Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 56325 dokumen yang sesuai dengan query
cover
Dhea Fairuz Vibranti
"Saham merupakan instrumen investasi yang menawarkan tingkat keuntungan yang menarik, namun memiliki risiko kerugian yang tinggi. Hal ini disebabkan oleh harga saham yang selalu berfluktuasi dan dipengaruhi oleh faktor-faktor tak menentu. Untuk memperoleh keuntungan seperti yang diharapkan, dibutuhkan prediksi pergerakan harga saham yang akurat. Umumnya, investor menggunakan indikator teknikal dalam mengantisipasi pergerakan harga di masa depan. Pada skripsi ini, sebanyak delapan indikator teknikal digunakan dan diproses ke dalam dua pendekatan. Pendekatan pertama memanfaatkan nilai-nilai indikator teknikal yang bersifat kontinu, sementara pendekatan lainnya memanfaatkan kriteria tertentu yang dimiliki oleh setiap indikator teknikal dalam menggambarkan pergerakan harga saham yang bersifat diskrit. Keduanya kemudian dijadikan data input bagi model prediksi dengan menggunakan metode Support Vector Machines yang mengklasifikasi data harga saham ke dalam dua kelas, yaitu naik dan turun. Hasil prediksi tersebut menunjukkan bahwa performa model prediksi yang menerapkan data input bernilai diskrit melampaui performa model prediksi yang menerapkan data input bernilai kontinu, dengan tingkat akurasi tertinggi yang diperoleh ialah sebesar 94,12.

Stock is an investment instrument that offers an attractive rate of return, yet has a high risk of loss. This due to the nature of stock prices that are always fluctuate and influenced by uncertain factors. To obtain the expected profit, an accurate prediction of stock price movement is required. Generally, investors use technical indicators to anticipate the future price movement. In this undergraduate thesis, a number of eight technical indicators are used and processed into two approaches. The first approach use the values of technical indicators that are continuous, while the other utilizes certain criteria owned by each technical indicator in describing stock price movement which is a discrete type of value. Both approaches are then used as input data for prediction model using the Support Vector Machines method which classifies the stock price data into two classes, i.e. up and down. The prediction results indicate that the performace of prediction models applying discrete valued of input data exceeds the performance of prediction models which apply continuous valued of input data, with the highest accuracy obtained at 94.12."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68125
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diva Arum Puspitasari
"Prediksi trend harga saham dapat berguna bagi trader untuk menentukan nilai saham dimasa yang akan datang. Untuk memprediksi trend dengan analisis teknikal adalah melakukan prediksi harga penutupan saham. Seiring dengan waktu, meningkatnya harga saham setara dengan diperolehnya return saham yang profit. Pada skripsi ini, dilakukan analisis dan prediksi harga penutupan saham selama sebulan menggunakan metode Support Vector Machines ndash; K Nearest Neighbor SVM-KNN . Pertama, terlebih dahulu dilakukan pemilihan indikator teknikal yang berpengaruh terhadap saham perusahaan yang dianalisis menggunakan Support Vector Regression SVR . Kedua, klasifikasi return saham yang terdiri dari profit dan loss dengan SVM. Hasil prediksi label kelas dapat membantu mencari tetangga terdekat dalam memprediksi harga penutupan saham dengan KNN. Percobaan dilakukan menggunakan 3, 4, dan 5 indikator teknikal yang terpilih dan tanpa pemilihan fitur dengan 13 indikator teknikal.

