Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 120355 dokumen yang sesuai dengan query
cover
Herka Manda Putra
"ABSTRAK
Manajemen termal sangatlah penting untuk memastikan kestabilan termal dan daya tahan jangka panjang pada baterai litium-ion. Pipa kalor pipih bersirip digunakan pada penelitian ini untuk membantu pelepasan kalor yang dibangkitkan oleh pemanas melalui baterai. Baterai litium-ion dimodelkan dengan menggunakan aluminium yang menyerupai modul baterai. Sistem saluran pendingin baterai yang dilengkapi dengan kipas diterapkan untuk meningkatkan laju perpindahan kalor yang di lepas oleh pipa kalor. Plat konduksi juga dipasang agar kalor yang diterima oleh pipa kalor dapat diperhitungkan. Pembangkitan kalor divariasikan agar pengaruh hambatan termal dapat terlihat. Dengan adanya pipa kalor, temperatur baterai berkurang secara signifikan. Permodelan baterai 3 dimensi disimulasikan dan dibandingkan dengan hasil data eksperimental. Dengan menggunakan pipa kalor, penurunan temperatur baterai dapat mencapai 55,58 °C pada pembangkitan daya 150 W. Hasil simulasi memperlihatkan persebaran temperatur pada dinding baterai dengan error rata-rata temperatur permukaan baterai terkecil yang menggunakan pipa kalor dan tanpa pipa kalor sebesar 10,70 % dan 5,33 %.

ABSTRACT
Thermal management is critical to ensure thermal stability and long term durability of the lithium-ion battery. Finned heat pipes are used in this study to help dissipating heat generated by heater through the batteries. Lithium-ion batteries modeled by using aluminum that resembles a battery module. The system contain of air duct which is streamed air by fan to increase heat transfer rate. Conduction plate is also fitted so that the heat received by the heat pipe can be calculated. The heat generation is variated so that the effect thermal resistance can be seen. With the heat pipe, the battery temperature is significantly reduced. Model is developed to describe the thermal distribution of the lithium-ion batteries, and compared through both simulation and experiment. By using two heat pipes, battery temperature can be reduce up to 55.58 °C at 150 W heat generation. The simulation shows the temperature distribution on battery surface using heat pipe and without heat pipe with the lowest average error temperature surfaces are 10.70 % and 5.33 %
"
2016
S64919
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rangga Aji Pamungkas
"[Peningkatan temperatur baterai litium-ion pada kendaraan listrik dapat mengakibatkan berkurangnya kapasitas dan jumlah siklus kerja sebuah baterai litium-ion. Bahkan, sel baterai dapat mengalami thermal runaway yang berakibat baterai litium-ion dapat terbakar dan meledak. Salah satu jenis alat penukar kalor yang bisa digunakan sebagai sistem manajemen termal pada baterai litium-ion adalah pipa kalor melingkar pelat datar. Penelitian ini dilakukan untuk menguji kinerja pipa kalor melingkar pelat datar dan mencari nilai hambatan termal yang dihasilkan dengan variasi fluida kerja akuades, alkohol, dan aseton dengan filling ratio sebesar 60%. Dari hasil penelitian ini, aseton merupakan fluida kerja terbaik yang menghasilkan hambatan termal sebesar 0,22 Watt/°C dan temperatur evaporator sebesar 49,89°C pada beban fluks kalor sebesar 1,61 Watt/cm2.;The increasing temperature of lithium-ion battery used in electric vehicle can cause major thermal runaway that can result in battery fire and explosion. One of the heat exchanger that can be used as thermal management system for lithium-ion battery of electric vehicle is Flat Plate Loop Heat Pipe. This research was conducted to test the performance of flat plate loop heat pipe and to determine the thermal resistance of flat plate loop heat pipe that used aquades, alcohol, and acetone as working fluid with 60% of filling ratio. The result showed that acetone is the best working fluid from among of the two other working fluids and had a heat pipe thermal resistance 0.22 Watt/°C with evaporator temperature was 49.89°C under maximum heat flux load of 1.61 Watt/cm2., The increasing temperature of lithium-ion battery used in electric vehicle can cause major thermal runaway that can result in battery fire and explosion. One of the heat exchanger that can be used as thermal management system for lithium-ion battery of electric vehicle is Flat Plate Loop Heat Pipe. This research was conducted to test the performance of flat plate loop heat pipe and to determine the thermal resistance of flat plate loop heat pipe that used aquades, alcohol, and acetone as working fluid with 60% of filling ratio. The result showed that acetone is the best working fluid from among of the two other working fluids and had a heat pipe thermal resistance 0.22 Watt/°C with evaporator temperature was 49.89°C under maximum heat flux load of 1.61 Watt/cm2.]"
