Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 108604 dokumen yang sesuai dengan query
cover
Stanley Austin Susanto
"Pengaruh sifat fisik dan kimia dari metode persiapan MgO dan nikel atau rutenium yang didispersikan pada MgO untuk reaksi konversi katalitik etanol menjadi butanol telah dipelajari. Reaksi telah dilakukan pada suhu 350 A°C dalam reaktor batch. Katalis pendukung dan Ni atau Ru yang didispersikan pada MgO telah dikarakterisasi dengan XRD, CO2-TPD, dan SAA. Dari MgOs disintesis, hasil tertinggi butanol diperoleh dari MgO disintesis dari metode presipitasi (2,36%) yang memiliki luas permukaan dan volume pori terbesar, ukuran pori kecil, dan kebasaan tertinggi. Dari logam yang terdispersi pada MgO metode presipitasi, hasil tertinggi butanol diperoleh dari ruthenium yang didispersikan pada MgO metode presipitasi (6,60%) yang memiliki kebasaan lebih tinggi daripada nikel.

The effect of physical and chemical properties of MgO preparation methods and nickel or ruthenium dispersed on MgO for converting catalytically reaction of ethanol to butanol have been studied. The reactions have been conducted at the temperature of 350 A°C in batch reactor.The supports and Ni or Ru dispersed on MgO have been characterized by XRD, CO2-TPD, and SAA. It turned out that of MgOs synthesized, highest yield of butanol was obtained from MgO synthesized from precipitation method (2.36%) having largest surface area, pore volume, small pore size, and highest basicity. Of metals dispersed on MgO of precipitation method, highest yield of butanol was obtained from ruthenium dispersed on MgO of precipitation method (6.60%) having higher basicity than nickel."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prilly Fatticianita J.
"Teknologi konversi katalitik senyawa organik menjadi hidrokarbon masih sangat jarang sehingga sangat memerlukan dukungan dari hasil penelitian serta pengkajian teknik reaksi dan katalis. Selama ini teknologi konversi senyawa organik masih terfokus pada konversi katalitik dengan bahan baku metanol menjadi Gasoline (Methanol To Gasoline Process) dengan menggunakan katalis H-ZSM-5. Oleh karena itu, penelitian ini bermaksud untuk mengembangkan konversi hasil biomassa (aseton-butanol-etanol) menjadi hidrokarbon dengan menggunakan katalis H-ZSM-5. Konversi katalitik senyawa ABE dilakukan dengan menggunakan Packed bed reactor pada tekanan atmosferik dengan variasi rasio Si/Al. Penelitian ini mempelajari pengaruh rasio Si/Al terhadap reaksi konversi katalitik senyawa ABE menjadi hidrokarbon. Karakterisasi katalis yang dilakukan meliputi komposisi kimiawi dari H-ZSM-5 sehingga didapat rasio Si/Al untuk H-ZSM-5 sebesar 15, 47, 227, 2500. Karakterisasi dengan XRD menunjukkan kristalinitas untuk HZSM-5 yang berada pada daerah 2? dengan nilai 23 derajat. Dari karakterisasi keasaman diketahui bahwa katalis yang memiliki jumlah keasaman tertinggi adalah H-ZSM-5 dengan rasio Si/Al = 47 pda rentang temperatur 350_C-450_C. Rasio Si/Al sangat mempengaruhi produk cair yang diperoleh (yield dan konversi). Konversi tertinggi dihasilkan dari reaksi dengan menggunakan HZSM-5 rasio Si/Al = 47. Yield tertinggi yang dihasilkan dari reaksi konversi katalitik senyawa ABE menjadi hidrokarbon adalah sebesar 46,6% atau sekitar 1,168 gram umpan ABE yang terkonversi menjadi produk hidrokarbon pada temperatur 425_C dengan menggunakan katalis H-ZSM-5 rasio Si/Al = 47."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49587
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhita Amanda
"Deoksigenasi katalitik lemak hewani yang mengandung asam lemak telah diimplementasikan untuk menghasilkan renewable diesel. Lemak ayam atau minyak lemak ayam (CFO) adalah salah satu bahan baku renewable diesel hewani yang menjanjikan. Jumlah produksi ayam ras pedaging di Indonesia ada sebanyak 3.43 juta ton pada 2021. Ketersediaan ayam ras pedaging yang berlimpah diikuti oleh sejumlah besar limbah lemak yang dihasilkan menjadikan minyak lemak ayam bahan baku renewable diesel yang ekonomis. Pada penelitian ini, renewable diesel diproduksi dengan deoksigenasi berkatalis magnesium oksida (MgO). Deoksigenasi dilakukan untuk meningkatkan karakteristik renewable diesel dengan melibatkan penghilangan spesies teroksigenasi dalam bentuk CO, CO2, dan H2>O melalui dekarbonilasi dan dekarboksilasi di atmosfer tanpa H2 yang membuatnya ekonomis dan ramah lingkungan untuk produksi renewable diesel. Hasil produk cair penelitian ini diuji berdasarkan Keputusan Dirjen Migas Nomor 146.K/10/DJM/2020 sehingga dapat bermanfaat untuk pengembangan renewable diesel untuk bisa dipasarkan di Indonesia. Dari hasil penelitian, konversi menggunakan rasio berat katalis terhadap umpan 4 wt% dan suhu 400 ˚C menghasilkan produk cair yang sebagian besar mengandung senyawa alkana (42.68%), alkena, (18.41%) dan (6.59%) siklik. Pentadekana dan Heptadekana merupakan senyawa utama produk cair, mengindikasikan terjadinya reaksi deoksigenasi.

