Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 82756 dokumen yang sesuai dengan query
cover
Soya Febeauty Yama Otantia Pradini
"Metode klasifikasi telah banyak digunakan dalam berbagai aspek, termasuk dalam bidang bioinformatika. Salah satu penggunaan metode klasifikasi ini adalah untuk menentukan tingkatan fase dari sebuah penyakit. Dalam penelitian ini akan dilakukan pengklasifikasian parasit plasmodium falciparum. Parasit tersebut merupakan parasit penyebab penyakit malaria. Penyakit ini dapat ditularkan oleh gigitan nyamuk Anopheles betina yang mengandung plasmodium di dalamnya. Hasil penelitian ini dapat digunakan untuk menentukan fase parasit plasmodium yang berada di sel darah orang yang terjangkit malaria. Tujuan penelitian ini adalah untuk mengetahui persentase keberhasilan dan menganalisis metode Multiclass Support Vector Machines untuk memprediksi tingkatan parasit tersebut. Data yang digunakan adalah data citra sel darah merah yang telah terjangkit tiga jenis tingkatan parasit plasmodium falciparum. Dalam prosesnya, penelitian ini akan menggunakan Canopy sebagai IDE bahasa pemrograman python. Dari 112 percobaan, didapatkan tingkat akurasi tertinggi sebesar 87,5% untuk metode Multclass SVM one vs rest dan one vs one menggunakan 4-fold cross validation dengan parameter linear kernel dan C=1.

Classification methods has been frequently used in various aspects, including bioinformatics. One of its purpose of this classification is to  determine phase level of a disease. This research will classify the phase of plasmodium falciparum parasite which causes malaria.The disease is spread by an infected female Anopheles mosquito which contains Plasmodium. The result of this research could be use to determine Plasmodium parasite phase in infected peoples red blood cells. The purpose of this research is to discover the success rate of Multiclass Support Vector Machines method and analyze it in order to predict the parasite phase levels. The data of this study is image data of red blood cells which was infected by three kinds of Plasmodium falciparum parasite levels. In the process, this study will be using Canopy as Integration Development Environtments of phyton programming language.  From 112 trials, the highest number of accuracy is 87.5% for Multiclass Support Vector Machines one vs rest and one vs all methods which used the 4-fold cross validation with C=1 as parameter for linear kernel."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T52713
UI - Tesis Membership  Universitas Indonesia Library
cover
Theresia Veronika Rampisela
"Skizofrenia adalah gangguan jiwa yang serius dan kronis. Penyakit ini ditandai dengan gangguan dalam pemikiran, persepsi, dan tingkah laku. Karena gangguan-gangguan ini dapat memicu penderita Skizofrenia untuk bunuh diri atau mencoba bunuh diri, penderita Skizofrenia mempunyai usia harapan hidup yang lebih rendah dari populasi umum. Skizofrenia juga sulit untuk didiagnosis karena belum ada tes secara fisik untuk mendiagnosisnya dan gejala-gejalanya sangat mirip dengan beberapa gangguan jiwa lainnya. Dengan menggunakan Northwestern University Schizophrenia Data, penelitian ini bertujuan untuk mengklasifikasikan orang yang menderita Skizofrenia dan orang yang tidak menderita Skizofrenia. Data tersebut terdiri dari 392 observasi dan 65 variabel yang merupakan data demografis dan data kuesioner Scale for the Assessment of Positive Symptoms dan Scale for the Assessment of Negative Symptoms yang diisi oleh klinisi. Metode klasifikasi yang digunakan adalah machine learning dengan metode Support Vector Machines SVM dan Twin Support Vector Machines Twin SVM menggunakan MATLAB R2017a. Simulasi dilakukan dengan data dan persentase data training dan testing yang berbeda-beda. Pada setiap simulai, akurasi serta running time diukur. Validasi dan evaluasi performa dari model yang telah dioptimasi dilakukan dengan mengambil rata-rata dari sepuluh kali Hold-Out Validation yang dilakukan. Pada umumnya, metode Twin SVM berhasil mengklasifikasikan data Skizofrenia dengan lebih akurat dibandingkan dengan metode SVM. Metode Twin SVM dengan kernel Gaussian menghasilkan hasil akhir akurasi klasifikasi data Skizofrenia yang terbaik, yaitu 91,0 . Berdasarkan hasil akhir running time, metode SVM dengan kernel Gaussian untuk klasifikasi data Skizofrenia mempunyai running time yang paling cepat, 0,664 detik. Selain itu, metode SVM dengan kernel linear, metode SVM dengan kernel Gaussian, dan metode Twin SVM untuk klasifikasi data Skizofrenia berhasil mencapai akurasi hingga 95,0 dalam setidaknya satu simulasi.