Stock price trend prediction is important for trader to determine whether the stock price is rising up or not. To predict the trend using technical stock analysis is by predicting the close prices. Along the time, when the price is rising up then it can indicate profit return. This undergraduate thesis will study how to analysis and prediction of stock closing prices one month ahead with Support Vector Machines ndash K Nearest Neighbor SVM KNN method. First, feature selection method is applied to select the important technical indicators using Support Vector Regression SVR . Second, classify the stock rsquo s return which consist of profit and loss using SVM. The output of class label is used to help find the nearest neighbor. Next, stock prices are forecasted using KNN. This study will be experimented with 3, 4, and 5 selected indicators and compared with 13 technical indicators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69143
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vincentius Ryan Cokrodiharjo
"Memiliki model prediksi yang baik akan memberikan keuntungan tersendiri bagi investor dan perusahaan dalam mengambil keputusan. Support Vector Machine SVM adalah salah satu algoritma pembelajaran mesin yang diawasi yang dapat digunakan untuk klasifikasi atau regresi. Banyak penelitian menunjukkan bahwa prediksi menggunakan model Support Vector Machine SVM lebih akurat daripada model lainnya. Penelitian terbaru menunjukkan bahwa kinerja tertinggi dari sistem prediksi terjadi ketika periode input indikator teknikal sama dengan periode perkiraan. Dengan menggunakan kombinasi dari periode perkiraan dan periode input indikator teknikal dengan kerangka waktu yang lebih banyak dan Support Vector Machine SVM , penelitian ini ingin mengetahui seberapa besar akurasi yang dihasilkan SVM untuk memprediksi pergerakan harga saham-saham di pasar Indonesia, apakah kinerja tertinggi dari sistem prediksi terjadi ketika periode input indikator teknikal sama dengan periode perkiraan, dan apakah aplikasi penggunaan SVM untuk perdagangan dapat memberikan hasil yang lebih baik dibandingkan strategi buy and hold. Data transaksi saham yang kami gunakan dari Maret 2006 hingga Februari 2018 untuk tiga puluh satu saham perusahaan dan menggunakan kombinasi dua puluh delapan periode perkiraan dan tiga puluh periode input indikator teknikal. Hasil penelitian yang diperoleh yaitu model prediksi dapat memberikan hasil akurasi yang baik karena sebanyak 25 dari 31 saham memberikan hasil akurasi lebih dari 50 tetapi kinerja tertinggi model prediksi tidak terjadi saat periode input indikator teknikal sama dengan periode perkiraan dan diperoleh 21 saham yang memberikan imbal hasil signifikan ketika menggunakan aplikasi model prediksi SVM untuk melakukan perdagangan dibandingkan strategi buy and hold.

Having a good predictive model will provide its own advantages for investors and companies in making decisions. Support Vector Machine SVM is one of the supervised machine learning algorithms that can be used for classification or regression. Many studies have shown that predictions using the Support Vector Machine SVM model are more accurate than other models. Recent research shows that the highest performance of the prediction system occurs when the technical indicator input period is equal to the forecast period. Using a combination of forecast periods and technical indicator input periods with more time frames and Support Vector Machine SVM , this study wanted to know how much accuracy SVM generates to predict the movement of stock prices in the Indonesian market, what is the highest performance of the prediction system occurs when the technical indicator input period is equal to the forecast period, and whether the application of SVM usage for trade can give better results than the buy and hold strategy. We used stock transaction data from March 2006 to February 2018 for the thirty one shares of the companies and using a combination of twenty eight forecast periods and thirty periods of input of technical indicators. The result of the research is prediction model can give good accuracy result because 25 of 31 stocks give accurate result more than 50 but highest performance prediction model does not occur when technical indicator input period is same with forecast period and 21 stocks yield return significant when applying SVM prediction model to trade compared to buy and hold strategy."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T50434
UI - Tesis Membership  Universitas Indonesia Library
cover
Puteri Kintandani
"Investasi saham merupakan salah satu jenis investasi yang paling populer karena saham memberikan tingkat keuntungan yang tinggi dibandingkan dengan jenis investasi lainnya, tetapi saham juga memiliki tingkat risiko yang tinggi. Fluktuasi harga saham memberikan peluang bagi investor untuk mendapatkan keuntungan yang tinggi. Dibutuhkan sebuah model prediksi harga saham untuk melihat pergerakan harga saham di masa yang akan datang, sehingga investor dapat menentukan waktu yang tepat untuk membeli, menahan, dan menjual saham mereka. Dengan demikian, mereka terlepas dari risiko kerugian dan memperoleh keuntungan yang besar. Terdapat beberapa studi yang membahas tentang prediksi harga saham menggunakan machine learning. Salah satunya yaitu menggunakan Support Vector Regression (SVR). Oleh karena itu, pada skripsi ini akan diuji penerapan SVR menggunakan Particle Swarm Optimization (PSO) sebagai seleksi fitur dalam memprediksi harga saham di Indonesia. Pada skripsi ini digunakan data historis saham harian dari Jakarta Stock Index dan beberapa saham pada sektor real estate dan properti. Beberapa indikator teknikal digunakan sebagai fitur dalam memprediksi harga saham. Studi ini menunjukkan bahwa prediksi harga saham menggunakan SVR dengan PSO sebagai seleksi fitur memiliki kinerja yang baik untuk semua data, fitur, dan jumlah data training yang digunakan pada skripsi ini memiliki nilai error yang kecil. Oleh karena itu, diperoleh model yang akurat untuk memprediksi harga saham di Indonesia.

