Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 136541 dokumen yang sesuai dengan query
cover
Afif Widaryanto
"

Perkembangan kecerdasan buatan (artificial intelligence/AI) bergerak semakin cepat dan mengalami kemajuan pesat dalam setiap bidang kehidupan manusia, tak terkecuali dalam dunia kendali industri. Sementara kendali industri mensyaratkan sistem pengendali yang mampu mengatasi perubahan karakteristik secara otomatis serta dapat beradaptasi dengan dinamika perubahan sistem yang diakibatkan adanya perubahan kondisi lingkungan kerja. Pengendali berbasis kecerdasan buatan dianggap mampu untuk beradaptasi dengan perubahan karakteristik dari sistem secara otomatis adalah pengendali berbasis neural network. Dalam penelitian ini disajikan desain dan simulasi sistem pengendali berbasis neural network dengan metode pembelajaran back propagation yaitu pengendali inverse langsung(direct inverse control/DIC), pengendali neuron tunggal(single neuron controller), serta pengendali PID pada plant modul training pressure process rig(PPR 38-417). Untuk pengujiannya, didesain sistem identifikasi berbasis neural network sebagai simulator plant. Hasilnya, semua sistem kendali yang didesain tersebut mampu mengendalikan plant sesuai dengan sinyal referensi yang dinginkan. Namun pengendali single neuron dan PID mampu mempertahankan keluarannya dengan baik saat diberi gangguan pada sinyal kendali maupun plant dibandingkan dengan pengendali inverse langsung(ANN-DIC). Hal ini dikarenakan kendali single neuron dan PID bersifat close loop sehingga mampu mengkoreksi kesalahan secara langsung. Sementara jika dibandingkan dengan kendali PID, kendali single neuron lebih adaptif untuk berbagai kondisi gangguan karena memiliki metode pembelajaran langsung, sementara kendali PID perlu dilakukan tunning untuk mendapatkan unjuk kerja yang handal.


The development of artificial intelligence (AI) is moving faster and experiencing rapid progress in every area of human life, not least in the world of industrial control. While industrial control requires a control system that is able to overcome changes in characteristics automatically and can adapt to the dynamics of system changes caused by changes in working environment conditions. Artificial intelligence-based controllers are considered capable of adapting to changes in the characteristics of the system automatically is a neural network-based controller. In this study, the design and simulation of a neural network-based controller system with back propagation learning methods, namely direct inverse control (DIC) and single neuron controller, as well as PID controllers for the pressure process rig (PPR 38-417) training module. For the test, a neural network-based identification system is designed as a simulator plant. As a result, all the control systems designed are able to control the plant in accordance with the desired reference signal. However, single neuron and PID controllers are able to maintain their output well when given interference with the control signal or plant compared to the direct inverse controller (ANN-DIC). This is because single neuron control and PID are close loop so that they can correct errors directly. Meanwhile, when compared to PID control, single neuron control is more adaptive for a variety of disruption conditions because it has a direct learning method, while PID control needs to be tuned to get reliable performance.

"
2019
T53060
UI - Tesis Membership  Universitas Indonesia Library
cover
Tan Prawibowo Joenarto
"Pengendalian tekanan udara sulit karena sistem tersebut umumnya memiliki konstanta waktu dan time delay yang besar yang mempersulit pengendalian. Tesis ini membahas penelitan menggunakan backpropagasi dengan aritmatika fuzzy untuk mengendalikan sistem Process Pressure Rig (PPR). Pendekatan ini menggunakan gabungan dari kemampuan belajar dari backpropagasi dan kemampuan menghadapi nilai yang awang-awang (fuzzy) dari instrumentasi untuk mengendalikan suatu proses. Data crisp dari sensor difuzzifikasikan menjadi bilangan fuzzy dan dihitung dalam jaringan menggunakan aritmatika fuzzy, dan bobotnya disesuaikan untuk memperkecil error. Keluarannya didefuzzifikasikan kembali menjadi sinyal kendali. Di tesis ini, sistem PPR adalah sistem SISO dengan karakteristik konstanta waktu dan time delay yang besar dan derau bacaan sensor yang cukup besar. Hasil pengujian kendali dengan metode backpropagasi dengan aritmatika fuzzy ini menunjukkan hasil yang lebih baik daripada kendali dengan backpropagasi dengan bilangan crisp.

