Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 123027 dokumen yang sesuai dengan query
cover
Nanda Anzana
"Matriks antiadjacency dan adjacency adalah contoh matriks yang merepresentasikan suatu graf berarah. Entri-entri dari matriks antiadjacency dan adjacency dari suatu graf berarah merepresentasikan ada atau tidaknya busur berarah dari suatu simpul ke simpul lainnya. Pada skripsi ini dibahas mengenai polinomial karakteristik dan nilai eigen matriks antiadjacency dan adjacency graf friendship berarah siklik. Bentuk umum dari koefisien-koefisien polinomial karakteristik dari matriks antiadjacency didapatkan dengan menjumlahkan determinan matriks antiadjacency dari semua subgraf terinduksi baik yang siklik maupun asiklik. Sedangkan bentuk umum dari koefisien-koefisien polinomial karaktersitik dari matriks adjacency didapatkan dengan menjumlahkan nilai determinan matriks adjacency subgraf terinduksi yang siklik saja. Nilai eigen dari matriks antiadjacency dan adjacency dapat berupa bilangan riil dan bilangan kompleks. Nilai eigen diperoleh dengan metode faktorisasi dan subtitusi. Dari hasil penelitian diperoleh bahwa koefisien polinomial karakteristik dan nilai eigen dari matriks antiadjacency dan adjacency dapat dinyatakan dalam fungsi yang bergantung pada jumlah segitiga pada graf friendship berarah siklik.

ABSTRACT
Antiadjacency and adjacency matrices are examples of matrices that represent a directed graph. The entries of the antiadjacency and adjacency matrices of a directed graph represent the presence or absence of directed arcs from one vertex to the others. This undergraduate thesis discusses the polynomial characteristics and eigenvalues of antiadjacency and adjacency matrices of directed cyclic friendship graphs. The general form of the coefficients of the characteristic polynomial of the antiadjacency matrix is obtained by adding the determinant of antiadjacency matrix of all the induced subgraphs, cyclic or acyclic. While the general form of the coefficients of the characteristic polynomial of the adjacency matrix is obtained by adding the determinant of adjacency matrix of the cyclic induced subgraphs. The eigenvalues of the antiadjacency and adjacency matrices can be real or complex numbers. The eigenvalues are obtained by the factorization and substitution methods. The result obtained shows that the characteristic polynomial coefficients and eigenvalues of the antiadjacency and adjacency matrices depend on the number of triangles in the cyclic directed friendship graph.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rohayu Stin
"Graf prisma adalah graf yang bersesuaiandengan kerangkabangun ruangprisma. Hanya graf prismaberarahsiklik dengan pola tertentu yang diperhatikandalam penelitian ini. Graf prismaberarahsiklik dinotasikan 𝑌𝑚(𝑚≥3),di mana 𝑚adalah setengah jumlah simpul,dan memiliki 2𝑚 simpul dan3𝑚busur. Sebuah graf dapat direpresentasikanmenggunakansebuah matriks. Ada beberapa jenis matriks yang biasanya digunakan dalam merepresentasikan graf. Diantaranya adalah matriks adjacency, anti-adjacency, dan Laplacianyang dibahas dalam penelitian ini. Polinomial karakteristik dari matriks adjacency, matriks anti-adjacency, dan matriks Laplaciandari graf prisma berarah siklik 𝑌𝑚diperoleh beserta nilai-nilaieigen real dan kompleksnya. Metode yang digunakan untuk membuktikan hasil-hasil penelitian iniadalah operasi baris matriks dan faktorisasi. Adapununtukpolinomial karakteristik dari matriks anti-adjacency𝑌𝑚, hasilnya dibuktikan dengan mengamati subgraf terinduksi siklik dan asiklik dari 𝑌𝑚berdasarkan sebuah teorema yang ditemukan dalam penelitian sebelumnya.