Stock investing is one of the most popular types of investments since it provides the highest return among all investment types, although it is associated with considerable risk. Fluctuating stock prices provide an opportunity for investors to make a high profit. A stock price prediction model is needed to see future stock price movements, so investors can decide the right time to buy, hold, and sell their stocks which regardless of the risk of loss and gain a big profit. Several studies have focused on the prediction of stock prices using machine learning. One of them is Support Vector Regression (SVR). Therefore, this study examines the application of SVR using Particle Swarm Optimization (PSO) as feature selection in predicting Indonesian stock price. This thesis used historical daily stock data from Jakarta Stock Index (JKSE) and several real estates and property stock sectors. Some technical indicators are used as a feature in predicting stock price. The study found that stock price prediction using SVR with PSO as feature selection showed good performances for all data, features and the amount of training data used by the study have relatively low error probabilities. Therefore, an accurate model is obtained to predict stock price in Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Veronika Rampisela
"Skizofrenia adalah gangguan jiwa yang serius dan kronis. Penyakit ini ditandai dengan gangguan dalam pemikiran, persepsi, dan tingkah laku. Karena gangguan-gangguan ini dapat memicu penderita Skizofrenia untuk bunuh diri atau mencoba bunuh diri, penderita Skizofrenia mempunyai usia harapan hidup yang lebih rendah dari populasi umum. Skizofrenia juga sulit untuk didiagnosis karena belum ada tes secara fisik untuk mendiagnosisnya dan gejala-gejalanya sangat mirip dengan beberapa gangguan jiwa lainnya. Dengan menggunakan Northwestern University Schizophrenia Data, penelitian ini bertujuan untuk mengklasifikasikan orang yang menderita Skizofrenia dan orang yang tidak menderita Skizofrenia. Data tersebut terdiri dari 392 observasi dan 65 variabel yang merupakan data demografis dan data kuesioner Scale for the Assessment of Positive Symptoms dan Scale for the Assessment of Negative Symptoms yang diisi oleh klinisi. Metode klasifikasi yang digunakan adalah machine learning dengan metode Support Vector Machines SVM dan Twin Support Vector Machines Twin SVM menggunakan MATLAB R2017a. Simulasi dilakukan dengan data dan persentase data training dan testing yang berbeda-beda. Pada setiap simulai, akurasi serta running time diukur. Validasi dan evaluasi performa dari model yang telah dioptimasi dilakukan dengan mengambil rata-rata dari sepuluh kali Hold-Out Validation yang dilakukan. Pada umumnya, metode Twin SVM berhasil mengklasifikasikan data Skizofrenia dengan lebih akurat dibandingkan dengan metode SVM. Metode Twin SVM dengan kernel Gaussian menghasilkan hasil akhir akurasi klasifikasi data Skizofrenia yang terbaik, yaitu 91,0 . Berdasarkan hasil akhir running time, metode SVM dengan kernel Gaussian untuk klasifikasi data Skizofrenia mempunyai running time yang paling cepat, 0,664 detik. Selain itu, metode SVM dengan kernel linear, metode SVM dengan kernel Gaussian, dan metode Twin SVM untuk klasifikasi data Skizofrenia berhasil mencapai akurasi hingga 95,0 dalam setidaknya satu simulasi.