Pressure control are usually difficult because of large time constant and large time delays. This thesis propose a new method of backpropagation with fuzzy arithmathic to control Process Pressure Rig(PPR). This approach combines the ability of neural network to learn pattern and fuzzy logic ability to handle fuzzy values. Crisp input from sensors are fuzzified and normalized to fuzzy data. Backpropagation calculate fuzzy data and adjust connection weight to reduce error. The output are then defuzzified and denormalized back to crisp control signals. In this thesis, PPR is a Single in Single out system with large time constant, large delays, and noisy pressure sensors. Test results shows that backpropagation with fuzzy arithmathic can produce better control with less error compared to control using backpropagation with crisp numbers.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41633
UI - Tesis Membership  Universitas Indonesia Library
cover
Annisaa Primadini
"Jaringan Saraf Tiruan adalah salah satu metode baru yang dikembangkan untuk pemecahan berbagai masalah kompleks yang tidak dapat diselesaikan secara analitik. Salah satu pengembangannya adalah metode jaringan saraf pembelajaran Radial Basis Function, dengan metode inisialisasi bobot Nguyen-Widrow dan Orthogonal Least Square (OLS). Akurasi dan kecepatan pembelajaran yang dimiliki oleh Radial Basis Function (RBF) sangat menarik untuk diaplikasikan pada sistem kendali. Pemodelan Forward dan Invers sistem dilakukan dengan metode RBF dengan mengambil data sistem SISO Pressure Process Rig. Setelah dilakukan pemodelan, jaringan saraf tiruan akan diuji dengan Direct Inverse Test. Hasil identifikasi sistem dan identifikasi invers pada sistem Pressure Process Rig memiliki hasil yang baik. Begitu pula saat diuji coba dengan Direct Inverse Test, sistem kendali mempunyai performa cukup baik, namun tidak menutup kemungkinan adanya skema model lain yang dapat digunakan dalam pemodelan sistem.

Artificial Neural Network is a newer field of study that could solve any complex problem that could not be done by analytical solution. Radial Basis Function (RBF) is one of the newer method of Artificial Neural Network with two distinct weight initialization method ; Nguyen-Widrow and Orthogonal Least Square (OLS) methods. RBF?s high recognition rate and very fast learning speed are interesting enough to be used in control system. RBF is used in forward and inverse identification in modelling Pressure Process Rig system. Direct Inverse Test is also done in order to make sure Radial Basis Function perform well in identifying a particular system. Radial Basis Function had a great perfomance in both forward and inverse system identification and also in Direct Inverse Test, but it is possible to have another learning scheme in system modelling.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55173
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ashari
"ABSTRACT
Tugas akhir ini membahas mengenai Neural Network yang diaplikasikan dalam simulasi pengendalian plant. Plant yang digunakan adalah Pressure Process Rig 38-714. Pengendali yang digunakan adalah pengendali yang bekerja dengan nilai masukan berupa nilai eror dari nilai keluaran plant yang dibandingkan dengan nilai keluaran referensi. Kesuksesan percobaan ditinjau dari seberapa bagus keluaran plant yang dipasang pengendali ketika dibandingkan dengan sinyal referensinya dan ketahanannya terhadap gangguan. Hasil percobaan menunjukkan NN dengan metode Backpropagation memberikan performa yang baik walaupun diberi gangguan dengan batasan nilai tertentu.

