Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 201463 dokumen yang sesuai dengan query
cover
Hanandi Rahmad Syahputra
"Memprediksi pergerakan harga saham merupakan tugas yang sangat menantang karena karakteristik pasar saham yang kompleks, tidak linier, dan penuh ketidakpastian. Namun berdasarkan pada teori efficient market hypothesis dan tingkat efisiensinya, memprediksi pergerakan harga saham merupakan tugas yang masih memungkinkan untuk dicapai. Banyak pendekatan telah diterapkan untuk memprediksi pergerakan harga saham mulai dari pendekatan statistik linier sederhana seperti discriminant analysis (DA) hingga pendekatan machine learning yang kompleks seperti support vector machine (SVM). Baik DA dan SVM adalah pendekatan yang dapat digunakan untuk melakukan klasifikasi seperti memprediksi tren harga saham dari beberapa kelas. Dalam penelitian ini, tren pergerakan harga saham diklasifikasikan ke dalam dua kelas, yaitu "highly possible to go up" dan "highly possible to go down or be neutral" di mana pemisahan kelasnya didasarkan pada variabel berupa data teknikal, fundamental, keuangan, dan koefisien beta dari saham di Bursa Efek Indonesia (BEI). Dengan menggunakan variabel-variabel ini, sejumlah model prediksi dengan periode prediksi atau fungsi tertentu dilatih dan kemudian digunakan untuk memprediksi tren pergerakan harga saham di BEI. Periode prediksi yang digunakan dalam penelitian ini berkisar dari 1 bulan hingga 9 bulan. Metode stepwise linear regression (SLR) dan sequential forward selection (SFS) diterapkan sebagai metode feature selection guna memilih variabel yang paling relevan sehingga kinerja setiap model prediksi dapat dioptimalkan. Pada penelitian ini, jumlah fitur, nilai signifikansi maksimum dari F-to-enter, fungsi kernel, dan metode parameter selection divariasikan sehingga dihasilkan 12 model prediksi DA dan 30 model prediksi SVM. Dengan menerapkan beberapa proses evaluasi, maka model prediksi dengan tingkat akurasi dan efektifitas yang paling baik dapat dipilih. Dari seluruh 12 model prediksi DA yang dirancang, terdapat 3 model prediksi yang dinilai layak untuk diterapkan. Sedangkan dari seluruh 30 model prediksi SVM yang dirancang, terdapat 11 model prediksi yang dinilai layak untuk diterapkan. Kemudian dari 14 model prediksi yang dinilai layak tersebut, 4 model prediksi terbaik untuk periode prediksi 3, 5, 7, dan 9 bulan serta 1 model prediksi terbaik dengan fungsi untuk mengklasifikasi major trend selama 9 bulan telah berhasil dipilih. Kelima model tersebut merupakan model prediksi SVM sehingga dapat disimpulkan bahwa SVM mengungguli DA dalam memprediksi tren pergerakan harga saham di Bursa Efek Indonesia.

Predicting the movement of stock prices is a very challenging task because the characteristics of the stock market are complex, non-linear, and full of uncertainty. However, based on the efficient market hypothesis theory and its level of efficiency, predicting stock price movements is a task that is still possible to achieve. Many approaches have been applied for predicting the movement of stock prices ranging from simple linear statistical approaches such as discriminant analysis (DA) to complex machine learning approaches such as support vector machines (SVM). Both DA and SVM are approaches that can be used to perform classifications such as predicting stock price trends from several classes. In this study, the trends of stock price movements are classified into two classes, namely "highly possible to go up" and "highly possible to go down or be neutral" in which the class separation is based on variables in the form of technical, fundamental, financial, and beta coefficient data of stocks on the Indonesia Stock Exchange (IDX). By using these variables, a number of prediction models with specific prediction periods or functions are trained and then used to predict the trends of stock price movements on the IDX. The prediction periods used in this study range from 1 month to 9 months. The stepwise linear regression (SLR) and sequential forward selection (SFS) methods are applied as the feature selection methods to select the most relevant variables so that the performance of each prediction model can be optimized. In this study, the number of features, the maximum significance value of the F-to-enter, kernel function, and parameter selection method are varied to produce 12 DA prediction models and 30 SVM prediction models. By applying several evaluation processes, the prediction model with the best level of accuracy and effectiveness can be chosen. From all 12 DA prediction models designed, there are 3 prediction models that are considered feasible to be applied. While from all 30 SVM prediction models designed, there are 11 prediction models that are considered feasible to be applied. Then, out of these 14 prediction models that are considered feasible, 4 best prediction models for the prediction periods of 3, 5, 7, and 9 months and 1 best prediction model with the function to classify the major trend for 9 months have been successfully selected. These five prediction models are SVM prediction models so that it can be concluded that SVM outperforms DA in predicting the trends of stock price movements on the Indonesia Stock Exchange."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Vincentius Ryan Cokrodiharjo