Schizophrenia is a severe and chronic mental disorder. This disorder is marked with disturbances in thoughts, perceptions, and behaviours. Due to these disturbances that can trigger Schizophrenics to commit suicide or attempt to do so, Schizophrenics have a lower life expectancy than the general population. Schizophrenia is also difficult to diagnose as there is no physical test to diagnose it yet and its symptoms are very similar to several other mental disorders. Using Northwestern University Schizophrenia Data, this research aims to distinguish people who are Schizophrenics and people who are not. The data consists of 392 observations and 65 variables that are demographic data as well as clinician filled Scale for the Assessment of Positive Symptoms and Scale for the Assessment of Negative Symptoms questionnaires. Classification methods that are used are machine learning with Support Vector Machines SVM and Twin Support Vector Machine Twin SVM using MATLAB R2017a. Simulations are done with different data and percentage of training and testing data. In each simulation, accuracy and running time are measured. Performance validation and evaluation of the optimized models are done by taking the average of ten times Hold Out Validations that were done. In general, Twin SVM successfully classified Schizophrenia data more accurately than the SVM method. Twin SVM with Gaussian kernel produced the best final accuracy in classifying Schizophrenia data, 91.0 . Based on the final running time, SVM with Gaussian kernel has the fastest running time in classifying Schizophrenia data, 0.664 seconds. Furthermore, SVM with linear kernel, SVM with Gaussian kernel, and Twin SVM managed to reach an accuracy of 95.0 in at least one simulation in classifying Schizophrenia data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Maghfirah
"Kematian yang disebabkan oleh kanker diperkirakan akan terus meningkat, padahal jumlah kematian ini dapat dikurangi dengan adanya deteksi dini. Salah satunya adalah dengan klasifikasi data kanker. Data kanker yang digunakan merupakan data kanker berdimensi tinggi dengan ribuan fitur, tetapi tidak semua fitur yang ada merupakan fitur yang relevan. Oleh karena itu, perlu adanya proses seleksi fitur. Untuk meningkatkan tingkat akurasi yang dihasilkan, digunakan sebuah metode seleksi fitur yang meninjau adanya korelasi antar gen, yaitu CSVM-RFE. Pada metode tersebut, data yang ada diproyeksikan dan diubah menjadi sebuah data baru dengan ekstraksi fitur, dan kemudian dilakukan proses seleksi fitur. Penggunaan dua metode tersebut pada klasifikasi tiga data kanker yang ada terbukti menghasilkan tingkat akurasi yang tinggi, pada data kanker kolon tingkat akurasi yang didapatkan adalah sebesar 96.6, pada kanker prostat sebesar 98.9, dan pada kanker lymphoma sebesar 98,6.

The number of death caused by cancer expected to rise over two decades, whereas the number of death can be reduced by early detection. One of them is cancer classification. Cancer dataset is a high dimensional dataset that consist of thousands of features, but not all of these features are relevant. Therefore, it is necessary to remove the redundant features using feature selection. Feature selection can also improve the accuracy of classification. Many feature selection methods do not consider the correlated genes, so we need a new feature selection method that consider the correlated genes. It is CSVM RFE, in this method the existing data is projected and converted into a new data with feature extraction. These two methods are applied to the cancer datasets, and produce the accuracy of 96.6 using colon cancer dataset, 98.9 using prostate cancer dataset, and 98.6 using lymphoma cancer dataset."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69588
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyu Nuryaningrum
"Pesatnya perkembangan ekonomi menyebabkan kebutuhan manusia menjadi tidak terbatas. Usaha yang dapat dilakukan untuk pemenuhan kebutuhan hidup di masa yang akan datang adalah dengan melakukan investasi. Saham merupakan salah satu instrumen investasi dengan tingkat keuntungan yang menarik, namun memiliki risiko kerugian yang tinggi. Hal ini disebabkan oleh adanya pergerakan harga saham yang cenderung tak menentu selama periode waktu tertentu. Untuk meminimalkan risiko kerugian, perlu dilakukan prediksi pergerakan harga saham. Prediksi yang akurat akan membantu para investor dalam menentukan nilai saham di masa yang akan datang. Pada penelitian ini, dilakukan perbandingan untuk memprediksi pergerakan harga saham menggunakan tiga algoritma supervised machine learning yaitu Random Forest, Support Vector Regression (SVR) dan K- Nearest Neighbor (KNN) berdasarkan tingkat akurasinya. Sutau model dikatakan akurat jika memiliki nilai Root Mean Square Error (RMSE) dan Mean Absolute Error (MAE) yang lebih rendah. Pada penelitian ini, diperoleh hasil prediksi harga penutupan saham terbaik menggunakan metode Support Vector Regression dengan melihat rendahnya nilai RMSE dan MAE yang dihasilkan dibandingkan dengan dua metode lain. Dalam perhitungannya, penelitian ini menggunakan histori data harian dari website investing.com. periode Maret 2017 hingga Februari 2020 dari tiga perusahaan di Indonesia yang terdaftar dalam IDX30.

