Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 46977 dokumen yang sesuai dengan query
cover
Giviani Puspita Dewi
"Biodiesel merupakan salah satu energi terbarukan yang memiliki kelemahan mudah teroksidasi. Ketidakstabilan oksidasi pada biodiesel dapat menurunkan kualitas biodiesel. Oksidasi biodiesel dapat dicegah dengan melakukan penambahan aditif antioksidan berupa senyawa fenolik seperti pyrogallol. Kelarutan pyrogallol di dalam biodiesel yang rendah dapat ditingkatkan dengan melakukan subtitusi atom hidrogen pada cincin benzena pyrogallol dengan senyawa hidrokarbon tidak jenuh seperti metil linoleat. Katalis 2,2-diphenyl-1-picrylhydrazyl (DPPH) dibutuhkan untuk mereaksikan pyrogallol dan metil linoleat karena dapat larut dalam keduanya. Pada penelitian sebelumnya digunakan metil linoleat murni yang tidak ekonomis jika diaplikasikan dalam skala industri. Pada penelitian ini, biodiesel minyak kanola dengan kandungan metil linoleat sebesar 11,23% digunakan untuk mensintesis turunan pyrogallol dengan rasio 10 ml biodiesel, 5 ml DPPH, dan 5 ml pyrogallol. Thin Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), dan Liquid Chromatography-Mass Spectrometry (LCMS/MS) digunakan untuk mengetahui keberadaan senyawa turunan pyrogallol. Reaksi menghasilkan spot baru pada uji TLC yang menunjukkan perbedaan polaritas antara pyrogallol dan senyawa turunan pyrogallol yang terbentuk. Uji FTIR menunjukkan terbentuknya senyawa turunan pyrogallol yang ditunjukkan dengan pergeseran peak sebesar 3,73 cm-1. LCMS/MS menunjukkan berat molekul senyawa turunan pyrogallol yang terbentuk yang terdiri atas pyrogallol dan metil linoleat. Hasil uji UV-Vis menunjukkan bahwa senyawa turunan pyrogallol memiliki kelarutan yang lebih baik dalam biodiesel dibandingkan dengan pyrogallol murni. Kinerja antioksidan dalam biodiesel diukur berdasarkan bilangan iodin dan periode induksi. Penambahan antioksidan senyawa turunan pyrogallol pada biodiesel dapat meningkatkan periode induksi sebesar 0,16 - 0,71 jam untuk konsentrasi 1000 - 2000 ppm serta menghambat penurunan bilangan iodin dengan slope sebesar -1,0 sampai dengan -0,8.

Biodiesel is renewable energy which has the disadvantage of being easily oxidized. Oxidation instability in biodiesel can reduce the quality of biodiesel. Biodiesel oxidation can be prevented by adding antioxidant additives in the form of phenolic compounds such as pyrogallol. The solubility of pyrogallol in biodiesel can be increased by substitution of hydrogen atoms in the benzene ring pyrogallol with unsaturated hydrocarbon compounds such as methyl linoleate. 2,2-diphenyl-1-picrylhydrazyl (DPPH) catalyst is needed to react pyrogallol and methyl linoleate because it can dissolve in both. In previous studies, pure methyl linoleate was used which was not economical if applied on an industrial scale. In this study, biodiesel of canola oil with a methyl linoleic content of 11.23% was used to synthesize pyrogallol derivatives with a ratio of 10 ml of biodiesel, 5 ml of DPPH, and 5 ml of pyrogallol. Thin Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), and Liquid Chromatography-Mass Spectrometry (LCMS / MS) are used to determine the presence of pyrogallol-derived compounds. The reaction produces a new spot in the TLC test which shows the difference in polarity between pyrogallol and pyrogallol derivative compounds formed. FTIR test shows the formation of pyrogallol derivatives which is indicated by a peak shift of 3.73 cm-1. LCMS / MS shows the molecular weight of pyrogallol derivative compounds formed consisting of pyrogallol and methyl linoleate. UV-Vis test results showed that pyrogallol derivative compounds had better solubility in biodiesel compared to pure pyrogallol. The performance of antioxidants in biodiesel is measured based on the iodine number and induction period. The addition of antioxidant pyrogallol derivatives to biodiesel can increase the induction period by 0.16 - 0.71 hours for a concentration of 1000 - 2000 ppm and inhibit the decline in iodine numbers with slopes of -1.0 to -0.8.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hans