Fakultas Teknik Universitas Indonesia, 2015
S58609
UI - Skripsi Membership  Universitas Indonesia Library
cover
Revaldy Putra Agatha
"Besarnya kenaikan angka emisi gas karbon saat ini tengah menjadi tantangan cukup besar bagi global. Saat ini kendaraan listrik sedang banyak digunakan karena dinilai dapat menjadi terobosan untuk mengurangi emisi gas karbon. Tujuan dari penelitian ini akan dibahas mengenai performa penggunaan sistem manajemen termal pasif pada baterai kendaraan listrik dengan menggunakan kombinasi heat sink, heat pipe dan phase change material. Pengujian dilakukan dengan mengukur temperatur pada dinding simulator baterai dengan menggunakan termokopel tipe K dengan modul NI DAQ 9214, c-DAQ 9174, dan tegangan listrik menggunakan digital power meter. Variasi pengujian dilakukan dengan memvariasikan besar daya pembangkitan panas pada heater yang terhubung pada simulator baterai sebagai representasi dari heat losses yang timbul saat baterai bekerja yaitu sebesar 9 W, 27 W, dan 45 W dan juga variasi komponen sistem pendingin yaitu pengujian baterai tanpa sistem pendingin, baterai dengan sistem pendingin heat sink, heat pipe, dan PCM serta baterai dengan sistem pendingin heat sink dan PCM. Dalam penelitian ini PCM yang digunakan adalah Rubitherm tipe RT 38. Hasil penelitian ini menunjukkan bahwa penurunan temperatur terbesar terjadi ketika dilakukan variasi daya pembangkitan panas 45 W dengan sistem pendingin menggunakan heat sink, heat pipe dan PCM dimana penurunan yang terjadi mencapai 22,95% dari 63,89 menjadi 49,23. Sedangkan pada daya 27 W temperatur baterai menurun sebesar 6,7% dari 49,4°C menjadi 46,09°C dan untuk daya pembangkitan panas 9 W temperatur baterai menurun sebesar 0,36% dari 41,20°C menjadi 41,05°C. Selain itu dilakukan juga variasi pengujian dengan menghilangkan heat pipe untuk melihat pengaruh penggunaannya. Didapatkan pada variasi 45 W temperatur baterai menurun sebesar 22,07% menjadi 49,79°C. Sementara pada daya 27 W temperatur baterai menurun sebesar 6,28% menjadi 46,3°C dan untuk daya 9 W terjadi penurunan temperatur sebesar 0,61% menjadi 40,95°C. Berdasarkan hasil penelitian tersebut dapat disimpulkan bahwa sistem pendinginan baterai menggunakan kombinasi heat sink, heat pipe dan PCM sebagai sistem pendingin pasif adalah metode pendinginan baterai yang efektif untuk mengurangi temperatur kerja pada baterai kendaraan listrik yang dapat dijadikan opsi penggunaannya untuk masa depan.