As a method of producing renewable diesel, catalytic deoxygenation of animal fats containing fatty acids has been developed. Chicken fat or chicken fat oil (CFO) is one of the promising feedstocks of renewable animal diesel. In 2021, Indonesia yielded 3.43 million tons of broiler chickens. The abundant availability of broilers followed by the large amount of waste fat produced makes CFO an economical renewable diesel feedstock. In this study, renewable diesel is produced by deoxygenation with magnesium oxide (MgO) catalyst. Deoxygenation is carried out to improve the characteristics of renewable diesel by involving the removal of oxygenated species in the form of CO, CO2, and H2O through decarbonylation and decarboxylation under H2-free atmosphere thereby is environmentally and economically effective for the production of green diesel. The liquid products from this research were tested based on the Keputusan Dirjen Migas Nomor 146.K/10/DJM/2020 which can be useful for the development of renewable diesel to be marketed in Indonesia. Conversion using a catalyst to feed weight ratio of 4 wt% and a temperature of 400 ˚C produced a liquid product containing mostly alkanes (42.68%), alkenes (18.41%) and cyclic (6.59%) compounds. Pentadecane and Heptadecane are the main compounds of the liquid product, indicating the occurrence of deoxygenation reactions."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Izzah Zakiyawati
"Y~alumina merupakan kelompok alumina aktif yang banyak digunakan
sebagal katalis, penyangga katalls dan adsorben karena mempunyai sifat
keasaman yang spesifik dan keaktifan permukaan yang besar. Dalam
penelitian inl, y-alumina dibandingkan sifat katalitiknya dengan penambahan
penyangga Ti02 dan membentuk y-Al203-Ti02. y-alumina disintesis melalui
pemanasan boehmite yang dibuat dengan mereaksikan larutan aluminium
nitrat dan larutan ammonium hidroksida pada pH 8-9 yang kemudian
dibiarkan mengalami proses penuaan selama 196 jam, masing-masing pada
suhu 40°C dan 80°C, selanjutnya padatan dikeringkan pada suhu 120°C
selama 24 jam, dan dikalsinasi pada suhu 550°C. Katalis dikarakterisasi
dengan XRD, BET dan spektrofotometer FTIR. Hal yang sama juga dilakukan
pada sintesis y-Al203-Ti02, dimana 1102 ditambahkan sebagai padatan ke
dalam larutan aluminium nitrat.
Katalis diuji keasamannya melalui adsorpsi gas NH3 yang berasal dari
larutan amonia (NH4OH). Hasil adsorpsi amonia dilakukan dengan
menggunakan 0,25 g katalis pada suhu 250°C, dan diuji dengan
spektofotometer FTIR untuk melihat puncak serapan -NH2 dan -NH4^.
Uji katalitik katalis digunakan untuk reaksi katalisis dehidrasi etanol
dengan variasi suhu dan berat katalis untuk etanol sebanyak 25 mL. Hasil
kromatogram menunjukkan produk yang dihasilkan berupa dietileter dengan hasil optimum pada suhu 250°C dan berat katalis 3 g, 53,87% dietileter
dengan katalis y-Ai203-Ti02 dan 50,37% dengan katalis y-AbOa."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dariyus
"Hidrokarbon C2-C4 merupakan senyawa yang penting untuk segala macam industri petrokimia misalnya bahan baku polimer, MTBE, isoprena, untuk reagen alkilasi, dan bahan baku LPG. Senyawa tersebut dapat diperoleh secara suslainable (berkelanjuatan) dari senyawa n-butanol melalui proses katalitik dan n-butanol merupakan senyawa yang dapat diperbaharui (renewable) karena dapat dihasilkan dari proses fermentasi senyawa karbohidrat.