"Memiliki model prediksi yang baik akan memberikan keuntungan tersendiri bagi investor dan perusahaan dalam mengambil keputusan. Support Vector Machine SVM adalah salah satu algoritma pembelajaran mesin yang diawasi yang dapat digunakan untuk klasifikasi atau regresi. Banyak penelitian menunjukkan bahwa prediksi menggunakan model Support Vector Machine SVM lebih akurat daripada model lainnya. Penelitian terbaru menunjukkan bahwa kinerja tertinggi dari sistem prediksi terjadi ketika periode input indikator teknikal sama dengan periode perkiraan. Dengan menggunakan kombinasi dari periode perkiraan dan periode input indikator teknikal dengan kerangka waktu yang lebih banyak dan Support Vector Machine SVM , penelitian ini ingin mengetahui seberapa besar akurasi yang dihasilkan SVM untuk memprediksi pergerakan harga saham-saham di pasar Indonesia, apakah kinerja tertinggi dari sistem prediksi terjadi ketika periode input indikator teknikal sama dengan periode perkiraan, dan apakah aplikasi penggunaan SVM untuk perdagangan dapat memberikan hasil yang lebih baik dibandingkan strategi buy and hold. Data transaksi saham yang kami gunakan dari Maret 2006 hingga Februari 2018 untuk tiga puluh satu saham perusahaan dan menggunakan kombinasi dua puluh delapan periode perkiraan dan tiga puluh periode input indikator teknikal. Hasil penelitian yang diperoleh yaitu model prediksi dapat memberikan hasil akurasi yang baik karena sebanyak 25 dari 31 saham memberikan hasil akurasi lebih dari 50 tetapi kinerja tertinggi model prediksi tidak terjadi saat periode input indikator teknikal sama dengan periode perkiraan dan diperoleh 21 saham yang memberikan imbal hasil signifikan ketika menggunakan aplikasi model prediksi SVM untuk melakukan perdagangan dibandingkan strategi buy and hold.

Having a good predictive model will provide its own advantages for investors and companies in making decisions. Support Vector Machine SVM is one of the supervised machine learning algorithms that can be used for classification or regression. Many studies have shown that predictions using the Support Vector Machine SVM model are more accurate than other models. Recent research shows that the highest performance of the prediction system occurs when the technical indicator input period is equal to the forecast period. Using a combination of forecast periods and technical indicator input periods with more time frames and Support Vector Machine SVM , this study wanted to know how much accuracy SVM generates to predict the movement of stock prices in the Indonesian market, what is the highest performance of the prediction system occurs when the technical indicator input period is equal to the forecast period, and whether the application of SVM usage for trade can give better results than the buy and hold strategy. We used stock transaction data from March 2006 to February 2018 for the thirty one shares of the companies and using a combination of twenty eight forecast periods and thirty periods of input of technical indicators. The result of the research is prediction model can give good accuracy result because 25 of 31 stocks give accurate result more than 50 but highest performance prediction model does not occur when technical indicator input period is same with forecast period and 21 stocks yield return significant when applying SVM prediction model to trade compared to buy and hold strategy."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T50434
UI - Tesis Membership  Universitas Indonesia Library
cover
Marcelinus David Wahono
"Krisis ekonomi yang terjadi di masa lalu menimbulkan pertanyaan tentang validitas
Efficient Market Hypothesis dan mendorong berkembangnya model-model yang
dapat memprediksi indeks harga saham. Salah satunya yaitu prediksi
memanfaatkan komponen ekonomi yang diketahui mempengaruhi IHSG dan
memprosesnya dengan teknik machine learning. Support Vector Machine dikenal
memiliki kemampuan untuk menangani data berdimensi tinggi dan memiliki
keunggulan dibandingkan algoritma yang lain. Performa SVM akan dibandingkan
dengan Artificial Neural Network (ANN) dan algoritma klasik Multiple Linear
Regression (MLR). Studi ini diawali mengidentifikasi pengaruh komponen
ekonomi terhadap IHSG mendatang. Hasil penelitian menunjukkan bahwa SVM
memiliki kinerja paling baik dalam memprediksi harga indeks saham keesokan
harinya (t + 1), namun kinerja ANN paling baik untuk memprediksi t + 5, t + 10,
dst.