A prism graph is a graph which corresponds to the skeleton of a prism. Only directed cyclic prism graphs with certain pattern are considered in this research. The directed cyclic prism graph is denoted 𝑌𝑚(m≥3),where 𝑚is half the number of vertices,and has 2𝑚vertices and 3𝑚edges.Agraph can be represented by usinga matrix. There are several types of matrices that are usually used in representing a graph. Among them aretheadjacency, anti-adjacency, and Laplacianmatriceswhich are discussedinthis research. The characteristic polynomialsof theadjacency matrix,theanti-adjacency matrix, and the Laplacian matrix of directed cyclic prism graph 𝑌𝑚are obtainedas well as their real and complex eigenvalues. The methods used toprovethe results are matrix row operations and factorizations.As for the characteristic polynomial of the anti-adjacency matrix of 𝑌𝑚, the results are proved byobserving the both cyclic and acyclic induced subgraphs of 𝑌𝑚according to a theorem invented in a previous research"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Putra Okfradifa
"

Graf berarah G didefinisikan sebagai pasangan terurut dari himpunan (V,E) yang ditulis dengan notasi G=(V,E) dimana V merupakan himpunan berhingga tak kosong yang disebut simpul, dan E adalah himpunan pasangan terurut anggota dari V yang disebut busur. Graf berarah unisiklik adalah graf berarah yang memuat tepat satu subgraf lingkaran. Graf helm berarah unisiklik Hn adalah graf yang diperoleh dari graf roda berarah Wn dengan menambahkan 1 pendant berarah pada tiap simpul lingkaran graf roda. Suatu graf berarah dapat direpresentasikan dalam beberapa bentuk matriks, salah satunya adalah matriks antiketetanggaan. Matriks antiketetanggaan adalah suatu matriks yang setiap entrinya merepresentasikan ada atau tidaknya busur berarah dari suatu simpul kesimpul lainnya. Pada skripsi ini dibahas mengenai polinomial karakteristik dan nilai eigen matriks antiketetanggaan graf helm berarah unisiklik. Bentuk umum dari koefisien-koefisien polinomial karakteristik dari matriks antiketetanggaan diperoleh dengan menjumlahkan nilai-nilai determinan matriks antiketetanggaan dari semua subgraf terinduksi siklik dan asiklik. Nilai-nilai eigen dari matriks antiketetanggaan dari graf helm berarah unisiklik diperoleh dengan mencari akar-akar dari polinomial karakteristik dengan faktorisasi polinomial


A directed Graph G is defined as ordered pairs from set (V,E) which is represented by notation G=(V,E) where V is a finite nonempty set of vertices and E is a set of ordered pairs of elements of V called edges.  A directed unicyclic graph is a directed graph that has only one directed cycle subgraph. A directed unicyclic helm graph Hn is obtained from a directed wheel graph Wn by adjoining a directed pendant edge at each vertex of the cycle. A directed graph can be represented into  several matrix representations, one of them is the antiadjacency matrix. The antiadjacency matrix is a matrix in which the entries represent whether there is a directed edge from one vertex to another. This paper discusses the characteristic polynomial and eigenvalues of the antiadjacency matrix of the unicyclic helm graph. The general form of the coefficients of the characteristic polynomial that obtained by adding all of the determinants of antiadjacency matrix from each induced acyclic and cyclic subgraphs. The eigenvalues of the antiadjacency matrix of the directed unicyclic helm graph obtained by factorization its characteristic polynomial.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sandi Budiyanto
"Pada skripsi ini dibahas mengenai polinomial karakteristik dan nilai eigen matriks antiadjacency graf dumbbell berarah siklik. Matriks antiadjacency dari suatu graf berarah adalah matriks yang entri-entrinya merepresentasikan apakah terdapat sebuah busur berarah yang menghubungkan dua simpul pada graf berarah tersebut atau tidak. Koefisien polinomial karakteristik dari matriks antiadjacency graf dumbbell berarah siklik didapatkan dengan menghitung determinan dari tiap-tiap subgraf terinduksi dari graf dumbbell berarah siklik dan dengan menghitung banyaknya bentuk subgraf terinduksi tertentu dari graf dumbbell berarah siklik. Nilai eigen dari matriks antiadjacency graf dumbbell berarah siklik didapatkan dengan faktorisasi polinomial. Dari hasil penelitian, diperoleh bahwa koefisien dari polinomial karakteristik dan nilai eigen dari matriks antiadjacency graf dumbbell berarah siklik dapat dinyatakan dalam fungsi yang bergantung pada jumlah simpul pada kedua subgraf lingkaran yang dikandung graf dumbbell berarah siklik.