Pengembangan proses katalitik dapat dilakukan dengan menggunakan katalis zeolit alam yang dimodifikasi dengan penambahan boron oksida. Perpaduan antara dua komponen katalis tersebut diharapkan dapat meningkatkan kineija katalis dalam mengkonversi n-butanol menjadi C2-C4.
Penelitian ini telah mempelajari bahwa penambahan boron oksida pada zeolit alam sebanyak 25% memberikan konversi dan yield C2-C1 yang paling baik. Hasil karakterisasi XRD terhadap penambahan boron oksida sebanyak 25% tersebut tidak menunjukkan puncak-puncak yang dimiliki oleh komponen boron oksida. Hal ini menunjukkan bahwa boron oksida terdispersi secara sempuma pada permukaan zeolit alam dan berinteraksi secara kuat dengan /razne/kerangka zeolit. Hasil analisis BET menunjukkan bahwa luas permukaan katalis tanpa penambahan boron oksida adalah 343 m2/g yang dapat dipertimbangkan merupakan luasan yang cukup untuk mendispersikan komponen boron oksida pada permukaan katalis zeolit alam.
Uji aktivitas katalis dengan menggunakan katalis yang mengandung 25% boron oksida tersebut memberikan hasil konversi n-butanol terbaik sebesar 82,9% dan yield C2--C4 sebesar 14,7% pada temperatur reaksi 400°C ketika jumlah umpan n-butanol mencapai 21 gram. Hal ini diperkirakan bahwa pada katalis tersebut terbentuk suatu spesi yang berperan sebagai inti aktif baru dalam mengkonversi n- butanol menjadi C2-C4 dibanding dengan zeolit alam tanpa penambahan boron oksida."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49784
UI - Skripsi Membership  Universitas Indonesia Library
cover
Algan Tian Mahatma
"Bahan bakar fosil yang semakin terbatas dan disertai pemanasan global meningkatkan urgensi akan bahan bakar alternatif. Bioavtur merupakan bahan bakar yang dapat disintesis dari asam lemak seperti asam stearat (C18) dan asam palmitat (C16), sehingga dapat digunakan sebagai bahan bakar alternatif untuk mengurangi emisi gas buangan dari mesin pesawat. Pada penelitian ini disintesis nanokomposit NiMoO4/SBA-15 untuk mengubah asam palmitat menjadi parafin melalui reaksi deoksigenasi. SBA-15 disintesis dengan metode sol-gel, dan NiMoO4/SBA-15 dengan metode impregnasi kering. Sintesis NiMoO4/SBA-15 dilakukan dengan memvariasikan komposisi massa Ni:Mo, yaitu: 10:0, 2,5:7,5, 5:5, dan 7,5:2,5 serta variasi waktu, yaitu 150 dan 90 menit untuk diamati pengaruhnya terhadap struktur, %yield dan %konversinya. Uji katalitik dilakukan di dalam reaktor semi-batch­ 250 mL pada suhu 350 °C dan produk yang dihasilkan dianalisis dengan menggunakan GC-MS. Hasil analisis dengan variasi waktu menunjukkan reaksi dengan waktu reaksi 90 menit didapat baik %yield maupun %konversi berada di kisaran ~45% sedangkan pada waktu reaksi 150 menit didapat baik %yield maupun %konversi berada dikisaran ~60% dan katalis NiMoO4/SBA-15 (2,5:7,5) merupakan katalis paling optimum yang menghasilkan nilai %Yield (66.45%) dan %Konversi (73%) pada waktu reaksi 150 menit

Fossil fuels that are increasingly limited and accompanied by global warming increase the urgency of alternative fuels. Bioavtur is a fuel that can be synthesized from fatty acids such as stearic acid (C18) and palmitic acid (C16), so that it can be used as an alternative fuel to reduce exhaust emissions from aircraft engines. In this research, NiMoO4/SBA-15 nanocomposite was synthesized to convert palmitic acid into paraffin through deoxygenation reaction. SBA-15 was synthesized by the sol-gel method, and NiMoO4/SBA-15 by the dry impregnation method. The synthesis of NiMoO4/SBA-15 was carried out by varying the mass composition of Ni:Mo, namely: 10:0, 2.5:7.5, 5:5, and 7.5:2.5 and varying the time, namely 150, 120, and 90 minutes to observe the effect on structure, % yield and % conversion. The catalytic test