Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 67656 dokumen yang sesuai dengan query
cover
Arman
"ABSTRAK
Ekstraksi topik merupakan tugas utama dalam penambangan teks sebagai upaya mengeluarkan informasi yang terpendam dalam teks secara heuristik. Proses ini dilakukan lewat pemodelan topik yakni sebuah proses mengidentifikasi topik- topik yang ada dalam sebuah objek teks atau menurunkan pola-pola tersembunyi dalam sebuah korpus teks. Dalam penelitian ini pemodelan topik diaplikasikan pada data teks berbahasa Indonesia menggunakan modul program bernama Gensim dalam bahasa pemrograman Python. Dataset terdiri dari 93 dokumen berita daring Kompas dengan beragam klasifikasi. Jumlah topik optimal yang diperoleh diuji menggunakan machine learning clustering k-means. Dalam proses penelitian ini ternyata diperlukan suatu mekanisma umpanbalik manual untuk mereduksi noise agar diperoleh pemodelan topik yang lebih baik. Hasil uji memperlihatkan teknik Latent Dirichlet Allocation LDA yang telah ditingkatkan / dimodifikasi LDA as LSI memiliki koherensi topik yang jauh lebih baik dibanding teknik LDA saja dalam penelitian ini: 0.94 dibanding 0.34 . Koherensi yang tinggi mengindikasikan bahwa topik hasil pemodelan ini merupakan topik yang dapat dijelaskan dengan sedikit label.

ABSTRACT
Topic extraction is main task in text mining as an effort to dig buried information within text heuristically. This process is done through topic modeling, a process to identify topics within text object or to derive hidden patterns in a text corpus. In this research, topic modeling is applied to Indonesian language texts using Gensim module in Python programming language. The dataset consists of 93 online news documents from Indonesian national newspaper, Kompas, with several different classifications. The identified optimum number of topics k is visualized using clustering machine learning k means. In the process of this research turned out to need a mechanism of manual feedback for noise reduction in order to get better topic modeling. The test results show that enhanced modified Latent Dirichlet Allocation LDA as LSI has a much better topic coherence than LDA technique alone in this study 0.94 compared to 0.34 . High coherence indicates that topics resulting from this topic modeling is a topic that can be explained with few labels. "
2017
T47943
UI - Tesis Membership  Universitas Indonesia Library
cover
Thersya Christine Nugroho
"Penelitian dalam tesis ini bertujuan untuk mengeksplorasi isu-isu yang menjadi fokus konsumen terkait layanan pesan antar makanan secara daring selama pandemi COVID-19 di Indonesia melalui data media sosial. Dengan percepatan transformasi digital di industri makanan dan kuliner, bahasan di media sosial mengenai layanan pesan antar makanan cukup meningkat. Terlebih pada masa pandemi COVID-19 di Indonesia telah mengubah kebiasaan konsumen untuk dapat memesan makanan dari rumah atau dari mana saja. Pandemi COVID-19 yang sedang berlangsung menghadirkan tantangan terkait kualitas dan keamanan pangan, kualitas layanan, dan opini konsumen. Penelitian ini menerapkan pendekatan pemodelan topik untuk memahami perspektif konsumen Indonesia terhadap layanan pesan antar makanan secara daring. Komentar dan tweet konsumen di media sosial (Instagram dan Twitter) terkait layanan pesan antar makanan secara daring dari tahun 2020 hingga 2021 dikumpulkan dengan menggunakan pendekatan text mining. Data dianalisis menggunakan pemodelan topik dengan Latent Dirichlet Allocation yang diimplementasikan dengan Python. Hasil penelitian ini menemukan tema dari topik-topik yang dihasilkan, yaitu Manfaat Penghematan Biaya, Manfaat Penghematan Waktu, dan Kepercayaan. Studi penelitian ini menemukan bahwa mengenai penggunaan layanan pesan antar makanan secara daring, persepsi dimensi harga, dan dimensi kualitas layanan elektronik melebihi kekhawatiran mengenai efek COVID-19 seperti kualitas makanan dan risiko keamanan. Wawasan dari penelitian ini akan sangat membantu untuk evaluasi kualitas layanan dan penelitian lebih lanjut di industri pesan antar makanan.