The current increase in carbon gas emissions poses a significant challenge globally. Electric vehicles are currently being widely used as they are considered a breakthrough in reducing carbon gas emissions. The objective of this research is to discuss the performance of using a passive thermal management system on electric vehicle batteries by utilizing a combination of heat sink, heat pipe, and phase change material (PCM). The testing was conducted by measuring the temperature on the battery simulator wall using a type K thermocouple with NI DAQ 9214 module, c-DAQ 9174, and electric voltage measured using a digital power meter. The testing variations were performed by varying the heat generation power on the heater connected to the battery simulator, representing the heat losses that occur during battery operation, namely 9 W, 27 W, and 45 W. Additionally, variations of cooling system components were tested, including battery testing without a cooling system, battery with a cooling system using heat sink, heat pipe, and PCM, as well as battery with a cooling system using heat sink and PCM. In this research, Rubitherm RT 38 type PCM was used. The results of this study indicate that the largest temperature reduction occurred when the heat generation power was varied at 45 W with a cooling system consisting of heat sink, heat pipe, and PCM, resulting in a reduction of 22.95% from 63.89°C to 49.23°C. For 27 W power, the battery temperature decreased by 6.7% from 49.4°C to 46.09°C, and for 9 W heat generation, the battery temperature decreased by 0.36% from 41.20°C to 41.05°C. Furthermore, testing variations were also performed by eliminating the use of heat pipe to observe its impact. It was found that at the 45 W variation, the battery temperature decreased by 22.07% to 49.79°C. Meanwhile, for 27 W power, the battery temperature decreased by 6.28% to 46.3°C, and for 9 W heat generation, there was a temperature reduction of 0.61% to 40.95°C. Based on the results of this research, it can be concluded that cooling the battery using a combination of heat sink, heat pipe, and PCM as a passive cooling system is an effective method to reduce operating temperature in electric vehicle batteries, which can be considered as an option for future use."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
David Febraldo
"Kendaraan listrik memerlukan energi listrik untuk beroperasi yang disimpan didalam baterai. Kendaraan listrik menghasilkan panas pada baterai yang digunakan. Panas baterai yang berlebih dapat mengurangi masa pakai dan menyebabkan terjadinya ledakan. Penggunaan pipa kalor sebagai sistem pendingin memiliki potensi menjadi solusi masalah panas berlebih pada kendaraan listrik. Tujuan penelitian adalah menyusun konsep keberlanjutan penerapan pipa kalor pada baterai kendaraan listrik. Pengujian dilakukan dengan membangun prototipe, analisis ekonomi melalui cost comparison serta analisis persepsi sosial melalui kuisioner. Hasil menunjukkan penggunaan pipa kalor mampu menjaga temperatur baterai dibawah 40 °C. Penggunaan pipa kalor dalam jangka panjang dapat memberikan keuntungan dan teknologi ini diterima secara sosial oleh peneliti dan para ahli. Saran untuk penelitian adalah perlu dilakukan penelitian lebih lanjut mengenai penerapan pipa kalor pada baterai, perlu adanya pengembangan kebijakan terkait lokasi pembuangan, mekanisme pengelolaan dan penyuluhan kepada masyarakat.

The increase in the use of electric vehicles is increasing over time. Electric vehicles require electrical energy to operate which is stored in the battery. Electric vehicles generate heat in the batteries used. Excessive battery heat can reduce its life and cause an explosion. The use of heat pipes as a cooling system has the potential to be a solution to the problem of overheating in electric vehicles. The aim of the research is to develop the concept of sustainability applying heat pipes to electric vehicle batteries. Testing is done by building prototypes, economic analysis through cost comparison and analysis of social perceptions through questionnaires. The results show that the use of heat pipes is able to maintain the battery temperature below 40 °C. The use of heat pipes in the long term can provide benefits and this technology is socially accepted by researchers and experts. Suggestions for research are that further research is needed regarding the application of heat pipes to batteries, it is necessary to develop policies related to disposal locations, management mechanisms and outreach to the community."