The economic crisis that occurred in the past raised questions about the validity of
the Efficient Market Hypothesis and encouraged the development of models that
can predict the stock price. One of them is prediction utilizing economic
components known to affect IDX composite index and processed by machine
learning techniques. Support Vector Machines are known to have the ability to
handle high-dimensional data and have advantages over other algorithms. SVM
performance will be compared to Artificial Neural Networks (ANN) and the classic
Multiple Linear Regression (MLR) algorithm. This study begins with identifying
the influence of economic component on the future IDX composite index. The
results showed that SVM had the best performance in predicting the next day stock
index prices (t+1), but ANN's performance was better than others for predicting
t+5, t+10, and so on.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nurrimah
"Globalisasi membawa dampak besar bagi pertumbuhan ekonomi Indonesia. Sejak tahun 1961, secara umum pertumbuhan ekonomi Indonesia selalu mengalami kenaikan. Banyak faktor yang menyebabkan meningkatnya pertumbuhan ekonomi nasional. Salah satunya adalah investasi. Terdapat berbagai macam instrumen investasi. Sekarang ini yang paling banyak diminati oleh masyarakat umum adalah investasi saham. Bursa Efek Indonesia (BEI) mencatat bahwa per Juni 2018 banyaknya investor pasar modal mencapai 1,12 juta Single Investor Identification (SID) dengan 710.000 Single Investor Identification (SID) merupakan total investor saham ritel. Saham menjadi salah satu usaha dalam pemenuhan kebutuhan hidup di masa depan. Daya tarik utamanya adalah karena saham memberikan potensi keuntungan yang tinggi dalam jangka panjang. Namun, dengan potensi keuntungan yang tinggi tersebut, saham juga memiliki potensi kerugian yang tinggi. Salah satu usaha untuk meminimalkan potensi kerugian saham adalah dengan melakukan prediksi harga saham menggunakan machine learning. Harga saham akan diprediksi menggunakan metode penyelesaian masalah regresi, yaitu Fuzzy Support Vector Regression (FSVR). Fungsi pemetaan dalam fungsi keanggotaan fuzzy digunakan untuk menghasilkan fluktuasi harga saham yang tepat. Untuk memastikan keefektifan dan keefisienan penggunaan fitur, Fisher Score digunakan untuk memilih fitur yang paling berpengaruh dan informatif dalam model prediksi sehingga kesalahan hasil prediksi dapat diminimalkan. Fitur-fitur terpilih tersebut akan dijadikan sebagai variabel input dalam model prediksi. Evaluasi hasil prediksi dari data dengan dan tanpa dilakukan pemilihan fitur selanjutnya akan dianalisis menggunakan Normalized Mean Square Error (NMSE) dan dibandingkan sebagai bagian dari evaluasi performa model prediksi. Dari hasil prediksi pada salah satu data yang digunakan, tanpa pemilihan fitur, diperoleh model terbaik dengan nilai NMSE terendah sebesar 0,179 dan persentase data training 80%, sedangkan dengan pemilihan fitur Fisher Score, diperoleh model terbaik menggunakan sembilan fitur dengan nilai NMSE terendah sebesar 0,011 dan persentase data training 90%.