The fast growth of economic development causes human needs to be immeasurable. One of the efforts that could be done to fulfill life needs in the future was Investation. Stock is one of the Investation instruments with interesting benefits but has high- risk loss caused by the unstable stock market trend between some period. For minimalizing the risky loss, the literati need to predicting the stock rate trend. The accurate prediction will help the investor in choosing a stock value in the future. In this study, the literati make a comparison to predict stock market trend with three kinds of algorithms supervised machine learning that are Randon Forest, Support Vector Regression (SVR), and K-Nearest Neighbor (KNN) based on their accurate level. A model could be said accurate just if they have a lower value of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The best Stock Closing Price prediction will be obtained by the Support Vector Regression method and see how low the result of RMSE and MAE value is compared with another method. To calculate, the study uses a daily data history from investing.com website between March 2017 to February 2020 period. The object data is a three big company in Indonesia which listed in IDX30."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fildzah Zhafarina
"

Kanker hati merupakan penyebab utama kematian akibat kanker di seluruh dunia. Di Indonesia, kanker hati menempati angka kejadian tertinggi kedua untuk laki laki yaitu sebesar 12,4 per 100.000 penduduk dengan rata-rata kematian 7,6 per 100.000 penduduk. Pada tugas akhir ini, dibahas mengenai kanker hati primer dengan jenis hepatocellular carcinoma. Metode Twin Support Vector Machines (Twin SVM) diimplementasikan untuk mengklasifikasikan data kanker hati berdasarkan hasil CT scan. Data yang digunakan adalah data numerik hasil CT scan pasien yang menderita kanker hati dan diperoleh dari Laboratorium Radiologi RSUPN Cipto Mangunkusumo. Metode Twin SVM adalah pengembangan dari metode SVM yang menggunakan dua hyperplane dalam mengklasifikasikan sampel. Pada tugas akhir ini, kernel yang digunakan pada metode Twin SVM adalah polinomial dan radial basis function (RBF). Berdasarkan hasil perbandingan, klasifikasi data kanker hati menggunakan metode Twin SVM dengan kernel Polinomial menghasilkan akurasi tertinggi sebesar 77,30% pada penggunaan data testing sebesar 10% dan data training 90%. Selain itu, nilai akurasi terendah terdapat pada kernel RBF menghasilkan sebesar 60,10% pada penggunaan data testing sebesar 90% dan data training 10% dan nilai parameter 𝐶 = 1. Jika dibandingkan, klasifikasi data kanker hati dengan menggunakan metode Twin SVM dengan kernel polinomial menghasilkan nilai akurasi yang lebih baik.


Liver cancer is the main cause of cancer death in the worldwide. In Indonesia, the incidence rate of liver cancer is the second highest for men, that is 12.4 per 100,000 population with the average death rate is 7.6 per 100,000 population. This final project discusses primary liver cancer with a type of hepatocellular carcinoma. The Twin Support Vector Machines (Twin SVM) method was implemented to classify liver cancer data based on CT scan results. The data used are numerical data from CT scan results of patients suffering from liver cancer and obtained from the Radiology Laboratory of Cipto Mangunkusumo Hospital. The Twin SVM method is the development of the SVM method that uses two hyperplane in classifying samples. In this final project, the kernel used in the Twin SVM method is polynomial and radial basis function (RBF). Based on the comparison results, the classification of liver cancer data using the Twin SVM method with a polynomial kernel produces the highest accuracy of 77.30% on the use of testing data of 10% and training data of 90%. In addition, the lowest accuracy value is found in the RBF kernel resulting in 60.10% on the use of testing data of 90% and training data of 10% and the parameter value of C=1. When compared, the classification of liver cancer data using the Twin SVM method with a polynomial kernel produces better accuracy values.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putu Wira Angriyasa
"ABSTRAK
Metode standar dalam mendapatkan informasi mengenai kondisi tekanan dalam rongga kepala atau tekanan intrakranial (TIK) seseorang adalah dengan melakukan pengukuran secara langsung menggunakan alat ICP monitoring. Untuk menggunakan alat tersebut, perlu dilakukan pembedahan pada kepala pasien. Selain membutuhkan biaya yang relatif mahal, dalam beberapa kasus, pembedahan pada kepala memiliki tingkat risiko yang tinggi. Untuk mengatasi hal tersebut, dalam skripsi ini dijelaskan metode alternatif untuk mendapatkan kondisi TIK secara tidak langsung dengan memanfaatkan konsentrasi Superoksida Dismutase (SOD), Katalase, Nikotinamida Adenin Dinukleotida Fosfat (NADPH), dan Malondialdehid (MDA) sebagai penanda stress oksidatif. Dengan menggunakan data-data tersebut, TIK akan diklasifikasikan dalam kondisi normal, rendah, atau tinggi. Untuk tujuan klasifikasi, digunakan metode Support Vector Machines Sequential dan keakuratannya dibandingkan dengan metode Fuzzy C Means.