"Biodiesel adalah bahan bakar nabati sebagai alternatif bahan bakar fosil yang mengandung metil ester asam lemak dan memiliki banyak keunggulan. Akan tetapi, biodiesel memiliki kelemahan yaitu rentan terhadap oksidasi karena adanya ikatan rangkap pada struktur asam lemak penyusunnya. Salah satu aditif antioksidan biodiesel yang paling efektif adalah pyrogallol. Akan tetapi, pyrogallol memiliki kelemahan yaitu kelarutan yang rendah dalam minyak. Untuk itu telah dikembangkan turunan pyrogallol melalui reaksi antara pyrogallol dan methyl linoleate dengan menggunakan radikal 2,2-diphenyl-1-picrylhydrazyl atau DPPH. Hasil penelitian menunjukkan bahwa methyl linoleate dan pyrogallol bereaksi membentuk turunan pyrogallol yang lebih larut dalam biodiesel. Akan tetapi,
penggunaan methyl linoleate murni tidak ekonomis karena memiliki harga yang tinggi. Pada penelitian ini, biodiesel minyak biji bunga matahari dengan 54.13% methyl linoleate yang telah diuji oleh GCMS digunakan untuk mensintesis turunan
pyrogallol dengan rasio 10 ml biodiesel, 5 ml DPPH, dan 5 ml pyrogallol. TLC, FTIR, dan LCMS/MS digunakan untuk menentukan keberadaan senyawa turunan pyrogallol. Pada hasil TLC terdapat spot baru yang memiliki perbedaan ketinggian spot antara senyawa turunan pyrogallol dengan pyrogallol yang menunjukkan
perbedaan polaritas dari keduanya. FTIR menunjukkan adanya pergeseran peak pada 1240 cm-1 yang menunjukkan terbentuknya senyawa turunan pyrogallol. LCMS/MS menunjukkan adanya senyawa dengan berat molekul yang terdiri dari methyl linoleate dengan pyrogallol. UV-Vis dari senyawa turunan pyrogallol
menunjukkan bahwa senyawa tersebut lebih larut dalam biodiesel dibandingkan
dengan pyrogallol. Karakteristik stabilitas oksidasi diuji dengan bilangan iodin dan
periode induksi. Penambahan turunan pyrogallol sebanyak 2000ppm ke dalam
biodiesel dapat menghambat penurunan bilangan iodin dan meningkatkan periode
induksi sebesar 0,75 jam.

Biodiesel is renewable plant-based fuel as an alternative for fossil fuel containing
fatty acid methyl esters and also has many advantages. However, biodiesel has the
disadvantage of oxidation instability because of the double bonds in the constituent
fatty acid structures. One of the most effective antioxidant for biodiesel is
pyrogallol. Unfortunately, pyrogallol has a low solubility in biodiesel. Subsequent
research was developed by synthesizing pyrogallol derivative through the reaction
between pyrogallol and a pure methyl linoleate using 2,2-diphenyl-1-picrylhydrazyl
or DPPH as catalyst. The results showed that the pyrogallol derivative formed was
more soluble in biodiesel. However, the use of pure methyl linoleate is not
economical because it has a high selling price. In this research, sunflower oil
biodiesel with 54.13% methyl linoleate which has been tested by GCMS used to
synthesize pyrogallol derivative with ratio of 10 ml biodiesel, 5 ml DPPH, and 5 ml
pyrogallol. TLC, FTIR, and LCMS/MS were used to determine the presence of
pyrogallol derivative compounds. TLC shows a new spot marked by the difference
of height between pyrogallol and pyrogallol derivative which has a different
polarity. FTIR shows a different peak at 1240 cm-1 which shows the formation of
pyrogallol derivative. LCMS-MS indicates a possible molecular weight consisting
of methyl linoleate and pyrogallol. UV-Vis of the derivatives in biodiesel shows
that the derivative is more soluble in biodiesel in comparison with the solubility of
pure pyrogallol. Iodin number and Rancimat were also tested to find out the
oxidation stability. Addition 2000ppm pyrogallol derrivative to biodiesel can
inhibit the decrease on iodine number and increase the induction period up to 0.75
hours.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Farras Ahadan