This thesis study aims to explore the issues consumers focus on regarding online food delivery services during the COVID-19 pandemic in Indonesia through social media data. With the accelerated digital transformation in the food and culinary industry, social media discussions about food delivery have emerged. The COVID-19 pandemic in Indonesia has changed consumer habits from dining in to ordering food from home or anywhere. The ongoing COVID-19 pandemic presents challenges regarding food quality and safety, service quality, and consumers’ opinions. This study applied the topic modeling approach to understand consumers’ perspectives on online food delivery services. Consumers’ social media comments and tweets (Instagram and Twitter) related to online food delivery services between 2020 and 2021 were collected using a text mining approach. The data were analyzed using topic modeling with Latent Dirichlet Allocation implemented with Python. The results of this study found several themes from the topics conducted with the Latent Dirichlet Allocation model, which are Price-Saving Benefit, Time-Saving Benefit, and Trustworthiness. This study discovered that regarding usage of online food delivery services, the perception of price and e-service quality dimensions overweight the concerns regarding the effect of COVID-19 like food quality and safety risk. Insights from this study will be helpful for the evaluation of service quality and further research in the food delivery industry."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Andryano
"ABSTRAK
Sistem Penilaian Ujian Lisan (SIPENILAI) merupakan pengembangan dari Sistem Penilaian Esai Otomatis (Simple-O) yang membuat metode menjawab soal dapat dilakukan secara lisan. Sistem ini menggunakan input suara dalam Bahasa Jepang, lalu suara tersebut dikonversi menjadi teks menggunakan bantuan dari engine bernama Julius. Selanjutnya teks dibandingkan dengan kunci jawaban untuk dilakukan scoring menggunakan algoritma Latent Semantic Analysis (LSA). Pada skripsi ini terdapat tiga pengujian yang dilakukan yaitu uji keakuratan Julius, uji keakuratan SIPENILAI, serta uji kecepatan SIPENILAI. Ketiga uji coba tersebut menggunakan variasi jawaban yang berbeda-beda, namun pengucapnya tetap sama. Setelah dilakukan uji coba dan analisis diperoleh nilai akurasi Julius sebesar 77.92, nilai akurasi SIPENILAI sebesar 75.43, dan nilai kecepatan rata-ratanya sebesar 45.63 KB s.

ABSTRACT
The Oral Examination Assessment System (SIPENILAI) is the development of the Automatic Essay Assessment System (Simple-O) that makes the method of answering questions can be done orally. This system uses voice input in Japanese, then the sound is converted to text using the help of an engine named Julius. Furthermore, the text is compared with the answer key for scoring using the Latent Semantic Analysis (LSA) algorithm. In this thesis, there are three tests carried out, the accuracy test of Julius, the accuracy test of SIPENILAI, and the speed test of SIPENILAI. The three tests used a variety of different answers, but the speaker remained the same. After testing and analysis, the accuracy value of Julius was 77.92, the accuracy of SIPENILAI was 75.43, and the average speed was 45.63 KB s.
"
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Yusuf Irfan Herusaktiawan
"Penelitian ini mengembangkan dan menganalisa sistem pendeteksi plagiarisme dua bahasa berbasis Latent Semantic Analysis untuk karya tulis berbahasa Indonesia dan referensi berbahasa Inggris. Sistem pendeteksi plagiarisme menggunakan algoritma backpropagation neural network untuk melakukan klasifikasi pasangan karya tulis berbahasa Indonesia dan Inggris yang sudah dinilai tingkatan plagiarismenya secara manual. Sistem dapat memperoleh klasifikasi akurasi F-measure sampai dengan 92.75.
Hasil percobaan menunjukkan bahwa akurasi tertinggi dapat diperoleh jika menggunakan metode term frequency binary dalam penghitungan jumlah kata dan penggunaan frobenius norm, vector angle slice, dan vector angle pad sebagai pilihan fitur untuk masukan backpropagation neural network.