Schizophrenia is a severe and chronic mental disorder. This disorder is marked with disturbances in thoughts, perceptions, and behaviours. Due to these disturbances that can trigger Schizophrenics to commit suicide or attempt to do so, Schizophrenics have a lower life expectancy than the general population. Schizophrenia is also difficult to diagnose as there is no physical test to diagnose it yet and its symptoms are very similar to several other mental disorders. Using Northwestern University Schizophrenia Data, this research aims to distinguish people who are Schizophrenics and people who are not. The data consists of 392 observations and 65 variables that are demographic data as well as clinician filled Scale for the Assessment of Positive Symptoms and Scale for the Assessment of Negative Symptoms questionnaires. Classification methods that are used are machine learning with Support Vector Machines SVM and Twin Support Vector Machine Twin SVM using MATLAB R2017a. Simulations are done with different data and percentage of training and testing data. In each simulation, accuracy and running time are measured. Performance validation and evaluation of the optimized models are done by taking the average of ten times Hold Out Validations that were done. In general, Twin SVM successfully classified Schizophrenia data more accurately than the SVM method. Twin SVM with Gaussian kernel produced the best final accuracy in classifying Schizophrenia data, 91.0 . Based on the final running time, SVM with Gaussian kernel has the fastest running time in classifying Schizophrenia data, 0.664 seconds. Furthermore, SVM with linear kernel, SVM with Gaussian kernel, and Twin SVM managed to reach an accuracy of 95.0 in at least one simulation in classifying Schizophrenia data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fildzah Zhafarina
"

Kanker hati merupakan penyebab utama kematian akibat kanker di seluruh dunia. Di Indonesia, kanker hati menempati angka kejadian tertinggi kedua untuk laki laki yaitu sebesar 12,4 per 100.000 penduduk dengan rata-rata kematian 7,6 per 100.000 penduduk. Pada tugas akhir ini, dibahas mengenai kanker hati primer dengan jenis hepatocellular carcinoma. Metode Twin Support Vector Machines (Twin SVM) diimplementasikan untuk mengklasifikasikan data kanker hati berdasarkan hasil CT scan. Data yang digunakan adalah data numerik hasil CT scan pasien yang menderita kanker hati dan diperoleh dari Laboratorium Radiologi RSUPN Cipto Mangunkusumo. Metode Twin SVM adalah pengembangan dari metode SVM yang menggunakan dua hyperplane dalam mengklasifikasikan sampel. Pada tugas akhir ini, kernel yang digunakan pada metode Twin SVM adalah polinomial dan radial basis function (RBF). Berdasarkan hasil perbandingan, klasifikasi data kanker hati menggunakan metode Twin SVM dengan kernel Polinomial menghasilkan akurasi tertinggi sebesar 77,30% pada penggunaan data testing sebesar 10% dan data training 90%. Selain itu, nilai akurasi terendah terdapat pada kernel RBF menghasilkan sebesar 60,10% pada penggunaan data testing sebesar 90% dan data training 10% dan nilai parameter 𝐶 = 1. Jika dibandingkan, klasifikasi data kanker hati dengan menggunakan metode Twin SVM dengan kernel polinomial menghasilkan nilai akurasi yang lebih baik.