"Biodiesel merupakan bahan bakar yang berasal dari turunan minyak sayur dan lemak hewan yang dapat digunakan sebagai alternatif bahan bakar mesin diesel. Biodiesel memiliki kekurangan yaitu mudah teroksidasi yang disebabkan oleh adanya ikatan hidrokarbon sehingga dapat menurunkan kualitas biodiesel. Salah satu cara untuk mempertahankan stabilitas oksidasi biodiesel yaitu dengan penambahan antioksidan. Pyrogallol merupakan antioksidan yang paling efektif untuk mencegah oksidasi pada biodiesel. Akan tetapi, pyrogallol memiliki polaritas yang berbeda dengan biodiesel sehingga pyrogallol tidak dapat larut dan tidak terdispersi. Dibutuhkan modifikasi terhadap pyrogallol agar memiliki polaritas yang mendekati biodiesel. Penelitian sebelumnya menunjukkan bahwa reaksi antara pyrogallol dan methyl linoleate murni dengan senyawa radikal 2,2 diphenyl-1-picrylhydrazyl (DPPH) membentuk derivat pyrogallol terbukti dapat meningkatkan kelarutan pyrogallol pada biodiesel. Namun, methyl linoleate murni jika diaplikasikan pada skala industri tidak ekonomis. Pada penelitian ini, digunakan biodiesel jagung hasil transesterifikasi dari minyak jagung sebagai sumber methyl linoleate pengganti mehyl linoleate murni. Uji GCMS (Gas Chromatography-Mass Spectrometry) menunjukkan bahwa biodiesel jagung memiliki kandungan methyl linoleate sebesar 47,27 %. Sintesis dilakukan dengan mereaksikan 10 ml biodiesel, 5 ml DPPH, dan 5 ml pyrogallol. Keberadaan senyawa derivat pyrogallol ditunjukkan dengan terbentuknya spot baru pada TLC dan adanya pergeseran bilangan gelombang gugus C-O pada FTIR. Sintesis menghasilkan senyawa yang memiliki berat molekul 622,54 g/mol dengan yield 10,47% yang menunjukkan senyawa tersebut terdiri dari pyrogallol dan methyl linoleate. Berdasarkan pengukuran spektrofotometer UV-Vis, penambahan senyawa derivat pyrogallol ke dalam biodiesel kelapa sawit (B100) menghasilkan selisih absorbansi yang lebih kecil dibandingkan pyrogallol murni yang menunjukkan bahwa derivat pyrogallol lebih larut dalam biodiesel. Penambahan senyawa derivat pyrogallol ke dalam biodiesel kelapa sawit (B100) meningkatkan periode induksi (Induction Period) dan menghambat penurunan bilangan iodin.

Biodiesel is a fuel derived from vegetable oil and animal fat derivatives that can be used as an alternative to diesel engine fuel. Biodiesel has the disadvantage of being easily oxidized due to hydrocarbon bonds which can reduce the quality of biodiesel. One way to maintain the stability of biodiesel oxidation is by adding antioxidants. Pyrogallol is the most effective antioxidant to prevent oxidation in biodiesel. However, pyrogallol has a different polarity from biodiesel so that pyrogallol is insoluble and undispersed. A modification to pyrogallol is needed to have a polarity close to biodiesel. Previous research has shown that the reaction between pyrogallol and pure methyl linoleate with the radical compound 2,2 diphenyl-1-picrylhydrazyl (DPPH) forming pyrogallol derivatives has been proven to increase the solubility of pyrogallol in biodiesel. However, pure methyl linoleate if applied on an industrial scale is not economical. In this study, corn biodiesel made by transesterification from corn oil is used as a source of methyl linoleate instead of pure mehyl linoleate. GCMS (Gas Chromatography-Mass Spectrometry) test shows that corn biodiesel has 47.27% methyl linoleate content. Synthesis was carried out by reacting 10 ml of biodiesel, 5 ml of DPPH, and 5 ml of pyrogallol. The existence of pyrogallol derivative compounds is indicated by the formation of new spots on TLC and the shifting of C-O groups in FTIR. Synthesis produces compounds which have a molecular weight of 622.54 g/mol with a yield of 10.47% which indicates the compound consists of pyrogallol and methyl linoleate. Based on UV-Vis spectrophotometer measurements, the addition of pyrogallol derivative compounds into palm oil biodiesel (B100) results in a smaller absorbance difference than pure pyrogallol which shows that pyrogallol derivatives are more soluble in biodiesel. The addition of pyrogallol derivative compounds into palm oil biodiesel (B100) increases the induction period and inhibits the decrease in iodine number."