Jakarta: Sekolah Ilmu Lingkungan Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bambang Ariantara
"ABSTRAK
Pembangkitan kalor pada baterai dan motor listrik akan meningkatkan temperatur kerjanya. Temperatur kerja yang terlalu tinggi dapat menurunkan kinerja dan memperpendek umur pakai baterai dan motor listrik. Kemajuan teknologi baterai telah menghasilkan baterai-baterai Li-Ion berdensitas energi sangat tinggi. Namun demikian, kemajuan ini disertai dengan resiko terjadinya thermal runaway yang dapat menyebabkan terjadinya kecelakaan serius seperti yang dialami oleh pesawat Boeing 787 Dreamliner di Jepang pada 16 Januari 2017. Untuk operasi kendaraan listrik yang aman, dengan kinerja yang tinggi serta umur pakai yang panjang diperlukan sistem manajemen termal SMT yang handal dengan bobot ringan, ukuran yang ringkas dan hemat energi. Pipa kalor merupakan perangkat termal yang memiliki kapasitas perpindahan kalor per satuan luas yang tinggi, berbobot ringan, berukuran ringkas dan tidak memerlukan pasokan daya eksternal. Pada penelitian ini dilakukan pengembangan prototipe SMT baterai dan motor kendaraan listrik berbasis pipa kalor serta pengembangan fabrikasi lotus-type porous copper LTP Copper untuk diterapkan sebagai sumbu kapiler pipa kalor. Prototipe SMT baterai dibuat mengunakan simulator baterai dengan menerapkan pipa kalor pipih berbentuk L yang bagian evaporatornya disisipkan di antara permukaan simulator baterai dan bagian kondensernya didinginkan dengan udara sekeliling. Prototipe SMT motor listrik menerapkan pipa kalor pipih berbentuk L yang bagian evaporatornya ditempatkan di bagian luar rumah motor dan bagian evaporatornya di depan kipas. Pada kedua prototip tersebut, pembangkitan kalor disimulasikan dengan pemanas listrik yang dayanya diatur melalui regulator tegangan. Kinerja prototip sistem manajemen termal baterai dan motor kendaraan listrik tersebut ditentukan secara eksperimental. LTP Copper difabrikasi menggunakan teknik slip casting dan sintering menggantikan proses Gasar. Struktur pori memanjang diperoleh dengan menggunakan pore former benang nilon. Parameter proses dioptimasi untuk mendapatkan permeabilitas dan laju pemompaan kapiler terbaik. SMT baterai berhasil menurunkan temperatur simulator baterai dari 71 C menjadi 50 C pada beban kalor 60 W. SMT motor listrik berhasil menurunkan temperatur permukaan motor dari 102.2 C menjadi 68.4 C pada beban kalor 150 W. LTP Copper berhasil dibuat dengan teknik slip casting dan sintering dan diterapkan sebagai sumbu kapiler pipa kalor melingkar. Pipa kalor melingkar tersebut dapat beroperasi pada rentang beban kalor yang lebar, yaitu 16 W hingga 160 W dan tahanan termal minimum 0,126 C/W pada beban kalor 148.6 W.

ABSTRACT
Heat generation in batteries and electric motors will increase the working temperature. Excessive working temperatures will degrade performance and shorten the life span. Advances in battery technology have resulted in a very high energy density Li Ion batteries. However, these advances are accompanied by the risk of thermal runaway that could lead to a serious accidents such as those experienced by a Boeing 787 Dreamliner aircraft in Japan on January 16, 2013. A safe operation with high performance and long service life requires a reliable thermal management system TMS with light weight, compact size, and low energy consumption. Heat pipes are thermal devices with a high heat transfer capacity per unit area, lightweight, compact size and requires no external power supply. This research develops the prototype of heat pipe based TMS of electric vehicle battery and motor and the fabrication of lotus type porous copper LTP Copper to be applied as heat pipe capillary wick. The prototype of the battery TMS was made using a battery simulator by applying L shaped flat heat pipes whose evaporator portion is inserted between the battery s simulator surfaces and the condenser portion cooled with ambient air. The prototype of the electric motor TMS also applied L shaped flat heat pipes whose evaporator section is placed on the outer surface and the condenser portion in front of the fan. In both prototypes, the heat generation is simulated with electric heaters whose power is regulated through a voltage regulator. The performance of the battery and motor TMS are determined experimentally. LTP Copper was fabricated using the slip casting and sintering techniques to replace a very complicated and costly Gasar process. Unidirectional pore structure is obtained by using nylon thread pore former. Process parameters consisting of copper powder diameter, pore former diameter, sintering temperature and holding time are optimized to obtain the best permeability and capillary pump rate. The battery TMS has successfully reduced the battery simulator temperature from 71 C to 50 C at 60 W heat load. The motor TMS has successfully reduced the surface temperature of the motor from 102.2 C to 68.4 C at 150 W heat load. LTP Copper with high permeability and capillary pumping rate was successfully made by slip casting and sintering technique and applied as a loop heat pipe capillary wick. The loop heat pipe could operate in a wide heat load range, which is 16 W to 160 W and a minimum thermal resistance of 0.126 C W at a 148.6 W heat load."