Globalization has a big impact on Indonesias economic growth. Since 1961, in general Indonesias economic growth has always increased. Many factors have led to an increase in national economic growth. One of which is investment. There are many investment instruments. The most popular among the public is stock investment. Indonesia Stock Exchange (IDX) recorded as of June 2018 total of capital market investors reached 1,12 million Single Investor Identification (SID) with 710,000 Single Investor Identification (SID) representing total retail stock investors. Stock has become one of the activities to fulfill the needs of life in the future. Its main attraction is that stock provides high potential return of profit in long run. However, as high return of profit, stock also has high potential return of risks. One of the ways to minimize the potential return of risks is by predicting stock prices using machine learning. The stock prices will be predicted using a regression problem solving method, namely Fuzzy Support Vector Regression (FSVR). The mapping function in fuzzy membership function is used to produce the right stock price fluctuations. To ensure the effectiveness and the efficiency of using features, Fisher Score is used to select the most influential and informative features in the prediction model so that the prediction errors can be minimized. These selected features will be used as input variables in the stock price prediction model. The evaluation of the prediction results from the data with and without feature selection will be analyzed using Normalized Mean Square Error (NMSE) and compared as part of the performance evaluation of the prediction model. From the prediction results on one of data used, without doing feature selection, the best model is obtained with the lowest error is 0.179 and 80% training data, while with doing Fisher Score feature selection, the best model is obtained by using nine features with the lowest error is 0.011 and 90% training data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Firman Adiyansyah
"Manusia memiliki kebutuhan untuk melangsungkan hidupnya. Seiring waktu harga-harga kebutuhan akan naik dikarenakan inflasi. Untuk mengantisipasi inflasi, manusia melakukan investasi. Investasi dapat bermacam-macam seperti membeli aset-aset riil (tanah, emas, dsb), ataupun membeli surat-surat berharga (efek) di pasar modal. Saham merupakan jenis efek yang paling sering diperjualbelikan. Dalam melakukan investasi saham, seorang investor memiliki permasalahan untuk memilih saham-saham yang dapat menghasilkan nilai imbal balik yang diharapkan. Permasalahan ini akan coba dijawab oleh Support Vector Machine (SVM) dengan mengklasifikasikan saham-saham apa saja yang menghasilkan imbal hasil ≥1%, dan imbal hasil <1%. Atribut yang digunakan terdapat 22, terdiri dari indikator teknikal dan nilai yang diolah dari data historis saham. Data historis saham yang digunakan adalah data perdagangan harian 30 saham dari indeks IDX30 pada jangka waktu 1 September 2020 hingga 31 Agustus 2021. Data historis saham dari 1 September 2020 hingga 5 Juni 2021 digunakan sebagai data training, dan data historis saham dari 6 Juni 2021 hingga 31 Agustus 2021 digunakan sebagai data testing. Model SVM yang dihasilkan memiliki akurasi sebesar 99,44%. Setelah didapatkan saham-saham yang berpotensi menghasilkan keuntungan yang diharapkan melalui SVM, selanjutnya akan dibuat sebuah portofolio investasi dari kumpulan saham tersebut dengan metode Mean Variance (MV). Bobot tiap saham yang dipilih adalah bobot saham yang meminimalkan variansi dari portofolio. Sebagai pembanding digunakan model pembentukan portofolio Equal Weight Portofolio (EWP) dan kinerja dari indeks IDX30. Imbal hasil dari portofolio yang dibentuk oleh SVM+MV dan SVM+EWP jauh lebih baik dari indeks IDX30. Variansi portofolio dari SVM+MV lebih kecil daripada portofolio dari SVM+EWP.