Depok: Fakultas Teknik Universitas Indonesias, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luthfiyah Ainny
"Biodiesel merupakan salah satu alternatif energi terbarukan. Penggunaan biodiesel masih memiliki kekurangan, salah satunya karena biodiesel mudah teroksidasi. Oksidasi pada biodiesel disebabkan karena memiliki ikatan karbon tak jenuh sehingga menyebabkan biodiesel menjadi tidak stabil. Untuk meningkatkan ketahanan oksidasi diperlukan aditif antioksidan. Pirogalol merupakan aditif antioksidan yang efektif untuk mencegah oksidasi biodiesel. Namun, pirogalol memiliki perbedaan polaritas dengan biodiesel sehingga menyebabkan keduanya tidak saling larut. Dibutuhkan modifikasi terhadap pirogalol agar memiliki polaritas yang mendekati biodiesel.
Pada penelitian ini, disintesis senyawa metil linoeat pirogalol sebagai aditif antioksidan biodiesel yang memiliki polaritas mendekati biodiesel. Untuk mereaksikan metil linoleat dengan pirogalol digunakan metode radikalisasi menggunakan DPPH. Metode pengujian terhadap hasil uji sintesis dilakukan menggunakan Kromatografi Lapis Tipis, dan GC-MS. Biodiesel diuji ketahanan oksidasinya dengan diberikan penambahan antioksidan pirogalol dan metil linoleat pirogalol menggunakan parameter oksidasi bilangan asam, bilangan iodin, viskositas, dan perubahan warna.
Hasil penelitian menunjukkan metil linoleat pirogalol terbentuk sebagai hasil reaksi yang diamati dari bilangan asam dari 0.046 sampai 0.176 mg KOH/gr sampel, bilangan iodin dari 79.364 menjadi 61.116 gr-I2/100 gr, viskositas dari 4.46 menjadi 5.24 cst dan warna dari 625 sampai 569 nm. Biodisel dengan antioksidan metil linoleat pirogalol dapat menahan oksidasi lebih baik dibandingkan dengan biodiesel yang menggunakan antioksidan pirogalol pada konsentrasi 0,05 b/v sampai 0,1 b/v.

Biodiesel is one of renewable energy alternatives. The use of biodiesel has deficiencies, one of them because biodiesel is easily oxidized. Oxidation in biodiesel is caused by having unsaturated carbon bonds causing biodiesel to become unstable. To increase the oxidation resistance, antioxidant additives are required. Pyrogallol is an effective antioxidant additive to prevent oxidation of biodiesel. However, pyogallol has a polarity difference with biodiesel causing the two to not dissolve. It requires modification of the pyogallol to have a polarity close to biodiesel.
In this study, synthesized pyrogallol methyl linoleate compounds as biodiesel antioxidant additives that have polarity close to biodiesel. To react the methyl ester with pyrogallol using DPPH as a radical inisiator. The test method of the synthesis using Thin Layer Chromatography, and GC MS. test method of the synthesis using Thin Layer Chromatography, and GC MS. Biodiesel was tested for its oxidation resistance by the addition of antioxidant pyrogallol and methyl ester pyrogallol using acid oxidation parameter, iodine number, viscosity, and color change.