This research aims to develop and analyse dual language plagiarism detection system based on Latent Semantic Analysis for papers with Indonesian language and reference text with English language. The plagiarism detection system uses backpropagation neural network algorithm to classify pairs of Indonesian and English papers which plagiarism levels has been graded manually. The system has reached classification accuracy using F measure metric up to 92.75.
Experiment results show that the highest accuracy obtained when using term frequency binary method in counting frequency of words and using frobenius norm, vector angle slice, and vector angle pad features for backpropagtion neural network input.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dyah Lalita Luhurkinanti
"Sistem penilai otomatis SIMPLE-O untuk bahasa Jepang telah diteliti selama beberapa tahun belakangan. Namun, penilaian yang dilakukan belum mencakup nilai morfologis, padahal morfologi merupakan hal yang penting dalam ujian sastra. Penelitian ini melakukan clustering pada 215 jawaban mahasiswa dan mengelompokkannya ke 6 cluster berdasarkan topiknya. Berdasarkan hasil, didapatkan bahwa K-means clustering mengelompokkan dengan lebih baik dibanding hierarchical agglomerative clustering (HAC), terutama dengan penambahan Romanisasi. K-means clustering dengan Romansasi menunjukkan 96.5% precision dan 96% recall, sementara HAC memiliki 95% precision dan 93.7% recall. Pada proses penilaian, jawaban dinilai pertopik atau nomor soal dan dicari rasio antara nilai yang didapat dari LSA dengan nilai morfologi dengan akurasi tertinggi. LSA memiliki rata-rata akurasi 79.92%. Penambahan analisis morfologi pada nilai akhir mendapatkan akurasi tertinggi sebesar 78.77% dengan bobot 10% nilai morfologi dan 90% nilai LSA.

The research on automated grading system SIMPLE-O for Japanese language has been done for a few years. However, in the grading system, there is still no means to grade the morphological component even though it is an important part of language test. This research groups 215 student answers to 6 cluster according to the topics. According to the results, K-means clustering performs better than hierarchical agglomerative clustering (HAC) especially with Romanization. K-means clustering with Romanization shows 96.5% precision and 96% recall while HAC has 95% precision and 93.7% recall. For the grading prosess, the answers will be scored by its topic or question number and the ratio between similarity measurement score and morphological score with the highest accuracy will be selected. LSA has the average accuracy of 79.92%. With the addition of morphological analysis on the final score, the highest average accuracy of 78.77% is selected with the ratio of 10% morphological score and 90% LSA score."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hanifah Khairunnisa
"ABSTRAK
Dalam penelitian ini, Sistem Penilaian Esai Ototmatis (Simple-O) dirancang menggunakan algoritma Latents Semantic Analysis (LSA), Term Frequency-Inverse Document Frequency, dan algoritma Support Vector Machine (SVM). Algoritma LSA digunakan untuk mengolah kata-kata yang merepresentasikan kata-kata dalam teks menjadi matriks. Algoritme SVM digunakan untuk mengklasifikasikan esai jawaban siswa berdasarkan topiknya. TF-IDF digunakan untuk menimbang setiap kata dalam teks yang akan menjadi input SVM. Dari penelitian ini ketepatan penggunaan jawaban dosen sebagai jawaban referensi adalah 72,01% dan ketepatan penggunaan kata kunci sebagai jawaban referensi adalah 69,5%.

ABSTRACT
In this study, the Automatic Essay Assessment System (Simple-O) was designed using the Latents Semantic Analysis (LSA) algorithm, Term Frequency-Inverse Document Frequency, and the Support Vector Machine (SVM) algorithm. The LSA algorithm is used to process words that represent words in the text into a matrix. The SVM algorithm is used to classify student essays based on their topic. TF-IDF is used to weigh each word in the text that will become SVM input. From this research, the accuracy of using lecturers' answers as reference answers was 72.01% and the accuracy of using keywords as reference answers was 69.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naiza Astri Wulandari
"Sistem Penilaian Esai Otomatis (Simple-O) telah dibuat menggunakan algoritma K-Means dan metode Latent Semantic Analysis (LSA). Jawaban karangan siswa pertama-tama akan diklasifikasikan ke dalam kelas-kelas sesuai dengan topik masing-masing nomor, dan akan memisahkannya dari jawaban siswa yang tidak sesuai konteks kemudian akan dilakukan proses LSA yang merepresentasikan kata ke dalam matriks, yang kemudian matriks direduksi menggunakan Singular Value Decomposition dan dilanjutkan dengan mencari norma frobenius yang merupakan nilai dari setiap soal. Pada penelitian ini dilakukan uji coba dengan menggunakan 4 skenario dan hasil penelitian SIMPLE-O menggunakan algoritma K-Means dan LSA menghasilkan akurasi rata-rata sebesar 74% yaitu hasil skenario pengujian 1