Liver cancer is the main cause of cancer death in the worldwide. In Indonesia, the incidence rate of liver cancer is the second highest for men, that is 12.4 per 100,000 population with the average death rate is 7.6 per 100,000 population. This final project discusses primary liver cancer with a type of hepatocellular carcinoma. The Twin Support Vector Machines (Twin SVM) method was implemented to classify liver cancer data based on CT scan results. The data used are numerical data from CT scan results of patients suffering from liver cancer and obtained from the Radiology Laboratory of Cipto Mangunkusumo Hospital. The Twin SVM method is the development of the SVM method that uses two hyperplane in classifying samples. In this final project, the kernel used in the Twin SVM method is polynomial and radial basis function (RBF). Based on the comparison results, the classification of liver cancer data using the Twin SVM method with a polynomial kernel produces the highest accuracy of 77.30% on the use of testing data of 10% and training data of 90%. In addition, the lowest accuracy value is found in the RBF kernel resulting in 60.10% on the use of testing data of 90% and training data of 10% and the parameter value of C=1. When compared, the classification of liver cancer data using the Twin SVM method with a polynomial kernel produces better accuracy values.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ni Putu Ayu Audia Ariantari
"Kestabilan perekonomian suatu negara ditentukan oleh sektor-sektor ekonomi di dalamnya. Salah satu sektor yang sedang berkontribusi secara signifikan di Indonesia adalah asuransi. Industri Asuransi sedang mengalami perluasan pada beberapa tahun terakhir. Seiring dengan perluasan tersebut, terdapat kompetisi antar perusahaan asuransi di Indonesia. Kompetisi ini menuntut perusahaan asuransi untuk lebih cerdik dalam mengungguli pasar. Tetapi, perlu diperhatikan bahwa perusahaan asuransi harus selalu sadar akan tingkat risiko yang harus ditanggungnya. Sehingga perlunya dilakukan penelitian tentang kemungkinan klaim di masa depan dari perusahaan asuransi.
Dalam penelitian ini, akan difokuskan pada sektor asuransi kendaraan bermotor di Indonesia. Model yang diajukan pada penelitian ini adalah suatu machine learning yang biasa digunakan untuk masalah klasifikasi dan prediksi. Metode klasifikasi yang digunakan adalah Support Vector Machines dan Fuzzy Support Vector Machines. Penelitian ini menggunakan data historis polis dari suatu perusahaan asuransi umum di Indonesia. Data historis polis ini terdiri dari 7.373 data dengan periode waktu berlaku polis adalah setahun terhitung dari Januari 2015 sampai dengan Desember 2016. Setelah itu, dibandingkan hasil dari kedua metode tersebut untuk mendapatkan hasil yang terbaik. Penggunaan data historis polis dari suatu asuransi umum di Indonesia ini menunjukkan bahwa Support Vector Machines menghasilkan tingkat akurasi rata rata 100 dalam klasifikasi dua kelas yaitu klaim dan tidak klaim. Memang waktu yang dibutuhkan relatif lama dalam mengklasifikasi data yaitu 4673,33 detik. Kemudian dibandingkan hasil olahan dengan klasifikasi Fuzzy Support Vector Machines dengan komposisi 80 training data dan akurasi yang dihasilkan adalah 99,23 .

Economics stability of a country is depending on each economics sector of the country. One of the most sector that give a significant contribution is Insurance. Insurance Industry is rapidly grow in recent years. As it grows bigger, there is exist one simple core that indeed affected Insurance Industry in Indonesia which is a competition. The competition is to force one Insurance company to be sharper to win the market. On the other hand, one should realize that Insurance company must be well aware of the immerging risk rate. Insurance company indeed should be prepared for the probability of high indemnities. It leads to the point that a study about future claim should be done for this matter.
In this study, one will focus on Automobile Insurance in Indonesia. The proposed model for this matter is using the mighty machine learning that is well known for classification and prediction problems. The classification methods that one will use are Support Vector Machines and Fuzzy Support Vector Machines. The aims of this study are to compare those two classification methods. This study also use a comprehensive historical policy data from a General Insurance company in Indonesia. This data consists of 7373 data with a one year policy starting from January 2015 until December 2016. One will has to compare those two methods to gain the best result. The used of this historical policy data will show that a classification using Support Vector Machines will result in 100 accuracy for binary classification, in this case will be yes or no claim within one year period. It is indeed takes longer to classify using this method. It takes about 4673,33 seconds. Then, one will compare the result with the other method which is Fuzzy Support Vector Machines with the used of 80 training data. It shows that the accuracy is 99,23 .