ABSTRACT
This project discuss about the application of Neural Network in a simulation as a controller of a plant. Pressure Process Rig 38-714 is used as the plant. Error based NN is used as the controller. The controller’s input is the error signal from the output signal of plant compared to reference signal. The success rate is viewed by the similarity of the output of plant compared to the reference signal amd their robustness against noise. The testing result shows that NN based on backpropagation method has a great performance and robustness when there is noise."
2014
S57664
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jemie Muliadi
"ABSTRAK
Penelitian disertasi ini mencakup analisis Sistem Kendali berbasis Neural Network NN untuk rotorcraft dan Unmanned Aerial Vehicle UAV fixed-wing. Quadrotor dan UAV fixed-wing berekor inverted-V mewakili kedua tipe UAV dengan dinamika terbangnya yang nonlinear, serta kopling-silang yang kuat dan karakteristik under-actuated. Oleh karena itu, metode Direct Inverse Control DIC berbasis NN cocok diterapkan sebagai pengendali terbang kedua tipe UAV tersebut, dengan unjuk kerja yang lebih baik dibandingkan dengan Sistem Kendali saat ini yang berbasis metode Proportional-Integral-Differential PID .UAV berkembang pesat untuk berbagai aplikasi, mulai dari penggunaan quadrotor untuk videografi jarak dekat, hingga UAV fixed-wing berekor inverted-V untuk misi taktis dan strategis. Quadrotor banyak digunakan karena kemampuan hovering serta take-off dan landing secara vertikal untuk misi di area yang sempit dan berlangsung singkat sesuai keterbatasan daya baterainya. Untuk mengatasi keterbatasan tersebut, UAV fixed-wing digunakan untuk area yang luas dan berlangsung lama. BPPT merespon kebutuhan ini dengan mengembangkan Pesawat Udara Nir Awak PUNA Alap-Alap dengan konfigurasi fixed-wing dan ekor inverted-V.Penggunaan ekor inverted-V akan meningkatkan kemampuan maneuver UAV. Meski demikian, ekor inverted-V tersebut memunculkan kopling tambahan antara modus gerak pitch dengan modus roll-yaw sehingga kompleksitas pengendaliannya meningkat dibandingkan dengan ekor T konvensional. Oleh karena itu, diperlukan metode kendali komprehensif yang mengakomodasi aspek nonlinearitas dan kopling-silang akibat hal tersebut. Metode berbasis NN cocok diterapkan untuk UAV karena mekanisme pembelajaran yang dimilikinya untuk mereplika dinamika sistem untuk Identifikasi Sistem dan sebaliknya, mampu membangun inversi dinamika sistem untuk DIC-NN .Di dalam analisis ini, kedua UAV dimodelkan dengan identifikasi berbasis NN untuk mengakomodasi karakter nonlinear dan kopling silangnya. Selanjutnya, DIC-NN dibangun untuk memetakan output UAV terhadap input yang bersesuaian. Unjuk kerja DIC- NN ini dibandingkan terhadap PID sebagai representasi metode kendali yang ada saat ini. Sistem Kendali DIC-NN menghasilkan settling time yang lebih singkat dan overshoot yang lebih kecil dibanding PID.

ABSTRACT
The research in this dissertation focused to analyze the Neural Network NN based control system for rotorcraft and the fixed-wing Unmanned Aerial Vehicle UAV . The Quadrotor and the fixed-wing UAV with incerted-V tail were chosen to represent both of UAV types characterized by the nonlinear flight dynamics, as well as strong cross-coupling and under-actuated condition. Therefore, the NN based Direct Inverse Control DIC method is suitable for a UAV flight controller, with a better performance compared to the existing Proportional-Integral-Differential PID -based Control System.UAVs are growing rapidly for a variety of applications, ranging from Quadrotor for a close-range videography, to the inverted-V tail fixed-wing UAVs in the tactical and strategic missions. Quadrotor is popular due to the ability of hovering and vertically take-off and landing in the narrow areas for short duration due to the limitation of the battery capability. To overcome these limitations, fixed-wing UAVs are used for large areas and long-duration mission. BPPT responds this requirement by developing the Alap-Alap UAV with the fixed-wing configuration and equipping it with inverted-V tail.The application of inverted-V tail aimed to increase UAV maneuverability. However, the inverted-V tail generates an additional coupling between the pitch-motion mode and the roll-yaw mode so that the control complexity increases than the conventional T-tail. Therefore, a comprehensive control method is required to accommodates the nonlinearity and cross-coupling aspects of it. The NN-based method is suitable for UAVs because of the learning mechanism it has to replicate system dynamics for System Identification and vice versa, capable of building system dynamic inversions for DIC-NN .In this analysis, both UAVs are modeled with NN-based identification to accommodate their nonlinear characters and cross-coupling. Furthermore, DIC-NN is built to map the UAV output with the corresponding input. The DIC-NN performance is compared against PID as a representation of the existing control method. The DIC-NN Control System produces a shorter settling time and a smaller overshoot than the PID. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2472
UI - Disertasi Membership  Universitas Indonesia Library
cover
Thariq Hadyan
"Quadcopter merupakan wahana terbang yang memiliki 4 rotor bersifat underactuated. Sifat quadcopter yang merupakan sistem yang kompleks akibat coupling antar variabelnya menjadikan desain pengendali yang cukup rumit. Diperlukan adanya pengendali yang mudah untuk dapat diaplikasikan pada quadcopter. Untuk melakukan percobaan pengaplikasian pengendali pada quadcopter, sistem pengendali tersebut harus dilakukan percobaan pada simulasi untuk mengetahui hasilnya. Oleh karena itu, peneliti mengusulkan pengendalian DIC yang berbasis deep neural networks (DNN) dan long-short term memory (LSTM) diujikan pada simulator sebelum akhirnya pada quadcopter asli. LSTM digunakan memiliki arsitektur pendukung untuk data sekuensial sebagaimana pergerakan trajektori. Sistem kendali dengan LSTM ini dihasilkan galat MSE yang lebih rendah dibanding DNN. Kinerja LSTM lebih baik dibandingkan dengan DNN. Selain itu, terdapat beberapa faktor – faktor terjadi peningkatan galat ketika diintegrasikan pada simulator Gazebo untuk bahan evaluasi terhadap pengendali berbasis yang sama diaplikasikan pada quadcopter aslinya.