Human must has basic need to survive. The price of basic need will increase over time because the effect of inflation. To anticipate the inflation, human tend to invest. There are two kind of investment, real asset such as land and gold, and securities such as stock and obligation. Stock is the most actively traded. When an investor decide to invest on stock, investor have to choose which stocks that will generate enough return for himself. This problem would be solved by using Support Vector Machines. SVM is one of the machine learning technique for classification, in this case we will classify the the stock based on the return ≥1% or <1%. There are 22 attribute that used for SVM. Data come from historical stock data of 30 stocks from IDX30 index. The range is from 1 September 2020 untill 31 August 2021. Data from 1 September 2020 through 5 June 2021 would be training data and data from 6 June 2021 untill 31 August 2021 would be testing data. The result from SVM model has accuracy of 99,44%. The next thing to fo after we have which stock that will be choose is to build a portofolio from it. The portofolio theory of Mean Variance will be used to build portofolio from the result of prediction stock SVM. Mean Variance method will determine how much the portion of respective stock to be invested that would be maximize returns and also minimize investment risk. For measure how well the model perform, we used Equal Weight Portofolio (EWP) method and return of IDX30 index. The result is SVM+MV model and SVM+EWP model generate more return than the underlying index. The variance of portofolio that generated from SVM+MV are smaller than portofolio generated from SVM+EWP."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diva Arum Puspitasari
"Prediksi trend harga saham dapat berguna bagi trader untuk menentukan nilai saham dimasa yang akan datang. Untuk memprediksi trend dengan analisis teknikal adalah melakukan prediksi harga penutupan saham. Seiring dengan waktu, meningkatnya harga saham setara dengan diperolehnya return saham yang profit. Pada skripsi ini, dilakukan analisis dan prediksi harga penutupan saham selama sebulan menggunakan metode Support Vector Machines ndash; K Nearest Neighbor SVM-KNN . Pertama, terlebih dahulu dilakukan pemilihan indikator teknikal yang berpengaruh terhadap saham perusahaan yang dianalisis menggunakan Support Vector Regression SVR . Kedua, klasifikasi return saham yang terdiri dari profit dan loss dengan SVM. Hasil prediksi label kelas dapat membantu mencari tetangga terdekat dalam memprediksi harga penutupan saham dengan KNN. Percobaan dilakukan menggunakan 3, 4, dan 5 indikator teknikal yang terpilih dan tanpa pemilihan fitur dengan 13 indikator teknikal.

Stock price trend prediction is important for trader to determine whether the stock price is rising up or not. To predict the trend using technical stock analysis is by predicting the close prices. Along the time, when the price is rising up then it can indicate profit return. This undergraduate thesis will study how to analysis and prediction of stock closing prices one month ahead with Support Vector Machines ndash K Nearest Neighbor SVM KNN method. First, feature selection method is applied to select the important technical indicators using Support Vector Regression SVR . Second, classify the stock rsquo s return which consist of profit and loss using SVM. The output of class label is used to help find the nearest neighbor. Next, stock prices are forecasted using KNN. This study will be experimented with 3, 4, and 5 selected indicators and compared with 13 technical indicators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69143
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhea Fairuz Vibranti
"Saham merupakan instrumen investasi yang menawarkan tingkat keuntungan yang menarik, namun memiliki risiko kerugian yang tinggi. Hal ini disebabkan oleh harga saham yang selalu berfluktuasi dan dipengaruhi oleh faktor-faktor tak menentu. Untuk memperoleh keuntungan seperti yang diharapkan, dibutuhkan prediksi pergerakan harga saham yang akurat. Umumnya, investor menggunakan indikator teknikal dalam mengantisipasi pergerakan harga di masa depan. Pada skripsi ini, sebanyak delapan indikator teknikal digunakan dan diproses ke dalam dua pendekatan. Pendekatan pertama memanfaatkan nilai-nilai indikator teknikal yang bersifat kontinu, sementara pendekatan lainnya memanfaatkan kriteria tertentu yang dimiliki oleh setiap indikator teknikal dalam menggambarkan pergerakan harga saham yang bersifat diskrit. Keduanya kemudian dijadikan data input bagi model prediksi dengan menggunakan metode Support Vector Machines yang mengklasifikasi data harga saham ke dalam dua kelas, yaitu naik dan turun. Hasil prediksi tersebut menunjukkan bahwa performa model prediksi yang menerapkan data input bernilai diskrit melampaui performa model prediksi yang menerapkan data input bernilai kontinu, dengan tingkat akurasi tertinggi yang diperoleh ialah sebesar 94,12.