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Febrisa Dhewi Ramadhany
"ABSTRACT
Thalassemia merupakan salah satu penyakit kelainan sel darah merah yang diturunkan oleh orang tua sejak lahir. Thalassemia mengakibatkan protein yang ada di dalam sel darah merah rusak dan tidak mampu berfungsi dengan baik. Hingga saat ini penyakit thalassemia belum dapat disembuhkan, namun penyakit thalassemia dapat dicegah dengan melakukan deteksi dini atau tes prenatal yang dikenal dengan skrining. Pada penelitian ini deteksi dini dilakukan dengan bantuan komputer. Ada beberapa teknik yang telah digunakan untuk mengklasifikasi skrining data thalassemia, salah satu metode yang mampu mengklasifikasi penyakit thalassemia diantaranya adalah Support Vector Machines (SVM) dan Multi-Layer Perceptron (MLP). Data thalassemia yang digunakan diperoleh dari RSAB Harapan Kita, Indonesia. Data tersebut memiliki yang memiiki 10 fitur. Setelah pengujian dilakukan, klasifikasi dengan menggunakan metode SVM menunjukkan hasil akurasi lebih baik sebesar 97,47190988%  dengan rata-rata running time 0,145899875 detik. Sedangkan MLP memperoleh hasil akurasi terbaik sebesar 63,91% dengan rata-rata running time 0,009033 detik. Kesimpulan yang diperoleh menunjukkan bahwa teknik klasifikasi menggunakan SVM memiliki akurasi yang  lebih baik apabila dibandingkan dengan MLP. 

ABSTRACT
Thalassaemia is a red blood cell disorder that is inherited by parents from birth. Thalassaemia results in damaged proteins in red blood cells and are unable to function properly. Until now, thalassaemia has not been cured, but thalassaemia can be prevented by early detection or prenatal testing known as screening. In this study, early detection is done with the help of a computer. There are several techniques that have been used to classify thalassaemia data screening, one method that is able to classify thalassaemia include Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP). The thalassaemia data used was obtained from Harapan Kita Hospital, Indonesia. The data has 10 features. After the testing is done, the classification using the SVM method shows better accuracy results of 97.447190988% with an average running time of 0.145899875 seconds. While MLP obtained the best accuracy results of 63.91% with an average running time of 0.009033 seconds. The conclusions obtained showed that the classification technique using SVM had better accuracy compared to MLP."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafiqatul Khairi
"Kanker pankreas adalah penyakit di mana sel-sel tumor ganas (kanker) berkembang di jaringan pankreas, yaitu organ di belakang perut bagian bawah dan di depan tulang belakang, yang membantu tubuh menggunakan dan menyimpan energi dari makanan dengan memproduksi hormon untuk mengontrol kadar gula darah dan enzim pencernaan untuk memecah makanan. Biasanya, kanker pankreas jarang terdeteksi pada tahap awal. Salah satu tanda seseorang mengalami kanker pankreas adalah diabetes, terutama jika itu bertepatan dengan penurunan berat badan yang cepat, penyakit kuning, atau rasa sakit di perut bagian atas yang menyebar ke punggung. Di antara berbagai jenis kanker, kanker pankreas memiliki tingkat kelangsungan hidup terendah, yaitu hanya sekitar 3-6% dari mereka yang didiagnosis yang dapat bertahan hidup selama lima tahun. Jika pasien didiagnosis tepat waktu untuk perawatan, peluang mereka untuk bertahan hidup akan meningkat. Terdapat penanda tumor yang biasa digunakan untuk mengikuti perkembangan kanker pankreas, yaitu CA 19-9 yang dapat diukur dalam darah. Orang sehat dapat memiliki sejumlah kecil CA 19-9 dalam darah mereka. Kadar CA 19-9 yang tinggi seringkali merupakan tanda kanker pankreas. Tetapi kadang-kadang, kadar tinggi dapat menunjukkan jenis kanker lain atau gangguan non-kanker tertentu, seperti sirosis dan batu empedu. Karena kadar CA 19-9 yang tinggi tidak spesifik untuk kanker pankreas, CA 19-9 tidak dapat digunakan dengan sendirinya untuk skrining atau diagnosis. Ini dapat membantu memantau perkembangan kanker dan efektivitas pengobatan kanker. Dalam studi ini, metode Kernel-based Support Vector Machine digunakan untuk mengklasifikasikan hasil tes darah CA19-9 menjadi dua bagian; data pasien yang didiagnosis dengan kanker pankreas atau pasien normal (tidak terdiagnosis kanker pankreas). Metode ini memperoleh akurasi sekitar 95%.