Quadcopter is a flying vehicle that has 4 rotors that are underactuated. The nature of the quadcopter which is a complex system due to the coupling between the variables makes the controller design quite complicated. An easy controller is needed to be applied to the quadcopter. In order to experiment with the application of the controller on the quadcopter, the control system must be experimented with in a simulation to find out the results. Therefore, the researcher proposes that DIC control based on Deep Neural Network and Long-Short Term Memory be tested on a simulator before finally on a real quadcopter. LSTM is used to have a supporting architecture for sequential data as well as trajectory movement. The controller with this LSTM produces a lower MSE error than DNN. LSTM performance is better compared to DNN. In addition, there are several factors that increase the error when integrated into the simulator for evaluation of the same based controller applied to the original quadcopter."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ashari
"[ABSTRAK
Tugas akhir ini membahas mengenai Neural Network yang diaplikasikan dalam simulasi pengendalian plant. Plant yang digunakan adalah Pressure Process Rig 38-714. Pengendali yang digunakan adalah pengendali yang bekerja dengan nilai masukan berupa nilai eror dari nilai keluaran plant yang dibandingkan dengan nilai keluaran referensi. Kesuksesan percobaan ditinjau dari seberapa bagus keluaran plant yang dipasang pengendali ketika dibandingkan dengan sinyal referensinya dan ketahanannya terhadap gangguan. Hasil percobaan menunjukkan NN dengan metode Backpropagation memberikan performa yang baik walaupun diberi gangguan dengan batasan nilai tertentu.

ABSTRACT
This project discuss about the application of Neural Network in a simulation as a controller of a plant. Pressure Process Rig 38-714 is used as the plant. Error based NN is used as the controller. The controller’s input is the error signal from the output signal of plant compared to reference signal. The success rate is viewed by the similarity of the output of plant compared to the reference signal amd their robustness against noise. The testing result shows that NN based on backpropagation method has a great performance and robustness when there is noise., This project discuss about the application of Neural Network in a simulation as a controller of a plant. Pressure Process Rig 38-714 is used as the plant. Error based NN is used as the controller. The controller’s input is the error signal from the output signal of plant compared to reference signal. The success rate is viewed by the similarity of the output of plant compared to the reference signal amd their robustness against noise. The testing result shows that NN based on backpropagation method has a great performance and robustness when there is noise.]"
2015
T44464
UI - Tesis Membership  Universitas Indonesia Library
cover
Aji Setyoko
"Berbagai metode pengembangan roket telah dilakukan, namun tidak semua orang bisa mengikuti perkembangannya karena teknologi roket merupakan teknologi rahasia yang pada akhirnya menyebabkan tidak adanya referensi. Kendali roket merupakan tahapan yang paling penting dari pengembangan teknologi roket yang pengembangannya hanya bisa dilakukan jika mempunyai data atau model. Penelitian ini mencoba untuk mendapatkan data penerbangan roket dari simulator pesawat X-Plane kemudian mengembangkan kendali roket menggunakan Neural Network. Konsekuensi yang ditimbulkan karena pemakaian simulator pesawat untuk menerbangkan roket akan dijadikan bahan analisis apakah data yang dihasilkan dari penerbangan roket mempunyai mekanisme fisika layaknya roket.
Pengujian terhadap sistem kendali Neural Network berbasis Direct Inverse Control Open-Loop dilakukan untuk mengetahui keandalan sistem kendali yang dirancang. Sistem kendali roket yang dibuat menggunakan metode backpropagation dengan pembatasan pengendalian yaitu hover, sebuah trajectory terbang roket yang mempunyai pengaruh paling besar dalam jangkauan dan arahnya. Dari hasil pengujian ini diketahui bahwa data yang dihasilkan mempunyai dinamika gerak layaknya roket dan sistem kendali hover roket yang dibuat mempunyai kemampuan yang baik.

