menjadi anatase polikristalin dengan memanaskannya pada 1500C dan 3000C, masing-masing selama 3 jam di bawah pengaruh gas N2 dan melanjutkan hingga temperatur kalsinasi di 4200C selama 2 jam, di bawah tiupan gas oksigen.
Karakterisasi dari aerogel dan xerogel didapatkan menggunakan DTA, BET, XRD, UV-vis DRS, dan FTIR. Kedua sampel diintegrasikan menjadi DSSC, yang pengukuran tegangan sirkuit terbukanya (Voc) dilakukan di bawah sinar putih menggunakan multimeter. Hasil penelitian menunjukkan aerogel yang dipreparasi memiliki luas permukaan yang lebih tinggi (1975 m2/g) dari xerogel (271 m2/g). Telah dibuktikan pula bahwa proses kalsinasi bertahap mampu meningkatkan ukuran kristalit dari aerogel hingga 9,21 nm dengan tetap mempertahankan luas permukaannya (71,90 m2/g) lebih tinggi dari xerogel (67,90 m2/g). Hasil pengukuran Voc menunjukkan tegangan terbuka yang lebih tinggi pada DSSC aerogel (21,40 mV) daripada DSSC xerogel (1,10 mV).

In this work, synthesis and characterization of nanomaterial titania (TiO2) aerogels for the purpose of dye-sensitized solar cells (DSSC) application have been performed. TiO2 aerogels with high surface area were succesfully prepared by two steps: sol–gel process with hydrolysis ratio (Rw) of 2.00, followed with continuous supercritical extraction with CO2. For comparison purposes, xerogels were also synthesized by conventional drying at room temperature. Multi-step calcination method was used to transform both samples to polycrystalline anatase by heating at 1500C and 3000C for 3 hours each under the influence of N2 gas and continuing to calcination temperature at 4200C for 2 hours, under oxygen flow (muffle).
The characteristics of aerogels and xerogels were obtained by DTA, BET, XRD, UV-vis DRS, and FTIR. Both samples were integrated into DSSC, which open voltage measurement (Voc) were performed under white light using multimeter. The results suggest aerogels prepared had higher surface area (1975 m2/g) than xerogels’ (271 m2/g). It was also proven multi-step calcination could increase crystallite size of aerogels to 9,21 nm by maintaining its surface area (71,90 m2/g), which is higher than that of xerogels (67,90 m2/g). The Voc measurement reveals a higher voltage on aerogel’s DSSC (21,40 mV) than that of xerogel (1,10 mV).
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44312
UI - Skripsi Membership  Universitas Indonesia Library
cover
Praswasti Pembangun Dyah Kencana Wulan
"Penelitian ini bertujuan memproduksi hidrogen (H2) dan carbon nanotube (CNT) secara simultan melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-AL. Secara garis besar, penelitian dibagi menjadi dua tujuan besar yaitu studi kinetika intrinsik dan pemodelan reaktor. Studi kinetika didekati dengan tiga cara. Model reaktor yang dibuat adalah reaktor pelat sejajar. Studi kinetika dengan internal reaktor pelat sejajar menghasilkan kinetika non-intrinsik. Pelapisan katalis pada pelat sebanyak 4 kali tidak mempunyai pengaruh yang signifikan pada loading katalis.
Hasil eksperimen diverifikasi menggunakan kriteria-kriteria limitasi tahanan massa dan panas (eksternal dan internal). Hasil verifikasi menunjukkan bahwa kinetika pelat sejajar tidak mampu mengatasi limitasi tahanan internal. Studi kinetika diperbaiki dengan internal reaktor berupa katalis serbuk. Studi kinetika serbuk menghasilkan kinetika intrinsik. Tetapi hasil ini tidak akurat karena deposisi karbon dihitung melalui neraca karbon terhadap waktu (pendekatan dinamik) padahal rata-rata 43,45% karbon hilang di akhir reaksi. Studi kinetika dilanjutkan menggunakan reaktor yang dilengkapi dengan microbalance. Kinetika model ini dapat mengukur pertambahan karbon sebagai fungsi waktu dan suhu pada tekanan atmosfer.
Hasil penelitian sebelum deaktivasi menunjukkan bahwa tahap pembatas laju reaksi adalah tahap adsorpsi. Energi aktivasi yang diperoleh sebesar 67,76 kJ/mol dan faktor pre-eksponensial 5,15 x 1018. Model persamaan kinetika deaktivasi katalis mempunyai persamaan laju deaktivasi orde satu. Reaktor katalis terstruktur pelat sejajar dimodelkan tiga dimensi (3D) kondisi stedi. Model 3 dimensi diselesaikan dengan program aplikasi computional fluid dynamics (CFD) yaitu COMSOL. Konversi metana dan yield hydrogen digunakan sebagai data validasi antara model dan data hasil eksperimen. Hasil simulasi mempunyai persentase kesalahan konversi total metana dan yield H2 berturut-turut 0,77% dan 2,38%. Validasi menunjukkan bahwa hasil model reaktor sesuai dengan data hasil percobaan laboratorium.