2017
D2296
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ahmad Zaki
"Peningkatan jumlah emisi karbon mendorong pemerintah Indonesia untuk menetapkan target bebas gas rumah kaca pada tahun 2060 dan membuat kebijakan penggunaan kendaraan listrik guna mendukung tercapainya target tersebut. Pada kendaraan listrik, baterai lithium-ion (Li-ion) berfungsi sebagai sumber tenaga utama. Namun, dalam proses penyimpanan dan penggunaan energi, baterai ini menghasilkan panas yang dapat menyebabkan suhu operasi melebihi 60℃, yang berpotensi menurunkan performa dan menyebabkan kerusakan. Oleh karena itu, diperlukan sistem manajemen termal yang efektif untuk menjaga suhu baterai dalam batas aman. Penelitian ini meneliti dan menguji Flat Loop Heat Pipe (FLHP) dengan fluida kerja air sebagai sistem pendinginan pasif untuk baterai ganda pada kendaraan listrik. Tujuan dari penelitian ini adalah untuk mengembangkan metode pengukuran kinerja FLHP dan mengetahui efisiensinya dalam manajemen termal baterai. Penelitian ini menggunakan FLHP dengan variasi rasio pengisian fluida, suhu pendingin, dan laju aliran pendingin pada kondensor. Dari penelitian ini, diketahui bahwa rasio pengisian optimal adalah 60%, yang memberikan performa termal terbaik dengan menjaga suhu operasi baterai pada kondisi ideal. Suhu pendingin optimal ditemukan pada 25°C dengan laju aliran pendingin optimal sebesar 1,5 liter per menit. Kombinasi ini memberikan efisiensi pendinginan terbaik, menjaga suhu baterai dalam batas aman, dan meningkatkan keselamatan serta kinerja baterai pada kendaraan listrik.

The increase in carbon emissions has prompted the Indonesian government to set a target of zero greenhouse gas emissions by 2060 and implement policies to promote the use of electric vehicles (EVs) to support this goal. In EVs, lithium-ion (Li-ion) batteries serve as the primary power source. However, during energy storage and usage, these batteries generate heat that can cause the operating temperature to exceed 60°C, potentially decreasing performance and causing damage. Therefore, an effective thermal management system is required to keep the battery temperature within safe limits. This study examines and tests a Flat Loop Heat Pipe (FLHP) with water as the working fluid as a passive cooling system for dual batteries in electric vehicles. The objective of this research is to develop a performance measurement method for FLHP and evaluate its efficiency in thermal management of the batteries. The study uses FLHP with variations in filling ratio, coolant temperature, and coolant flow rate at the condenser. The results indicate that the optimal filling ratio is 60%, providing the best thermal performance by maintaining the battery's operating temperature within the ideal range. The optimal coolant temperature was found to be 25°C with an optimal coolant flow rate of 1.5 liters per minute. This combination offers the best cooling efficiency, keeping the battery temperature within safe limits and enhancing the safety and performance of the batteries in electric vehicles."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adjie Fahrizal Sandi
"Peningkatan kadar CO2 pada setiap tahun dan terbatasnya sumber daya fosil untuk masa depan mendorong produsen mobil untuk mengembangkan kendaraan berbahan bakar listrik sebagai kendaraan masa depan. Pengembagan terus dilakukan di berbagai sektor, salah satunya pada sistem penyimpanan energi yaitu baterai. Peningkatan kapasitas baterai dan mempertahankan kapasitasnya menjadi tujuan utama dalam pengembangan sektor ini untuk mendorong mobil listrik menjadi mobil masa depan. Pada penelitian ini, pemanfaatan heat pipe dan PCM sebagai media pendingin pasif pada baterai membuat temperature baterai dapat dijaga, sehingga baterai tidak mengalami kelebihan temperatur yang menyebabkan degradasi kapasitas. Penelitian ini bertujuan untuk melihat efektivitas heat pipe dalam menjaga temperatur baterai dan untuk mendapatkan jenis PCM terbaik beeswax dan RT 44 HC sebagai sistem pendingin baterai. Mengingat temperatur baterai harus dijaga pada rentang 25-55oC, pemanfaatan heat pipe berbentuk L pada baterai dapat mempengaruhi temperature baterai. Penurunan temperatur dapat mencapai 26.62oC pada 60 watt energi panas dari baterai bila dibandingkan jika tidak menggunakan apapun. Ketika PCM dikombinasikan dengan heat pipe menunjukan performa yang jauh lebih baik. Penurunan temperatur baterai dapat mencapai 31.93oC ketika beeswax digabungkan dengan heat pipe sebagai media pendigin baterai. Sedangkan ketika RT 44 HC digabungkan dengan heat pipe, penurunan temperatur dapat mencapai 33.42oC. Oleh karena itu PCM terbaik adalah RT 44 HC yang memiliki temperature leleh pada temperatur kerja baterai yang direkomendasikan, sehingga kalor latent dari PCM dapat dimanfaatkan. Kombinasi antara heat pipe dan PCM dapat menurunkan temperatur baterai lebih banyak karena heat pipe melepakan energi panas ke udara, dan PCM menyerapnya.