Various methods of rocket development have been done, but not everyone can follow its development because rocket technology is a secret technology that ultimately leads to no reference Rocket control is the most important stage of development of rocket technology whose development can only be done if it has data or models. In this study trying to get rocket flight data from the X Plane aircraft simulator then develop rocket control using Neural Network. The consequences of using the aircraft simulator to fly the rocket will be used as an analysis material whether the data generated from the rocket flight has a rocket physics mechanism.
Testing of Neural Network control system based on Direct Inverse Control Open Loop is done to know the reliability of control system designed. The rocket control system created using backpropagation method with control limitation is hover, a rocket flying trajectory that has the greatest influence in its range and direction. From the results of this test is known that the resulting data has the dynamics of motion like a rocket and rocket hover control system is made to have good ability.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andre Jatmiko Wijaya
"[ABSTRAK
Perkembangan teknologi yang semakin cepat menjadikan teknologi penting di berbagai sektor kehidupan, khususnya di bidang industri. Perkembangan zaman membuat tingkat permintaan akan suatu produk menjadi berubah sehingga industri harus meningkatkan kinerja produksinya.
Teknologi yang digunakan merupakan teknologi automasi di mana di dalamnya terdapat pengendali. Pengendali yang digunakan oleh kebanyakan industri merupakan pengendali konvensional karena pengendali konvensional relatif murah dan efektif. Akan tetapi pengendali konvensional ini tidak dapat digunakan untuk sistem yang kompleks dan non linear. Pengendali konvensional, misalnya pengendali PID, tidak dapat mengatasi terjadinya perubahan karakteristik dari sistem secara otomatis. Untuk itu diperlukan sistem pengendali yang mampu mengatasi perubahan karakteristik secara otomatis dan dapat beradaptasi dengan dinamika perubahan sistem yang diakibatkan adanya perubahan kondisi lingkungan kerja. Sistem pengendali yang dianggap mampu untuk beradaptasi dengan perubahan karakteristik dari sistem secara otomatis adalah pengendali berbasis Neural Network. Dalam percobaan ini parameter yang digunakan untuk menentukan pengendali yang baik adalah adaptivity serta kecepatan respon pengendali.
Pada hasil simulasi ini didapatkan bahwa pengendali berbasis Neural Network dengan metode Radial Basis Function Neural Network (RBFNN) lebih baik dan lebih cepat dalam menanggapi perubahan karakteristik sistem dibandingkan dengan pengendali Neural Network berbasis backpropagation.
ABSTRACT
Development of technology has been rapidly increasing that make technology as an important aspect in many sectors of life, especially in industrial sector. The times have changed the demand of a product so that industry has to enhance its production capacity.
Technology used in industry is automation technology which has controller inside. Controller used in industry mostly is conventional controller because it has low price and good effectivity. However, conventional controller can?t be used for complex and non-linear system. For example, PID controller, it can?t handle the changes of system?s characteristic automatically. PID controller has to be reset to handle the new system?s characteristic. Because of that, industry need a controller that has ability to handle the changes of the system?s characteristic automatically and adapt with the dynamics of system?s changes caused by external factor. Controller system that has been considered for the ability of handling the changes of system?s characteristic automatically is Neural Network based controller. In this experiment, the parameters used to determine good controller is adaptivity of the system also the speed of controller response.
The result of the experiment shows that Neural Network with Radial Basis Function Neural Network (RBFNN) based controller has better response to the changes of the system?s characteristic than Backpropagation based Neural Network controller.;Development of technology has been rapidly increasing that make technology as an important aspect in many sectors of life, especially in industrial sector. The times have changed the demand of a product so that industry has to enhance its production capacity.