An Automatic Essay Assessment System (Simple-O) has been created using the K-Means algorithm and the Latent Semantic Analysis (LSA) method. Students' essay answers will first be classified into classes according to the topic of each number, and will separate them from student answers that do not fit the context then an LSA process will be carried out which represents the word into a matrix, which is then reduced by using Singular Value. Decomposition and continue by looking for the Frobenius norm which is the value of each question. In this study, trials were carried out using 4 scenarios and the results of the SIMPLE-O research using the K-Means and LSA algorithms produced an average accuracy of 74%, namely the results of the test scenario number 1."
Depok: FAkultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadhilah Siti Shalihah
" E-learning dalam dunia pendidikan sudah banyak diterapkan untuk meningkatkan mutu pendidikan salah satunya adalah penggunaan e-learning pada pengujian akademis baik ujian pilihan ganda, esai, dan lisan. Proses penilaian jawaban ujian mahasiswa masih secara manual maka dari itu, penilitian membahas pengembangan Sistem Penilaian Ujian Lisan atau SIPENILAI dalam bahasa Jepang dengan menerapkan API google speech recognition dan metode LSA. SIPENILAI merupakan sistem yang dikembangkan oleh Departemen Teknik Elektro yang bertujuan untuk menilai ujian lisan secara otomatis. Speech recognition yang akan diterapkan memakai API google speech recognition yang merupakan API yang digunakan untuk mendeteksi suara yang kemudian diubah menjadi teks. Algoritma LSA merupakan metode yang digunakan untuk menganalisa kemiripan antara kalimat dengan dokumen jawaban dari pengajar. Kata dalam kalimat akan disusun menjadi matriks kemudian diproses dengan SVD (Singular Value Decomposition) dan diukur kemiripan antara kalimat dengan dokumen jawaban menggunakan Frobenius Norm. Dari pengujian yang telah dilakukan SIPENILAI dapat mencapai rata-rata akurasi sebesar 83.64% untuk pengguna fasih dan 76.89% untuk pengguna tidak fasih.

E-learning in the world of education has been widely applied to improve the quality of education one of which is the use of e-learning in academic testing both multiple choice exams, essays, and oral. The process of evaluating student exam answers is still manual and therefore the research, discussing the development of the Oral Examination Assessment System or SIPENILAI in Japanese by implementing Google API speech recognition and LSA methods. SIPENILAI is a system developed by the Department of Electrical Engineering which aims to assess oral examinations automatically. Speech recognition that will be implemented using Google API speech recognition which is an API that is used to detect sound which is then converted into text. LSA algorithm is a method used to analyze the similarity between sentences and the document answers from the teacher. The words in the sentence will be arranged into a matrix and then processed with SVD (Singular Value Decomposition) and measured the similarity between the sentence with the answer document using Frobenius Norm. From testing that has been done, SIPENILAI can reach an average accuracy of 83.64% for fluent users and 76.89% for non-fluent users."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darell Hendry
"Chatbot sebagai asisten virtual yang digunakan oleh suatu instansi dapat memberikan manfaat bagi penggunanya. Dengan adanya chatbot, pengguna dapat berbicara langsung kepada chatbot melalui pesan singkat, yang kemudian sistem secara spontan mengidentifikasi intent pesan tersebut dan merespons dengan tindakan yang relevan. Sayangnya, cakupan pengetahuan chatbot terbatas dalam menangani pesan oleh pengguna yang semakin bervariasi. Dampak utama dari adanya variasi tersebut adalah adanya perubahan pada komposisi label intent. Untuk itu, penelitian ini berfokus pada dua hal. Pertama, pemodelan topik untuk menemukan intent dari pesan pengguna yang belum teridentifikasi intent-nya. Kedua, pemodelan topik digunakan untuk mengorganisasi intent yang sudah ada dengan menganalisis hasil keluaran model topik. Setelah dianalisis, terdapat dua kemungkinan fenomena perubahan komposisi intent yaitu: penggabungan dan pemecahan intent, dikarenakan terdapat noise saat proses anotasi dataset orisinal. Pemodelan topik yang digunakan terdiri dari Latent Dirichlet Allocation (LDA) sebagai model baseline dan dengan model state-of-the-art Top2Vec dan BERTopic. Penelitian dilakukan terhadap dataset salah satu e-commerce di Indonesia dan empat dataset publik. Untuk mengevaluasi model topik digunakan metrik evaluasi coherence, topic diversity dan topic quality. Hasil penelitian menunjukkan model topik BERTopic dan Top2Vec menghasilkan nilai topic quality 0.036 yang lebih baik dibandingkan model topik LDA yaitu -0.014. Terdapat pula pemecahan intent dan penggabungan intent yang ditemukan dengan analisis threshold proporsi.