The Enhancement of CO2 level for each year and limited fossil energy resources for future lead to the car manufacturers starting to develop electric vehicle as the future vehicle. Developments are being done in many sectors, one of them in the energy supply. Increasing and maintaining battery capacity becomes one of the concern to create a sustainable electric vehicle. In this experiment, the utilization of heat pipe and PCM as passive cooling system on battery simulator have been conducted. The research objectives are to determine their effectiveness in maintaining battery temperature and to get the best PCM type beeswax and RT 44 HC for battery cooling system, considering the temperature should be maintained at 25 55 oC. The utilization of wick L shaped flat heat pipe as a passive battery cooling system influenced the temperature of battery, the battery temperature decreased until 26.62 oC on 60 watt of heat energy when it was compared with the battery did not use heat pipe and PCM. When PCM was combined with heat pipe also showed better performance. A maximum temperature decreased until 31.93oC when beeswax was added to the heat pipe. When RT 44 HC was combined to the heat pipe, the battery temperature decreased until 33.42oC. Therefore, the best PCM type which has melting temperature on recommended battery temperature. thus the PCM can use its latent heat to store more heat energy from the battery. Combination between heat pipe and PCM can reduced more battery temperature because heat pipe released heat energy and PCM absorbed it."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sianturi, Gregoryo Jeremi
"Baterai merupakan komponen yang penting dalam implementasi kendaraan listrik baik kendaraan listrik hibrid, kendaraan listrik hibrida plug-in, maupun kendaraan listrik baterai. Salah satu baterai jenis baterai yang sering digunakan untuk aplikasi kendaraan listrik adalah baterai litium ion (Li-ion). Dalam aplikasi kendaraan listrik pak baterai terdiri dari ratusan sel individual untuk memberikan energi dan daya listrik yang dibutuhkan. Penggunaan baterai pada jumlah dan kapasitas besar membutuhkan sistem kendali baterai dan sistem manajemen baterai yang baik untuk menjaga performa, keamanan, serta keandalan baterai. Nilai kondisi keadaan (SoC) baterai menjadi parameter yang paling penting untuk sistem manajemen baterai dan memberikan informasi untuk sistem manajemen energi. Baterai memiliki karakteristik non linear dan dipengaruhi oleh banyak faktor, sehingga estimasi SoC menjadi tantangan yang perlu dipecahkan. Oleh karena itu, pada studi ini dirancang estimator SoC yang secara tidak langsung dapat membantu untuk menjaga baterai pada kondisi aman yang menggunakan metode berbasis model elektrokimia
.Batteries are an important component in the implementation of electric vehicles, both hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles. One type of battery that is often used for electric vehicle applications is a lithium ion (Li-ion) battery. In electric vehicle applications the battery pack consists of hundreds of individual cells to provide the required energy and electrical power. The use of batteries in large numbers and capacities requires a good battery control system and battery management system to maintain battery performance, safety, and reliability. The state condition (SoC) value of the battery becomes the most important parameter for the battery management system and provides information for the energy management system. Batteries have nonlinear characteristics and are influenced by many factors, so SoC estimation is a challenge that needs to be solved. Therefore, in this study, a SoC estimator was designed to keep the battery in a safe condition and optimal output power using an electrochemical model-based method."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Said Firdaus
"Litium Titanat (LTO) merupakan salah satu material anoda dengan performa yang baik karena sifatnya yang zero - strain. Pada penelitian ini sintesis LTO dilakukan dengan menggunakan metode solid-state dimana menggunakan serbuk LiOH dan TiO2 sebagai prekursor. Akan tetapi, LTO memiliki kapasitas yang cukup rendah. Penambahan Silikon Karbida (SiC) dilakukan untuk meningkatkan kapasitas dan stabilitas kapasitas pelepasan pada LTO. Penambahan SiC dilakukan setelah proses sintesis LTO selesai menggunakan metode wet ball mill.