was carried out in a 250 mL semi-batch reactor at 350 °C and the resulting product was analyzed using GC-MS. The results of the analysis with variations in time showed that the reaction with a reaction time of 90 minutes obtained both % yield and % conversion in the range of ~45% while in the reaction time of 150 minutes both % yield and % conversion were in the range of ~ 60% and the catalyst NiMoO4/SBA-15 (2.5:7.5) is the most optimum catalyst that produces % Yield (66.45%) and % Conversion (73%) at a reaction time of 150 minutes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dini Retania
"Senyawa etanol merupakan sumber alternatif dari hasil fermentasi material hayati yang dapat dikonversi menjadi hidrokarbon aromatik. Etanol yang dihasilkan dari industri fermentasi umumnya mengandung air dalam jumlah yang bervariasi sehingga memerlukan energi tinggi untuk pemurnian etanol tersebut. Adanya kandungan air dalam konversi etanol menjadi hidrokarbon aromatik mampu menjaga stabilitas katalis. Keberadaan kandungan air ini dapat mempengaruhi kemampuan aktivitas dan selektivitas katalis. Konversi etanol dilakukan menggunakan katalis zeolit sintetik HZSM-5 dan Al2O3 sebagai pendukung.
Tujuan dari penelitian ini adalah melihat kemampuan aktivitas dan selektivitas katalis dalam konversi etanol berkadar air menjadi hidrokarbon aromatik, khususnya benzena, toluena, dan xylena. Kemampuan aktivitas dan selektivitas HZSM-5 terhadap terbentuknya senyawa hidrokarbon aromatik sangat tinggi berdasarkan struktur jaringan pori dan permukaan inti asam. Uji kristalinitas pada katalis sebelum dan sesudah konversi menunjukkan bahwa tidak adanya perubahan yang signifikan pada katalis HZSM-5.

Alternative sources of ethanol are fermented biological material that can be converted into aromatic hydrocarbons. Ethanol produced from fermentation industry still in the water containing relatively high amounts that require great energy to the ethanol purification. The existence of this water content can affect the activity and selectivity of the catalyst. Presence of water content in ethanol conversion into aromatic hydrocarbons capable of maintaining the stability of the catalyst. Catalytic conversion of ethanol made using synthetic zeolite HZSM-5 catalyst and Al2O3 as support.
The purpose of this study was to investigate the ability of the activity and selectivity of the catalyst in the reaction of water to ethanol conversion selectivity of aromatic hydrocarbons, in particular benzene, toluene, and xylene. Ability activity and selectivity of HZSM-5 to the formation of very high aromatic hydrocarbon compounds by acid core surface and the size of the pore structure. The crystallinity test of the catalyst showed that there is no significant change in crystallinity of the HZSM-5 catalyst before and after conversion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52856
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizki Azizah Amalia
"Penelitian ini bertujuan untuk mengetahui pengaruh suhu, variabel kontak, dan komposisi campuran katalis HZSM-5 dengan Al2O3 dalam reaksi konversi etanol agar diperoleh yield benzena, toluena, dan xilena (BTX) yang maksimal. Proses ini dilakukan melalui reaksi perengkahan dan aromatisasi dengan menggunakan metode analisis GC-FID. Secara umum, konversi dan yield BTX akan meningkat seiring dengan kenaikan suhu dan variabel kontak. Sedangkan konversi akan menurun seiring dengan penambahan jumlah katalis HZSM-5 terhadap Al2O3, tetapi yield BTX akan meningkat. Dari penelitian ini diperoleh bahwa komposisi 90% HZSM-5 pada suhu 450°C dan variabel kontak 1,06 jam merupakan kondisi optimal untuk mencapai konversi maksimal sebesar 99,9% dan total yield BTX sebesar 25,9%.