Pancreatic cancer is a disease in which malignant (cancerous) tumor cells develop in pancreatic tissue; organ behind the lower abdomen and in front of the spine, which helps the body use and store energy from food by producing hormones to control blood sugar levels and digestive enzymes to break down food. Usually, pancreatic cancer is rarely detected at an early stage. One sign of a person with pancreatic cancer is diabetes, especially if it coincides with rapid weight loss, jaundice, or pain in the upper abdomen that spreads to the back. Among various types of cancer, pancreatic cancer has the lowest survival rate of only about 3-6% of those diagnosed who can survive for five years. If patients are diagnosed on time for treatment, their chances of survival will increase. There is a tumor marker commonly used to follow the course of pancreatic cancer, namely CA 19-9 which can be measured in the blood. Healthy people can have small amounts of CA 19-9 in their blood. High levels of CA 19-9 are often a sign of pancreatic cancer. But sometimes, high levels can indicate other types of cancer or certain noncancerous disorders, including cirrhosis and gallstones. Because a high level of CA 19-9 is not specific for pancreatic cancer, CA 19-9 cannot be used by itself for screening or diagnosis. It can help monitor the progress of your cancer and the effectiveness of cancer treatment. In this study, the Kernel-based Support Vector Machine method is used to classify CA19-9 blood test results into two sections including data on patients diagnosed with pancreatic cancer or normal patients. This method will get an accuracy of around 95%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putu Wira Angriyasa
"ABSTRAK
Metode standar dalam mendapatkan informasi mengenai kondisi tekanan dalam rongga kepala atau tekanan intrakranial (TIK) seseorang adalah dengan melakukan pengukuran secara langsung menggunakan alat ICP monitoring. Untuk menggunakan alat tersebut, perlu dilakukan pembedahan pada kepala pasien. Selain membutuhkan biaya yang relatif mahal, dalam beberapa kasus, pembedahan pada kepala memiliki tingkat risiko yang tinggi. Untuk mengatasi hal tersebut, dalam skripsi ini dijelaskan metode alternatif untuk mendapatkan kondisi TIK secara tidak langsung dengan memanfaatkan konsentrasi Superoksida Dismutase (SOD), Katalase, Nikotinamida Adenin Dinukleotida Fosfat (NADPH), dan Malondialdehid (MDA) sebagai penanda stress oksidatif. Dengan menggunakan data-data tersebut, TIK akan diklasifikasikan dalam kondisi normal, rendah, atau tinggi. Untuk tujuan klasifikasi, digunakan metode Support Vector Machines Sequential dan keakuratannya dibandingkan dengan metode Fuzzy C Means.

ABSTRACT
The standard method for getting information about Intracranial Pressure (ICP) is invasive measurement using ICP monitoring. For using that tool, perforation of cranial scalp of patient was needed. In addition to the expensive cost, in some case, this perforation has high risk. For handling this problem, the alternative method for getting ICP condition was explained in this skripsi, using the level of Superoxide Dismutase (SOD), Catalase (CAT), Nicotinamide Adenine Dinucleotide Phosphate (NADPH), and Malondialdehyde (MDA) such as oxidative stress indicators. Using these indicators, ICP would be classified in normal, low, and high condition. For classification purpose, Support Vector Machines Sequential was used as a classification method and the accuracy was compared with Fuzzy C-Means method."
Universitas Indonesia, 2011
S1955
UI - Skripsi Open  Universitas Indonesia Library
cover
Tommy Rachmansyah Adyalam
"Kanker otak adalah pertumbuhan sel-sel abnormal di organ otak yang bersifat ganas. Salah satu cara untuk mengurangi perkembangan penyakit ini adalah melakukan pendeteksian dini menggunakan machine learning. Metode machine learning yang digunakan adalah AdaBoost Support Vector Machines untuk klasifikasi. AdaBoost Support Vector Machines adalah metode ensemble antara AdaBoost dengan base classifier Support Vector Machines. Data kanker otak direpresentasikan dalam bentuk matriks berupa ekspresi gen yang disebut DNA microarray. Data DNA microarray yang berdimensi tinggi akan direduksi dengan pemilihan fitur Signal-to-noise Ratio.