ABSTRACT
The standard method for getting information about Intracranial Pressure (ICP) is invasive measurement using ICP monitoring. For using that tool, perforation of cranial scalp of patient was needed. In addition to the expensive cost, in some case, this perforation has high risk. For handling this problem, the alternative method for getting ICP condition was explained in this skripsi, using the level of Superoxide Dismutase (SOD), Catalase (CAT), Nicotinamide Adenine Dinucleotide Phosphate (NADPH), and Malondialdehyde (MDA) such as oxidative stress indicators. Using these indicators, ICP would be classified in normal, low, and high condition. For classification purpose, Support Vector Machines Sequential was used as a classification method and the accuracy was compared with Fuzzy C-Means method."
Universitas Indonesia, 2011
S1955
UI - Skripsi Open  Universitas Indonesia Library
cover
Veronica Angelina Windy Hapsari
"Globalisasi dan era industri 4.0 telah membawa perkembangan luar biasa di
berbagai bidang, termasuk di bidang ekonomi dan keuangan. Pertumbuhan
ekonomi di abad ke-21 bergantung pada partisipasi masyarakat dalam kegiatan
ekonomi (misalnya trading, commerce, dan investasi). Di Indonesia, salah satu
kegiatan ekonomi yang umum dilakukan adalah berinvestasi di pasar saham karena
banyaknya perusahaan yang dapat dipilih oleh investor untuk berinvestasi. Banyak
orang yang ingin menanamkan modalnya di pasar saham karena tingkat
pengembaliannya yang tinggi, meskipun demikian banyak hal kompleks (noisy time
series yang terus bergerak dan sifatnya yang sulit untuk diprediksi karena cepat
bergerak). Oleh karena itu, tulisan ini akan membahas tentang prediksi harga saham
dengan menggunakan Gauss-Newton Representation Based Algorithm (GNRBA).
Metode yang diusulkan menawarkan algoritma yang lebih efektif, implementasi
yang lebih sederhana, dan kerumitan yang lebih sedikit dibandingkan dengan
metode perhitungan tradisional lainnya. Selain itu, penelitian ini menggabungkan
GNRBA dengan Stratified Shuffle Split sebagai metode validasi datanya (data
splitting method). Dengan hasil akurasi di atas 86%, investor dan calon investor
diharapkan dapat menggunakan metode yang dibahas dalam penelitian ini untuk
membuat keputusan yang tepat dalam berinvestasi.

Globalization and industry 4.0 has brought tremendous development in various
fields, including in economics and finance. Economic growth in the 21st century
relies on the participation of the people in economic activities (e.g. trade and
commerce, investing). In Indonesia, one particularly common economic activity is
to invest in the stock market due to the wide array of companies that investors could
choose to invest in. Many people want to invest their capital in the stock market
due to its high return rate, despite its complex movement (noisy time series which
is constantly moving and its unpredictable nature). Therefore, this paper will
discuss about the prediction of stock prices using the Gauss-Newton Representation
Based Algorithm (GNRBA). The proposed method provides users with a more
effective algorithm, simpler implementation, and less complexity compared to the
11 traditional representation. Additionally, this paper combines the GNRBA with
the Stratified Shuffle Split as its data splitting method. With accuracy above 86%,
investors and potential investors could use the methods discussed in this paper to
make an informed decision in investing.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>