This study aimed to find out the effect of temperature, contact variable, and the composition of the mixture of HZSM-5 catalyst with Al2O3 in ethanol conversion reaction in order to obtain the maximum yield of benzene, toluene, and xylene (BTX). This reaction can be done with cracking and aromatization reactions using GC-FID analysis method. Generically, conversion and yield of BTX will increase with increasing temperature and contact variable. While the conversion will decrease with increasing amount of HZSM-5 catalyst against Al2O3, but the yield will increase. These results indicate that the composition of 90% HZSM-5 at a temperature of 450°C and contact variable of 1.06 hours are variable optimal conditions to achieve maximum conversion of 99.9% and total BTX yield of 25.9%."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47307
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bertha Venturya Wihelmina
"Amonia merupakan bahan kimia yang penting dan banyak digunakan dalam berbagai proses industri kimia. Amonia diproduksi dalam skala industri melalui proses Haber-Bosch. Dalam proses tersebut gas H2 dan N2.direaksikan pada suhu dan tekanan tinggi, serta menggunakan hidrokarbon dari minyak bumi sebagai sumber protonnya. Dalam penelitian ini, sintesis NH3 dilakukan secara fotokatalitik, dalam tekanan dan suhu ruang, menggunakan gas nitrogen dan sumber proton dari air. Pada penelitian sebelumnya digunakan fotokatalis TiO2 yang diperkaya dengan spesi Ti3+ yang disiapkan secara elektrokimia. Pada penelitian ini dilakukan pengembangan matrik sistem Ti3+ TiO2 nanotube, dengan upaya meningkatkan populasi spesi Ti3+9 dan menedekorasinya dengan nano partikel emas. Sistem fotokatalis Au/Ti3+/TiO2NT yang dihasilkan saat direndam dalam larutan 0,1 M Na2SO4 dan dialiri gas N2, serta disinari dengan sinar tampak menghasilkan NH3, dengan konversi sinar ke produk ammonia sebesar 0.026%.

Ammonia (NH3) is an important chemical and is widely used in various industrial processes. Ammonia production in an industrial scale is conducted through the Haber-Bosch process, where in this process H2 and N2 gases are reacted in a high temperatures and pressures. In addition, in that process the hydrocarbon was used as proton precursor. In this research, the photocatalytic method of producing NH3 from water, as proton source, and N2 at atmospheric pressure and room temperature is being investigated. In the previous study, it was reported that a specific enriched TiO2 semiconductor material with Ti3 + showed its potential to photocatalytically conver nitrogen to ammonia, under UV irradiation. In this study, the photocatalyst matrix was improved by increasing the Ti3 + species population and decorating with gold nanoparticle. The resulted photocatalyst system, namely Au / Ti3 + / TiO2-NT, then was immersed in 0.1M of Na2SO4 solution, under N2 bubbling, and exposed by visible light, and consistently ammonia productions were observed. In the present condition an efficientcy of solar to ammonia production was approximately 0.026% ."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bertha Venturya Wihelmina
"ABSTRAK
Amonia (NH3) merupakan bahan kimia penting dan banyak digunakan dalam berbagai proses industri kimia. Amoniak diproduksi dalam skala industri melalui proses Haber-Bosch. Dalam prosesnya, gas H2 dan N2 direaksikan pada suhu dan tekanan tinggi, dan menggunakan hidrokarbon dari minyak bumi sebagai sumber proton. Pada penelitian ini, sintesis NH3 dilakukan secara fotokatalitik, pada suhu dan tekanan kamar, menggunakan gas nitrogen dan sumber proton dari air. Pada penelitian sebelumnya, fotokatalis TiO2 yang diperkaya dengan spesies Ti3+ digunakan secara elektrokimia. Pada penelitian ini dilakukan pengembangan matriks sistem nanotube Ti3+-TiO2, dengan upaya meningkatkan populasi spesies Ti3+, dan menghiasinya dengan nanopartikel emas. Sistem fotokatalis Au/Ti3+/TiO2-NT dihasilkan ketika direndam dalam larutan Na2SO4 0,1 M dan dialirkan dengan gas N2, dan disinari dengan cahaya tampak menghasilkan NH3, dengan konversi cahaya menjadi produk amonia sebesar 0,026%.
ABSTRACT
Ammonia (NH3) is an important chemical and is widely used in various chemical industrial processes. Ammonia is produced on an industrial scale through the Haber-Bosch process. In the process, H2 and N2 gases are reacted at high temperature and pressure, and use hydrocarbons from petroleum as a proton source. In this study, the synthesis of NH3 was carried out photocatalytically, at room temperature and pressure, using nitrogen gas and a proton source from water. In a previous study, TiO2 photocatalyst enriched with Ti3+ species was used electrochemically. In this study, a matrix of Ti3+-TiO2 nanotube systems was developed, with an effort to increase the population of Ti3+ species, and decorate it with gold nanoparticles. The Au/Ti3+/TiO2-NT photocatalyst system was produced when immersed in 0.1 M Na2SO4 solution and flowed with N2 gas, and irradiated with visible light to produce NH3, with a conversion of light to ammonia product of 0.026%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>