Pemilihan fitur bekerja untuk menemukan fitur-fitur yang informatif dan membuang fitur-fitur yang tidak sesuai. Pertama, data diklasifikasi menggunakan AdaBoost Support Vector Machines tanpa pemilihan fitur, dilanjutkan klasifikasi menggunakan AdaBoost Support Vector Machines dengan pemilihan fitur. Pendekatan one vs one digunakan untuk menyelesaikan masalah multi kelas. Setelah melakukan pengujian, hasil akurasi terbaik adalah 91,111 pada data training 90 dengan menggunakan pemilihan fitur sebanyak 60 fitur. Hasil tersebut lebih baik dibandingkan klasifikasi tanpa pemilihan fitur yaitu 86,667 pada data training 90.

Brain cancer is the growth of abnormal cells in the brain organ malignantly. One way to reduce the progression of this disease is to do early detection using machine learning. Machine learning method used is AdaBoost Support Vector Machines for classification. AdaBoost Support Vector Machines is an ensemble method between AdaBoost and base classifier Support Vector Machines. Brain cancer data is represented in the form of matrix of gene expression called DNA microarray. The high dimensional DNA microarray data will be reduced by Signal to noise Ratio feature selection.
Feature selection works to find informative features and discard irrelevant features. Firts, the data is classified using AdaBoost Support Vector Machines without feature selection, further classified using AdaBoost Support Vector Machines with feature selection. The one vs one approach is used to solve multi class problems. After testing, the best accuracy result is 91,111 in 90 training data by using feature selection of 60 features. The result is better than the classification without feature selection that is 86,667 in 90 data training.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhea Fairuz Vibranti
"Saham merupakan instrumen investasi yang menawarkan tingkat keuntungan yang menarik, namun memiliki risiko kerugian yang tinggi. Hal ini disebabkan oleh harga saham yang selalu berfluktuasi dan dipengaruhi oleh faktor-faktor tak menentu. Untuk memperoleh keuntungan seperti yang diharapkan, dibutuhkan prediksi pergerakan harga saham yang akurat. Umumnya, investor menggunakan indikator teknikal dalam mengantisipasi pergerakan harga di masa depan. Pada skripsi ini, sebanyak delapan indikator teknikal digunakan dan diproses ke dalam dua pendekatan. Pendekatan pertama memanfaatkan nilai-nilai indikator teknikal yang bersifat kontinu, sementara pendekatan lainnya memanfaatkan kriteria tertentu yang dimiliki oleh setiap indikator teknikal dalam menggambarkan pergerakan harga saham yang bersifat diskrit. Keduanya kemudian dijadikan data input bagi model prediksi dengan menggunakan metode Support Vector Machines yang mengklasifikasi data harga saham ke dalam dua kelas, yaitu naik dan turun. Hasil prediksi tersebut menunjukkan bahwa performa model prediksi yang menerapkan data input bernilai diskrit melampaui performa model prediksi yang menerapkan data input bernilai kontinu, dengan tingkat akurasi tertinggi yang diperoleh ialah sebesar 94,12.