The results showed that the pyrogallol methyl esters were formed as the result of the observed reaction of the acid number from 0.046 to 0.176 mg KOH g sample, the iodine value from 79.364 to 61.116 gr I2 100 gr, the viscosity from 4.46 to 5.24 cst and the color from 625 to 569 nm. Biodiesel with antioxidant pyrogallol methyl esters can resist oxidation better than biodiesel using pyrogallol antioxidants at concentrations of 0.05 w v to 0.1 w v.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68253
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Prasetio Ajie
"Kebutuhan bahan bakar dalam menunjang ketersediaan energi bagi masyarakat terus meningkat seiring dengan meningkatnya populasi manusia. Disatu sisi cadangan bahan bakar seperti minyak bumi terus menipis, sehingga dari kebutuhan tersebut mendorong dikembangkannya bahan bakar alternatif yang terbarukan salah satunya biodiesel. Pemakaian biodiesel memiliki kekurangan mudah teroksidasi akibat ikatan rangkap dua pada struktur molekul yang dimilikinya, sehingga berpotensi untuk terjadinya degradasi dalam masa penyimpanan. Ikatan rangkap pada biodiesel dapat teroksidasi dengan mudah menghasilkan produk samping peroksida yang dapat merusak biodiesel terutama selama proses pembakaran. Untuk meminimalisir kekurangan tersebut supaya biodiesel memiliki spesifikasi ketahanannya terhadap oksidasi sehingga layak dipakai dan digunakan dapat dilakukan penambahan antioksidan ke dalam biodiesel. Dalam rangka meningkatkan performa antioksidan dalam biodiesel dapat dilakukan dengan mencampurkan dua antioksidan membentuk antioksidan biner. Dalam penelitian ini biodiesel ditambahkan dengan antioksidan biner campuran pyrogallol dengan antioksidan monohidrik dalam beberapa variasi rasio konsentrasi antara pyrogallol dengan antioksidan monohidrik. Biodiesel yang sudah dicampur dengan antioksidan akan diukur stabilitas oksidasinya dengan pengujian bilangan asam, bilangan iodin dan periode induksi Rancimat selama 4 minggu. Dari uji yang telah dilakukan penambahan antioksidan PY:BHA dengan perbandingan 1:1 pada 500 ppm dapat meningkatkan periode induksi Rancimat biodiesel dari 6,49 jam menjadi 31,24 jam. Sedangkan pada bilangan asam dan iodin penambahan antioksidan dapat menurunkan kenaikan bilangan asam dan menurunkan laju penurunan bilangan iodin pada biodiesel dibandingkan dengan biodiesel tanpa penambahan antioksidan.

The need for fuel to support the availability of energy for the community continues to increase along with the increasing human population. On the other hand, conventional fuel such as petroleum are running low, so that these needs encourage the development of renewable alternative fuels, one of which is biodiesel. The use of biodiesel has the disadvantages of being easily oxidized due to its double bond in the molecular structure it has, so that it has the potential for degradation during the storage period. The double bond on biodiesel can be oxidized easily to produce peroxide products which can damage biodiesel especially during the combustion process. To minimize these deficiencies so that biodiesel has a specification of its resistance to oxidation so that it is suitable for use and can be used to add antioxidants to biodiesel. In order to improve the performance of antioxidants in biodiesel can be done by mixing two antioxidants to form binary antioxidants. In this study, biodiesel was added with a binary antioxidant pyrogallol mixture with monohydric antioxidants in several variations in the ratio of the concentration between pyrogallol and monohydric antioxidants. Biodiesel mixed with antioxidants will be measured for oxidation stability by testing acid numbers, iodine numbers and Rancimat induction periods for 4 weeks. From the tests that have been carried out with the addition of antioxidant PY: BHA with a ratio of 1: 1 at 500 ppm can increase the period of induction of Rancimat biodiesel from 6.49 hours to 31.24 hours. While the acid number and iodine addition of antioxidants can reduce the increase in acid numbers and decrease the rate of decrease in iodine number in biodiesel compared to biodiesel without the addition of antioxidants. "