Technology used in industry is automation technology which has controller inside. Controller used in industry mostly is conventional controller because it has low price and good effectivity. However, conventional controller can?t be used for complex and non-linear system. For example, PID controller, it can?t handle the changes of system?s characteristic automatically. PID controller has to be reset to handle the new system?s characteristic. Because of that, industry need a controller that has ability to handle the changes of the system?s characteristic automatically and adapt with the dynamics of system?s changes caused by external factor. Controller system that has been considered for the ability of handling the changes of system?s characteristic automatically is Neural Network based controller. In this experiment, the parameters used to determine good controller is adaptivity of the system also the speed of controller response.
The result of the experiment shows that Neural Network with Radial Basis Function Neural Network (RBFNN) based controller has better response to the changes of the system?s characteristic than Backpropagation based Neural Network controller., Development of technology has been rapidly increasing that make technology as an important aspect in many sectors of life, especially in industrial sector. The times have changed the demand of a product so that industry has to enhance its production capacity.
Technology used in industry is automation technology which has controller inside. Controller used in industry mostly is conventional controller because it has low price and good effectivity. However, conventional controller can’t be used for complex and non-linear system. For example, PID controller, it can’t handle the changes of system’s characteristic automatically. PID controller has to be reset to handle the new system’s characteristic. Because of that, industry need a controller that has ability to handle the changes of the system’s characteristic automatically and adapt with the dynamics of system’s changes caused by external factor. Controller system that has been considered for the ability of handling the changes of system’s characteristic automatically is Neural Network based controller. In this experiment, the parameters used to determine good controller is adaptivity of the system also the speed of controller response.
The result of the experiment shows that Neural Network with Radial Basis Function Neural Network (RBFNN) based controller has better response to the changes of the system’s characteristic than Backpropagation based Neural Network controller.]"
Fakultas Teknik Universitas Indonesia, 2015
S61919
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifqy Mikoriza Turjaman
"Data yang didapat dari Polda Metro Jaya, pada arus mudik 6 hari sebelum Hari Raya Idul Fitri tahun 2017 ada sekitar 73 kasus kecelakaan lalu lintas yang disebabkan oleh rasa kantuk pada saat berkendara. Yang dimana 6 orang meninggal dunia, mengalami luka berat sebanyak 17 orang, dan luka ringan sebanyak 82 orang. Jumlah ini meningkat 16 persen dari tahun 2016 yang tercatat sebanyak 63 kejadian. Sistem pendeteksi dan prediksi kantuk dikembangkan untuk mengatasi masalah ini.
Metode peramalan untuk time series yang banyak menimbulkan proses prediksi cukup sulit dilakukan. Sistem prediksi kantuk dibangun dengan algoritme backpropagation neural network yang diharapkan mampu untuk mempelajari dan beradaptasi pada setiap pola dari data historis yang diberikan. Dengan mengenali pola dari data historis, sistem dapat memberikan prediksi dan respons yang akurat dengan akurasi sebesar 100.

Data obtained from Polda Metro Jaya, on the homecoming traffic 6 days before Idul Fitri 2017 there are about 73 cases of traffic accidents caused by drowsiness at the time of driving. Where 6 people died, severe injuries as many as 17 people, and light injuries as many as 82 people. This number increased 16 percent from the year 2016 recorded as many as 63 events. Drowsiness and prediction systems were developed to address this problem.
Forecasting methods for time series caused a lot of prediction process quite difficult. The sleep prediction system is built with backpropagation neural network algorithm expected to be able to learn and adapt to each pattern of given historical data. By recognizing patterns from historical data, the system is expected to provide accurate predictions and responses with 100.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>