Sistem pendeteksi kardiomegali dilakukan dengan memeriksa hasil citra radiografi toraks manusia. Pada bagian ekstraksi fitur, citra diproses menggunakan metode Discrete cosine transform. Pada sistem ini, digunakan DCT sebanyak 5 level. Hasil dari proses DCT akan digunakan sebagai input untuk proses selanjutnya, yaitu Learning vector quantization. Bagian klasifikasi menggunakan LVQ terdiri dari dua bagian, yaitu bagian pelatihan dan bagian pengenalan. Bagian pelatihan merupakan bagian dimana sistem dilatih untuk mendapatkan bobot akhir. Bagian pengenalan merupakan bagian yang sistem gunakan untuk mengenali ada atau tidaknya kardiomegali dengan hasil pembelajaran dari bagian pelatihan. Sistem menunjukkan hasil akurasi pengujian yang cukup tinggi, yaitu 97,78% dimana dari 45 citra uji, 44 citra dapat diklasifikasikan dengan baik.
The detection system of cardiomegaly is conducted by processing human CXR, or chest X-Ray. In feature extraction, X-Ray images are processed using Discrete Cosine Transfom method. In this system, 5-Level DCT is applied. The result of feature extraction is used as input for the next method, which is Learning vector quantization. LVQ consists of two parts, which are the training part and the testing part. The training part is when the system is trained to obtain final weight. The testing part is where system recognizes and decides whether the CXR shows the indication of cardiomegaly based on the knowledge it obtained from the training part. The system shows high testing accuracy, which is 97,78% where 44 out of 45 X-Ray images have been well-diagnosed.
"Kanker Payudara (KPD) merupakan salah satu penyakit penyebab kematian terbesar. Indonesia merupakan negara dengan jumlah KPD cukup besar. KPD ini merupakan benjolan. Benjolan ini dapat diperiksa menggunakan cara manual yaitu diraba bagian dekat dengan putting susu. Jika benjolan tidak kunjung mengecil dianjurkan untuk memeriksa ke dokter. Pendektesian KPD ini dapat dilakukan dengan menggunakan proses pencitraan. Data yang digunakan pada penelitian ini diambil dari website Pilot European Image Processing Archive (PEIPA) yaitu dataset Mammographic Image Analysis Society (MIAS). Pendektesian dilakukan dengan menganalisa gambar payudara (mammography) pasien dengan menggunakan metode Principal Component Analysis (PCA) mengubah gambar dalam bentuk matriks. Matriks ini akan digunakan sebagai data yang akan digunakan dalam Neural Network (jaringan saraf tiruan) dengan metode Backpropagation Neural Network (BNN). Dari hasil Percobaan dapat diketahui bahwa metode ini menghasilkan nilai akurasi pembelajaran dari deep learning supervised sebesar 98%.