Stock is an investment instrument that offers an attractive rate of return, yet has a high risk of loss. This due to the nature of stock prices that are always fluctuate and influenced by uncertain factors. To obtain the expected profit, an accurate prediction of stock price movement is required. Generally, investors use technical indicators to anticipate the future price movement. In this undergraduate thesis, a number of eight technical indicators are used and processed into two approaches. The first approach use the values of technical indicators that are continuous, while the other utilizes certain criteria owned by each technical indicator in describing stock price movement which is a discrete type of value. Both approaches are then used as input data for prediction model using the Support Vector Machines method which classifies the stock price data into two classes, i.e. up and down. The prediction results indicate that the performace of prediction models applying discrete valued of input data exceeds the performance of prediction models which apply continuous valued of input data, with the highest accuracy obtained at 94.12."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68125
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nur Ichsan
"Saat ini, Indonesia menempati peringkat kedua sebagai produsen karet terbesar di dunia, menyumbang sekitar 29,8% dari kebutuhan global. Namun, produksi karet di Indonesia mengalami penurunan dari tahun ke tahun, salah satu faktornya adalah serangan penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp. Pada tahun 2021, luas perkebunan karet yang terkena penyakit mencapai 30.328,84 hektar dan tanaman yang terinfeksi oleh penyakit tersebut mengalami penurunan produksi lateks hingga 30%. Penyakit ini menyerang daun dengan gejala pembentukan bercak berukuran 0,5-2 cm yang menyebabkan nekrosis dan gugur. Penklasifikasian tingkat keparahan penyakit Pestalotiopsis sp. secara morfologi melalui pengamatan jumlah bintik dan warna pada daun karet membutuhkan waktu dan tenaga besar, terutama karena luasnya perkebunan yang terinfeksi. Oleh karena itu, penggunaan metode machine learning diusulkan untuk mengurangi waktu dan usaha yang dibutuhkan dalam menklasifikasi penyakit gugur daun akibat jamur Pestalotiopsis sp. Pada penelitian ini, model machine learning digunakan untuk mengklasifikasi 5 kelas tingkat keparahan penyakit Pestalotiopsis sp. yaitu tingkat 0 (sehat), tingkat 1 (terinfeksi ringan), tingkat 2 (terinfeksi sedang), tingkat 3 (terinfeksi parah), dan tingkat 4 (terinfeksi sangat parah). Dataset yang digunakan adalah citra daun tanaman karet yang diperoleh dari Pusat Penelitian Karet Sembawa. Model machine learning menerima input data citra daun tanaman karet, lalu citra disegmentasi menggunakan k-mean clustering. Data yang telah tersegmentasi kemudian diekstraksi dengan fitur warna hue, saturation, dan value (HSV) dan fitur jumlah bintik dengan metode contour detection menggunakan Suzuki’s contour algorithm. Selanjutnya, fitur-fitur ini diklasifikasikan menggunakan Support Vector Machine (SVM) tipe one vs rest multiclass classification dan Grid Search Cross Validation dengan 5 fold untuk menemukan hyperparameter terbaik untuk SVM. Hyperparameter terbaik adalah kernel radial basis function dengan C=100. Berdasarkan hasil percobaan sebanyak 5 kali, diperoleh kesimpulan bahwa model dengan akurasi tertinggi adalah model yang menggunakan fitur warna dan jumlah bintik dengan nilai rata-rata akurasi sebesar 81,86% dan nilai rata-rata Cohen’s kappa statistic sebesar 0,77 yang artinya model mampu mengklasifikasi data citra daun tanaman karet dengan cukup baik.

Currently, Indonesia ranks as the second largest rubber producer in the world, contributing about 29.8% of global demand. However, rubber production in Indonesia has decreased from year to year, one of the factors is the attack of leaf fall disease caused by the fungus Pestalotiopsi sp. In 2021, the area of rubber plantations affected by the disease reached 30,328.84 hectares with infected plants have a 30% decrease in latex production. The disease attacks the leaves with symptoms of spot formation measuring 0.5-2 cm which causes necrosis and fall. Detecting the severity of Pestalotiopsis sp. morphologically through the observation of the number of spots and colors on rubber leaves requires a lot of time and energy, especially due to the large area of infected plantations. Therefore, the use of machine learning methods is proposed to reduce the time and effort required in classifying leaf fall disease caused by the fungus Pestalotiopsis sp. In this study, a machine learning model is used to classify 5 classes of Pestalotiopsis sp. disease severity, namely level 0 (healthy), level 1 (mild infected), level 2 (moderate infected), level 3 (severe infected), and level 4 (very severe infected).  The dataset used is an image of rubber plant leaves obtained from the Sembawa Rubber Research Center. The machine learning model received input data of rubber plant leaf images, then the image is segmented using k-mean clustering. The segmented data will then be extracted with hue, saturation, and value (HSV) color features and the number of spots feature with the contour detection method using Suzuki’s contour algorithm.  In this study, the performance evaluation used is accuracy and Cohen's kappa statistic. Furthermore, these features are classified using Support Vector Machine (SVM) type one vs rest multiclass classification and Grid Search Cross Validation with 5 folds to find the best hyperparameter for SVM. The best hyperparameter is the radial basis function kernel with C=100. Based on the results of 5 experiments, it is concluded that the model with the highest accuracy is a model that uses color and the number of spots features with an average accuracy value of 81.86% and an average Cohen's kappa statistic value of 0.77, which means that the model is able to classify rubber plant leaf image data quite well."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>