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hery Sutanto
"Biodiesel adalah bahan bakar nabati terbarukan sebagai alternatif untuk bahan bakar diesel fosil yang memiliki banyak keunggulan. Namun, kandungan asam lemak tak jenuh yang tinggi menyebabkan ketidakstabilan oksidasi selama penyimpanan. Sejumlah aditif telah digunakan dan dikembangkan untuk mengatasi masalah ini seperti penggunaan antioksidan berbasis senyawa fenolik. Pyrogallol dilaporkan sebagai salah satu antioksidan fenolik terbaik untuk biodiesel. Akan tetapi, pyrogallol memiliki kelarutan yang rendah dalam larutan minyak. Dalam penelitian ini, kelarutan pyrogallol ditingkatkan dengan mensintesis turunan pirogallol melalui reaksi antara pyrogallol dan metil linoleat dengan menggunakan radikal 2,2-diphenyl-1-picrylhydrazyl atau DPPH. Metode spektrofotometri digunakan untuk uji kelarutan. Potensi antioksidan diperiksa menggunakan penentuan jumlah asam selama periode penyimpanan 4 minggu serta uji Rancimat untuk melihat kinerjanya dalam kondisi oksidasi yang dipercepat dan dibandingkan dengan senyawa aditif lain serta penggunaan surfaktan. Reaksi sintesis ini menghasilkan molekul yang memiliki berat molekul 418 g/mol, struktur molekul yang dihasilkan dari 1H-NMR, 13C-NMR dan 2D-HMQC adalah methyl (10E,12E)- 9-(2,6-dihydroxyphenoxy)octadeca-10,12-dienoate dan isomer methyl (9E,11E)-13-(2,6-dihydroxyphenoxy)octadeca-9,11-dienoate dengan yield 12.86% yang merupakan turunan pirogalol yang memiliki ikatan C-O baru dengan metil linoleat. Dibandingkan dengan pyrogallol dan tert-butylhydroquinone (TBHQ), turunan pyrogallol memiliki kelarutan tertinggi yaitu 19.438g/l biodiesel serta stabilitas angka asam dan bilangan iodin terbaik selama masa penyimpanan 4 pekan. Hasil induction time (IP) Rancimat dari produk tercatat 16.17 jam, hasil ini berada di atas standar SNI 7182:2015, ASTM D 6751, dan EN 14112 yaitu 6 jam.

Biodiesel is a renewable plant-based fuel as an alternative for fossil diesel fuel which has many advantages. However, its high content of unsaturated fatty acid causes an oxidation instability during storage. Numerous additives have been used and developed to overcome this problem such as the application of phenolic compound-based antioxidants. Pyrogallol is reported as one of the best phenolic antioxidants for biodiesel. Unfortunately, pyrogallol has a low solubility in oil solution. In this research, pyrogallol solubility is increased by preparing a pyrogallol derivative through a reaction between pyrogallol and methyl linoleate in the presence of radical 2,2-diphenyl-1-picrylhydrazyl or DPPH. The spectrophotometric method was used for solubility test. Antioxidant potential was examined using acid number determination during a 4 week storage period as well as the Rancimat test to see its performance under accelerated oxidation condition and compared to the other biodiesels additives. The reaction produced a molecule which has a molecular weight of 418 g/mol. By using 1H-NMR, 13C-NMR and 2D-HMQC the molecule was suggested to be methyl (10E,12E)- 9-(2,6-dihydroxyphenoxy)octadeca-10,12-dienoate and isomer methyl (9E,11E)-13-(2,6-dihydroxyphenoxy)octadeca-9,11-dienoate with a yield of 12.86%. Compared to pyrogallol and tert-butylhydroquinone (TBHQ), the pyrogallol derivative has the highest solubility with a value of 19.438g/l biodiesel, better activity in acid number and iodine value during 4 weeks storage. The induction period (IP) result of the pyrogallol derivative is 16.17 hours, above the SNI 7182:2015, ASTM D 6751 and EN 14112 standards in the accelerated oxidation (rancimat) test."