This undergraduate thesis explains the characteristic polynomial and eigenvalues of the antiadjacency matrix of a directed cyclic dumbbell graph. Antiadjacency matrix of a directed graph is a matrix whose entries represent whether there exist a directed edge connecting two vertices in the directed graph or not. The coefficients of the characteristic polynomial of the antiadjacency matrix of directed cyclic dumbbell graph is obtained by evaluating the determinant of each induced subgraph of the directed cyclic dumbbell graph and by counting the number of certain forms of induced subgraph of the directed cyclic dumbbell graph. The eigenvalues of the antiadjacency matrix of directed cyclic dumbbell graph is obtained by polynomial factorization. The result obtained show that the coefficients of the characteristic polynomial and the eigenvalues of antiadjacency matrix of directed cyclic dumbbell graph can be expressed as a function that is dependent to the number of vertices of the cycle subgraphs of directed cyclic dumbbell graph."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Sabili Robbi Solihin
"Sebuah graf berarah dapat direpresentasikan kedalam beberapa macam bentuk matriks, salah satunya adalah dengan matriks anti-adjacency. Matriks anti-adjacency merupakan sebuah matriks dimana entri-entri dari matriks ini dapat diinterpretasikan sebagai ada atau tidaknya busur berarah dari suatu simpul ke simpul lainnya. Paper ini akan berfokus pada matriks anti-adjacency dari gabungan graf lingkaran berarah. Matriks anti-adjacency adalah sebuah matriks persegi, oleh sebab itu dapat dicari persamaan karakteristik serta nilai eigen dari matriks tersebut. Untuk mencari bentuk umum persamaan karakteristik matriks anti-adjacency dari gabungan graf lingkaran berarah diperoleh dengan cara menghitung nilai determinan dan banyaknya subgraf-subgraf terinduksi pada setiap grafnya. Dengan mencari akar-akar dari bentuk umum persamaan karakteristik matriks anti-adjacency dari gabungan graf lingkaran berarah tersebut, maka akan didapatkan nilai eigen dari graf tersebut.

A graph could be represented as a matrix in many ways, one of which is an anti-adjacency matrix. Anti-adjacency matrix is a matrix whose entries shows whether there is a directed edge from a vertex to another one. This paper focuses on the anti-adjacency matrix of the union of directed cycle graphs. Anti-adjacency matrix is a square matrix, where we could find its characteristic polynomial and eigenvalues. The general form of characteristic polynomial can be found by counting the values of the determinants and the numbers of the cyclic induced subgraphs. Furthermore, the eigenvalues of the union of directed cycle graphs are derived from the general form of its characteristic polynomial."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Irfan Arsyad Prayitno
"Suatu graf berarah dapat direpresentasikan dengan beberapa matriks representasi, seperti matriks adjacency, anti-adjacency, in-degree laplacian, dan out-degree aplacian. Dalam paper ini dibahas polinomial karakteristik dan nilai-nilai eigen dari matriks adjacency, anti-adjacency in-degree laplacian, dan out-degree Laplacian graf matahari berarah siklik. Bentuk umum polinomial karakteristik dari matriks adjacency graf matahari berarah siklik dapat diperoleh dengan menghitung jumlah nilai determinan matriks adjacency subgraf terinduksi siklik dari graf tersebut. Kemudian polinomial karakteristik dari matriks anti-adjacency dapat dicari dengan menghitung jumlah nilai determinan matriks anti-adjacency subgraf terinduksi siklik dan subgraf terinduksi asiklik dari graf matahari berarah siklik. Selanjutnya bentuk umum polinomial karakteristik dari matriks in-degree Laplacian dan out-degree Laplacian dicari dengan menggunakan ekspansi kofaktor matriks-matriks tersebut. Nilai-nilai eigen dari matriks adjacency, matriks anti-adjacency, matriks in-degree Laplacian dan matriks out-degree Laplacian dapat berupa bilangan riil dan bilangan kompleks yang dapat dicari dengan pemfaktoran polinomial karakteristik dengan menggunakan metode Horner ataupun dengan menggunakan bentuk eksponensial dari bilangan kompleks.