Hasil sintesis menghasilkan serbu berwarna keabuan. Serbuk LTO/SiC dikarakterisasi menggunakan difraksi sinar-X (XRD), SEM-EDS dan EIS. Hasil XRD menunjukkan LTO/SiC telah berhasil terbentuk sebagai produk utama. Selain itu, hasil pengujian performa EIS menunjukkan bahwa LTO/SiC 4% memiliki konduktivitas tertinggi dimana ditunjukkan dengan resistivitasnya yang paling rendah dibanding yang lain. Selain pengujian tersebut, untuk menguji performa LTO/SiC dilakukan pengujian CV dan CD.

Lithium Titanate (LTO) is one of the anode materials which possess very good electrochemical performance because of its zero-strain characteristic. In this study, Solid-state synthesis method was used to synthesize LTO using LiOH and TiO2 powder as precursors. However, LTO performance is limited by its low capacity. Addition of Silicon Carbide (SiC) was done using wet ball mill method to enhance its capacity and stability of discharge capacity.
As a result, the powder has greyish color. LTO/SiC powder was characterized using X-Ray Diffraction (XRD), SEM-EDS and EIS. The result of XRD characterization exhibits the formation of LTO/SiC as a major products. Moreover, EIS performance testing showed that LTO/SiC 4% possess highes electrical conductivity which is indicated by its lowest resistivity compared to other sample. Furthermore, to find out performaces of LTO/SiC, CV and CV test was performed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Angga Dexora
"Meningkatnya kebutuhan hidup menuntut kita untuk melakukan pekerjaan dengan lebih cepat, praktis dan dengan tenaga yang besar. Motor listrik adalah alat yang berperan penting dalam dunia industri. Penggunaan motor listrik dalam waktu yang lama akan mengakibatkan temperatur motor listrik melebihi temperatur kerja yang disarankan. Temperatur yang berlebih dapat mengakibatkan umur pakai dan efisiensi dari motor listrik menjadi berkurang. Salah satu solusi aplikatifnya adalah menggunakan heat pipe berbentuk - L sebagai pendingin pada motor listrik. Penelitian ini bertujuan untuk mengetahui performa heat pipe berbentuk - L dalam mendinginkan motor listrik. Variasi yang dilakukan dalam pengujian ini adalah daya, waktu dan jumlah heat pipe.
Dari hasil penelitian ini penggunaan 8 buah heat pipe berbentuk - L dapat membuat temperatur dinding motor pada kisaran 68,21oC. Jumlah kalor paling tinggi yang dapat dilepas heat pipe ke lingkungan yaitu 25,515 J/s dan laju perpindahan kalor pada motor paling rendah ketika beban maksimal 150 W adalah 108,504 J dengan penggunaan 8 buah heat pipe.

The increasing of people?s needs require us to work faster, do more practical and need a high power. Electric motor is the important tool in industry. However, the use of an electric motor for a long time may cause the electric motor exceed the recommended working temperature. The exceed temperature may reduce teh lifespan and the efficiency of the electric motor. One of the applicative solution is using L - shaped heat pipe as a cooler on electric motor. This research aims to determine the performance of the L - shaped heat pipe effectiveness in cooling the electric motor. The variants of this research are power, time, and the number of the heat pipes.
The result of this research by using 8 L - shaped heat pipes is these pipes can raise the motor wall temperature until around 68.21oC. The highest heat that heat pipe can release to surroundings is 25.525 J/s and the lowest heat transfer in motor when using 150 W load is 108.504 J by using 8 heat pipes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62536
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>