This study aims to produce hydrogen (H2) and carbon nanotube (CNT) simultaneously through methane decomposition reaction over a Ni-Cu-Al catalyst. The research is divided into two major objectives namely intrinsic kinetics study and reactor modeling. Kinetics studies were approached in three ways. Reactor model is made parallel flat plate reactor.
The result of kinetics study using internal reactor parallel-plate was nonintrinsic kinetics. Coating 4 times on the parallel plate had no significant effect on catalyst loading. The experimental results are verified using the criteria for limitation of mass and heat resistance (external and internal). Verification results show that kinetics of parallel-plate are not able to overcome the internal resistance limitation. Kinetics studies corrected with the reactor's internal form of the catalyst powder.
This experiment result is not accurate because of carbon deposition is calculated by carbon balance versus time (dynamic approach) whereas the average 43.45% of carbon lost by the end of the reaction. The last study using the reactor which is equipped with a microbalance. This model can measure carbon growth as a function of time and temperature at atmospheric pressure. The results before deactivation suggests that the limiting step is the adsorption. The activation energy of 67.76 kJ/mol and preexponential factor of 5.15 x 1018. Deactivation kinetics model have first order. Parallel-plate structured catalyst reactor is modeled three-dimensional (3D) with steady condition. 3-dimensional model solved by the application program computational fluid dynamics (CFD) namely COMSOL. Methane conversion and hydrogen yield used as validation between model and experimental data. The simulation results have an error percentage of the total methane conversion and H2 yield respectively 0.77% and 2.38%. Validation showed that the model in line with experimental data."
Depok: Fakultas Teknik Universitas Indonesia, 2011
D1276
UI - Disertasi Open  Universitas Indonesia Library
cover
Intanasa Nurdenti
"Dalam penelitian ini, karbon aktif dari limbah kulit pisang digunakan sebagai sumber karbon untuk pertumbuhan CNT. Setelah proses aktifasi dengan KOH, karbon aktif diberi dua perlakuan: dikeringkan dan tidak dikeringkan untuk melihat pengaruh proses tersebut terhadap hasil akhir. Proses pertumbuhannya adalah dengan menggunakan metode pirolisis sederhana pada suhu 1100oC dengan campuran minyak mineral sebagai prekursor. Proses penumbuhan CNT juga ada yang dengan tambahan katalis eksternal dan tanpa tambahan katalis eksternal.
Hasil pirolisis dikarakterisasi dengan XRD dan FE-SEM. Karbon aktif yang mengalami pengeringan tidak dapat menghasilkan CNT, baik ketika ditambahkan katalis maupun tidak. Sedangkan karbon aktif yang tidak mengalami pengeringan berhasil ditumbuhkan CNT, Karbon aktif dari limbah kulit pisang ini dapat menghasilkan CNT dengan kualitas yang cukup baik.

In this study, the activated carbon from waste banana peel is used as a carbon source for growth of CNT. After the process of activation by KOH, different treatments are given to the activated carbon: dried and then heated to 600oC and directly heated to 600oC to see the influence of the process towards the final CNT result. CNT growth process is using a simple method of pyrolysis temperature 1100oC with a mixture of mineral oils as a precursor. The process of growth of CNT is varied with additional external catalysts and without additional external catalysts.
Results of pyrolysis are characterized with XRD and FE-SEM. Characterization results show activated carbon that undergoes drying cannot produce CNT, both when catalyst is added or not. While activated carbon that does not have a drying successfully grown CNT, activated carbon from waste banana peels can generate CNT with quite good quality.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46769
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>