Chatbot, as a virtual assistant used by an institution, can provide benefits for its users. With a chatbot, users can speak directly to the chatbot via a short message, which then the system spontaneously identifies the intent of the message and responds with the relevant action. Unfortunately, the scope of chatbot knowledge is limited in handling messages by an increasingly varied user. The main impact of this variation is a change in the composition of the intent label. For this reason, this research focuses on two things. First, topic modeling to find intents from user messages whose intents have not been identified. Second, topic modeling is used to organize existing intents by analyzing the output of the topic model. After being analyzed, there are two possible phenomena of changing intent composition: merging and splitting intents because there is noise during the annotation process of the original dataset. The topic modeling used consists of Latent Dirichlet Allocation (LDA) as the baseline model and the state-of-the-art Top2Vec and BERTopic models. The research was conducted on one dataset of e-commerce in Indonesia and four public datasets. The evaluation metrics of coherence, topic diversity, and topic quality were used to evaluate the topic model. The results showed that the BERTopic and Top2Vec topic models produced a topic quality value of 0.036, better than the LDA topic model, which was -0.014. There are also intent splitting and intent merging found by proportion threshold analysis."
Depok: Fakultas Ilmu Komputer Universita Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darell Hendry
"Chatbot sebagai asisten virtual yang digunakan oleh suatu instansi dapat memberikan manfaat bagi penggunanya. Dengan adanya chatbot, pengguna dapat berbicara langsung kepada chatbot melalui pesan singkat, yang kemudian sistem secara spontan mengidentifikasi intent pesan tersebut dan merespons dengan tindakan yang relevan. Sayangnya, cakupan pengetahuan chatbot terbatas dalam menangani pesan oleh pengguna yang semakin bervariasi. Dampak utama dari adanya variasi tersebut adalah adanya perubahan pada komposisi label intent. Untuk itu, penelitian ini berfokus pada dua hal. Pertama, pemodelan topik untuk menemukan intent dari pesan pengguna yang belum teridentifikasi intent-nya. Kedua, pemodelan topik digunakan untuk mengorganisasi intent yang sudah ada dengan menganalisis hasil keluaran model topik. Setelah dianalisis, terdapat dua kemungkinan fenomena perubahan komposisi intent yaitu: penggabungan dan pemecahan intent, dikarenakan terdapat noise saat proses anotasi dataset orisinal. Pemodelan topik yang digunakan terdiri dari Latent Dirichlet Allocation (LDA) sebagai model baseline dan dengan model state-of-the-art Top2Vec dan BERTopic. Penelitian dilakukan terhadap dataset salah satu e-commerce di Indonesia dan empat dataset publik. Untuk mengevaluasi model topik digunakan metrik evaluasi coherence, topic diversity dan topic quality. Hasil penelitian menunjukkan model topik BERTopic dan Top2Vec menghasilkan nilai topic quality 0.036 yang lebih baik dibandingkan model topik LDA yaitu -0.014. Terdapat pula pemecahan intent dan penggabungan intent yang ditemukan dengan analisis threshold proporsi.

Chatbot, as a virtual assistant used by an institution, can provide benefits for its users. With a chatbot, users can speak directly to the chatbot via a short message, which then the system spontaneously identifies the intent of the message and responds with the relevant action. Unfortunately, the scope of chatbot knowledge is limited in handling messages by an increasingly varied user. The main impact of this variation is a change in the composition of the intent label. For this reason, this research focuses on two things. First, topic modeling to find intents from user messages whose intents have not been identified. Second, topic modeling is used to organize existing intents by analyzing the output of the topic model. After being analyzed, there are two possible phenomena of changing intent composition: merging and splitting intents because there is noise during the annotation process of the original dataset. The topic modeling used consists of Latent Dirichlet Allocation (LDA) as the baseline model and the state-of-the-art Top2Vec and BERTopic models. The research was conducted on one dataset of e-commerce in Indonesia and four public datasets. The evaluation metrics of coherence, topic diversity, and topic quality were used to evaluate the topic model. The results showed that the BERTopic and Top2Vec topic models produced a topic quality value of 0.036, better than the LDA topic model, which was -0.014. There are also intent splitting and intent merging found by proportion threshold analysis."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>