Depok: Fakultas Teknik Universitas Indonesia, 2019
D2749
UI - Disertasi Membership  Universitas Indonesia Library
cover
Nadine Aulia Adisa
"Penggunaan minyak nabati dapat digunakan untuk pembuatan biodiesel memiliki kendala ekonomi karena harga yang tinggi dan gap signifikan antara permintaan dan pasokan pangan, yang menyebabkan dilema antara kebutuhan pangan dan bahan bakar. Untuk mengatasi hal tersebut, penelitian ini menyelidiki penggunaan campuran minyak sawit dan lemak sapi yang tidak dapat dimakan sebagai bahan baku biodiesel, yang mendorong ekonomi sirkular dengan mengurangi limbah dan memanfaatkan sumber daya secara lebih berkelanjutan. Penelitian ini mengevaluasi kelayakan dan kualitas biodiesel yang dihasilkan dari campuran minyak sawit dan lemak sapi berdasarkan standar SNI 7182:2015, dengan menguji berbagai kondisi operasi termasuk beban katalis Kalium Hidroksida (0,5 wt%, 1,0 wt%, dan 1,5 wt%) dan rasio metanol terhadap minyak 6:1 dan 9:1. Konversi terbaik diperoleh dengan menggunakan 1,0% katalis dan rasio metanol terhadap minyak 6:1, mencapai tingkat konversi 90%, viskositas 4,607 cSt dan densitas 859 kg/m3, dengan hasil biodiesel sebesar 88%. Biodiesel yang dihasilkan memenuhi parameter kualitas penting seperti viskositas, densitas, angka asam, nilai iodine, dan stabilitas oksidasi, sesuai dengan standar yang ditetapkan oleh Pedoman Umum Direktur Jenderal Minyak dan Gas Nomor 195.K/EK.05/DJE/2022. Temuan ini menguatkan kemungkinan penggunaan campuran biomixture lemak sapi dan minyak sawit dalam produksi biodiesel, menyediakan teknologi alternatif untuk mengatasi masalah sumber daya pangan dan mempromosikan diversifikasi energi. Namun, rasio minyak metil ester kasar terhadap total bahan baku (Rpb) sebesar 96,18% belum memenuhi regulasi industri hijau.

The use of available edible vegetable oils for biodiesel preparation is an economical drawback because of the high price and the considerable food demand-supply gap leading to the raising of the inherent food versus fuel dilemma. To address this, the present study investigates the use of a blend of palm oil and non-edible beef tallow as biodiesel feedstocks, which promotes a circular economy by reducing waste and utilizing resources more sustainably. This research evaluates the feasibility and quality of biodiesel produced from palm oil and beef tallow blends against SNI 7182:2015 standards, examining various operating conditions including catalyst loadings of Potassium Hydroxide (0.5 wt%, 1.0 wt%, and 1.5 wt%) and methanol-to-oil ratios of 6:1 and 9:1. The best conversion was obtained using 1.0% of catalyst and a methanol-to-oil ratio of 6:1, achieving a 90% conversion rate, viscosity of 4.607 cSt and 859 kg/m3, with biodiesel yield of 88%. The biodiesel produced successfully meets critical quality parameters including viscosity, density, acid number, iodine value, and oxidative stability, conforming to the standards set by the Director General of Oil and Gas Decision General Guideline No. 195.K/EK.05/DJE/2022. These findings validate the possibility of using a combination of beef tallow and palm oil biomixture in biodiesel production, providing an alternative technology to address food resource issues and promote energy diversification. However, the crude methyl ester oil-to-total raw material ratio (Rpb) of 96.18% falls short of complying with the green industry regulation."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Considering that there has been a constant high rate of growth in the demand for ADO (Automotive Diesel Oil) in the Indonesian liquid fuel mix, particularly in the transport sector, and realizing that import of ADO is the highest among liquid fuel imports, due to constraints in domestic production, a preliminary assessment has been undertaken on the possibility of subtituting or complementing the supply for ADO with biodiesel, by way of converting oil extracted from Jatropha curcas. Jatropha curcas oil has been chosen as the base material since (a) its physico-chemical properties is highly suitable to be used as feedstock for the production of biodiesel, (b) it is not an edible oil, and (c) the planting of Jatropha curcas can be undertaken in arid lands, thereby beneficial effects can be obtained, as the massive planting wood result in recovering such lands into productive uses."