A directed graph can be represented by several matrix representations, such as adjacency matrix, anti-adjacency matrix, in-degree Laplacian matrix, and out-degree Laplacian matrix. In this paper we discuss the general form of characteristic polynomials and eigenvalues of adjacency matrix, anti-adjacency matrix,  in-degree Laplacian matrix, and out-degree Laplacian of directed cyclic sun graph. The general form of the characteristic polynomials of adjacency matrix can be found out by counting the sum of the determinant of adjacency matrix of directed cyclic induced subgraphs from directed cyclic sun graph. Furthermore, the general form of the characteristic polynomials of anti-adjacency matrix can be found out by counting the sum of the determinant of anti-adjacency matrix of the directed cyclic induced subgraphs and the directed acyclic induced subgraphs from directed cyclic sun graph. Moreover, the general form of the characteristic polynomials of in-degree Laplacian and out-degree Laplacian matrix can be found by using the cofactor expansion of those matrices. The eigenvalues of the adjacency, anti-adjacency, in-degree Laplacian, and out-degree Laplacian can be real or complex numbers, which can be figured out by factoring the characteristic polynomials using horner method or the exponential form of the complex numbers."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Budi Poniam
"ABSTRAK
Sebuah graf friendship, baik tak berarah maupun berarah, dapat direpresentasikan dengan sebuah matriks adjacency maupun matriks anti-adjacency Bapat 2010 . Pada tesis ini diberikan polinomial karakteristik dan spektrum matriks adjacency dan anti-adjacency dari graf friendship tak berarah maupun berarah. Graf friendship berarah meliputi graf yang siklik dan asiklik, dengan graf asiklik dibahas untuk dua jenis saja. Beberapa kesimpulan yang menarik didapatkan dari hasil perbandingan polinomial karakteristik dan spektrum dari matriks adjacency dan matriks anti-adjacency.

ABSTRACT
Friendship graph, both undirected and directed graphs, can be represented by an adjacency matrix or an anti adjacency matrix Bapat 2010 . In this thesis, the characteristic polynomials and spectrums of adjacency and anti adjacency matrices for undirected and directed friendship graphs are presented and discussed. Directed friendship graphs cover both cyclic and acyclic graphs, where acyclic friendship graphs are defined for 2 types only. Some interesting results are obtained from the comparison between those characteristic polynomials and spectrums of adjacency matrices with the ones of anti adjacency matrices."
2017
T48134
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Ditya Diwyacitta Praharsini
"Suatu graf berarah dapat direpresentasikan dalam sebuah matriks antiadjacency. Jika # merupakan matriks antiadjacency dari suatu graf berarah $ maka %&'()* - # $ ) merupakan polinomial karakteristiknya. Pada skripsi ini dibahas mengenai sifat polinomial karakteristik matriks antiadjacency dari graf -. dengan penambahan dua tali busur. Salah satu sifat yang diperoleh adalah nilai dari koefisien ke ? /, yaitu yang didapat dengan mencari determinan dari matriks antiadjacency. Penambahan dua tali busur menjadikan graf -. memiliki karakteristik yang berbeda-beda sehingga determinan dari matriks antiadjacencynya pun berbeda. Oleh karena itu, dalam skripsi ini graf -. dengan penambahan dua tali busur dibagi menjadi empat bentuk dan penjelasan mengenai determinan dari matriks antiadjacency dari graf -. dengan penambahan dua tali busur dibagi sesuai dengan bentuk ? bentuk tersebut. Sifat lainnya adalah korelasi antara koefisien polinomial karakteristik dengan banyaknya lintasan berarah pada graf.

A directed graph can be represented by an antiadjacency matrix. If # is an antiadjacency matrix of a directed graph $ then det(λI − R G ) is the characteristic polynomial. This paper will discuss the properties of a characteristic polynomial of an antiadjacency matrix of a dicycle graph -. with two chords. One of the properties acquired is the value of the /th coefficient, which is obtained by finding the determinant of the antiadjacency matrix. The addition of two chords makes the graphs have different characteristics so that the determinant of the antiadjacency matrix will also differ. Therefore, in this paper, graph -. with two chords is divided into four forms and the explanation of the determinant of an antiadjacency matrix of the graph are divided according to the forms. The other property is the correlation between the coefficients of the polynomial characteristic with the directed path of the graphs."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S65168
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>