JIUPH 4:8 (2001)
Artikel Jurnal  Universitas Indonesia Library
cover
I Wayan Susila
"The performance test of CI engine which uses biodiesel fuel from vegetable oils and its blends with diesel fuel is essential to be carried out. This research investigates the quality of rubber seed oil methyl ester (RSOME) which is produced via catalytic method dry wash system which uses magnesol (magnesium silicate) as absorbent based on Indonesian Biodiesel Forum (FBI) standard in 2005 and the performance of CI engine, which uses its blends with diesel fuel (B-10, B-20, and B-30). The best engine performance is then compared with RSOME which is produced via non-catalytic method, namely, superheated methanol high temperature atmospheric pressure and diesel fuel (B-0). The engine test shows that B-20 produces the best engine performance at 2550 rpm. Compared to RSOME non-catalytic method and diesel fuel, RSOME catalytic method and non-catalytic method yield the same effective power, whereas diesel fuel is lower than both methods. The engine which uses RSOME non-catalytic method needs the same specific fuel consumption as diesel fuel, but a bit more than catalytic method. The thermal efficiency of RSOME non-catalytic method is higher than catalytic method and diesel fuel, but catalytic method has lower efficiency than diesel fuel. The emission of non-catalytic method is the most eco-friendly, catalytic method is the next, and diesel fuel is the one with the highest emission levels."
Depok: Faculty of Engineering, Universitas Indonesia, 2012
UI-IJTECH 3:1 (2012)
Artikel Jurnal  Universitas Indonesia Library
cover
Mochamad Faizal Irsyad Satria
"Rendahnya stabilitas oksidasi pada biodiesel atau FAME (Fatty Acid Methyl Ester) dapat menyebabkan biodiesel dapat terdegradasi sehingga membentuk deposit dan endapan pada tangki. Biodiesel teroksidasi disebabkan karena terdapat senyawa dengan ikatan tak jenuh. Untuk itu partial hydrogenation bertujuan untuk memecah ikatan tak jenuh pada FAME yang merupakan komponen penentu dari sifat oksidatif biodiesel. Pada proses partial hydrogenation percobaan ini, digunakan bantuan katalis Nickel alumina (Ni/Al2O3) Proses hidrogenasi parsial dilakukan dengan sistem reaktor autoclave berpengaduk dengan memvariasikan persentase berat katalis terhadap massa umpan dan suhu yang berbeda, yaitu sebesar 5%, 10%, dan 15% dari massa umpan dan suhu operasi sebesar 110 dan 120˚C. Hasil yang diperoleh pada akhir percobaan adalah Hydrogenated FAME (H-FAME) atau FAME yang telah dihidrogenasi parsial dengan berat katalis sebesar 15% dari berat umpan dan suhu 120 ˚C memberikan perolehan paling optimal dengan turunnya bilangan iodin dari 31,40 g-I2 /100g menjadi 20,01 g-I2 /100g; turunnya bilangan asam dari 0,6 mg KOH/g minyak menjadi 0,38 mg KOH/g minyak. Turunnya bilangan iodin dan bilangan asam mengindikasikan terjadinya kenaikan stabilitas oksidasi dan konversi dari komponen jenuhnya. Hal ini dapat dilihat dari naiknya stabilitas oksidasi dari 3,85 jam menjadi 4,93 jam; dan hasil konversi dengan komponen metil stearate dan metil oleat sebesar 14% dan 4%

The low oxidation stability of biodiesel or FAME (Fatty Acid Methyl Ester) can cause biodiesel to be degraded to form deposits and deposits in the tank. Oxidized biodiesel is caused by the presence of compounds with unsaturated bonds. For this reason, partial hydrogenation aims to break the unsaturated bonds in FAME which is a determining component of the oxidative properties of biodiesel. In this experimental partial hydrogenation process, a Nickel alumina (Ni/Al2O3) catalyst was used. The partial hydrogenation process was carried out with a stirred autoclave reactor system by varying the percentage of catalyst weight to the feed mass and different temperatures, namely 5%, 10%, and 15%. of feed mass and operating temperature of 110 and 120˚C. The results obtained at the end of the experiment are Hydrogenated FAME (H-FAME) or partially hydrogenated FAME with a catalyst weight of 15% of the weight of the feed and a temperature of 120 C giving the most optimal gain with a decrease in the iodine number from 31.40 g-I2 / 100g to 20.01 g-I2 /100g; the decrease in acid number from 0.6 mg KOH/g oil to 0.38 mg KOH/g oil. The decrease in the iodine number and the acid number indicates an increase in the oxidation stability and conversion of the saturated component. This can be seen from the increase in oxidation stability from 3.85 hours to 4.93 hours, and the conversion results with methyl stearate and methyl oleate components of 14% and 4%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>