Stock is an investment instrument that offers an attractive rate of return, yet has a high risk of loss. This due to the nature of stock prices that are always fluctuate and influenced by uncertain factors. To obtain the expected profit, an accurate prediction of stock price movement is required. Generally, investors use technical indicators to anticipate the future price movement. In this undergraduate thesis, a number of eight technical indicators are used and processed into two approaches. The first approach use the values of technical indicators that are continuous, while the other utilizes certain criteria owned by each technical indicator in describing stock price movement which is a discrete type of value. Both approaches are then used as input data for prediction model using the Support Vector Machines method which classifies the stock price data into two classes, i.e. up and down. The prediction results indicate that the performace of prediction models applying discrete valued of input data exceeds the performance of prediction models which apply continuous valued of input data, with the highest accuracy obtained at 94.12."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68125
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anita Setianingrum
"Prediksi harga saham merupakan hal yang sangat penting bagi investor karena sangat berguna untuk menentukan nilai masa depan dari suatu perusahaan yang sahamnya sedang diperdagangkan di bursa efek. Investor akan mendapatkan keuntungan yang besar dengan prediksi yang tepat, sebaliknya investor akan mendapatkan kerugian jika prediksi yang digunakan tidak tepat. Pada skripsi ini, akan dibahas pembuatan model prediksi Adaptive Neuro Fuzzy Inference System ANFIS dengan menggunakan variabel indikator teknikal terbaik berdasarkan Support Vector Regression SVR yang dilihat dari kecenderungan data historis saham 25 perusahaan dari sub sektor Bank, sektor Keuangan, yang tercatat di Bursa Efek Indonesia. Melalui metode ini, akan didapatkan nilai akurasi model yang cukup baik sedemikian sehingga dapat menjadi rekomendasi bagi investor dalam melakukan prediksi harga saham berdasarkan variabel indikator teknikal terpilih.

Forecasting stock price has become an important issue for stock investors because it is very useful to determine the future value of a company whose its share are traded on the stock exchange. Investors will get a profit with a sharp predictions, otherwise they will get loss if the predictions is inappropriately used. This undergraduate thesis will study how to make a model prediction Adaptive Neruo Fuzzy Inference System ANFIS using the best technical indicators. These technical indicators chosen by using Support Vector Regression SVR referred from the tendencies of stock time series data for 25 companies of Banking sub sector, Financial sector, that listed on Indonesian Stock Exchange. Through this method, analyst will get the value of the model rsquo s accuracy, that is good enough. So that it could be a recommendation for investors for forecasting the stock prices using this method with the selected technical indicators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S66167
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyu Nuryaningrum
"Pesatnya perkembangan ekonomi menyebabkan kebutuhan manusia menjadi tidak terbatas. Usaha yang dapat dilakukan untuk pemenuhan kebutuhan hidup di masa yang akan datang adalah dengan melakukan investasi. Saham merupakan salah satu instrumen investasi dengan tingkat keuntungan yang menarik, namun memiliki risiko kerugian yang tinggi. Hal ini disebabkan oleh adanya pergerakan harga saham yang cenderung tak menentu selama periode waktu tertentu. Untuk meminimalkan risiko kerugian, perlu dilakukan prediksi pergerakan harga saham. Prediksi yang akurat akan membantu para investor dalam menentukan nilai saham di masa yang akan datang. Pada penelitian ini, dilakukan perbandingan untuk memprediksi pergerakan harga saham menggunakan tiga algoritma supervised machine learning yaitu Random Forest, Support Vector Regression (SVR) dan K- Nearest Neighbor (KNN) berdasarkan tingkat akurasinya. Sutau model dikatakan akurat jika memiliki nilai Root Mean Square Error (RMSE) dan Mean Absolute Error (MAE) yang lebih rendah. Pada penelitian ini, diperoleh hasil prediksi harga penutupan saham terbaik menggunakan metode Support Vector Regression dengan melihat rendahnya nilai RMSE dan MAE yang dihasilkan dibandingkan dengan dua metode lain. Dalam perhitungannya, penelitian ini menggunakan histori data harian dari website investing.com. periode Maret 2017 hingga Februari 2020 dari tiga perusahaan di Indonesia yang terdaftar dalam IDX30.

The fast growth of economic development causes human needs to be immeasurable. One of the efforts that could be done to fulfill life needs in the future was Investation. Stock is one of the Investation instruments with interesting benefits but has high- risk loss caused by the unstable stock market trend between some period. For minimalizing the risky loss, the literati need to predicting the stock rate trend. The accurate prediction will help the investor in choosing a stock value in the future. In this study, the literati make a comparison to predict stock market trend with three kinds of algorithms supervised machine learning that are Randon Forest, Support Vector Regression (SVR), and K-Nearest Neighbor (KNN) based on their accurate level. A model could be said accurate just if they have a lower value of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The best Stock Closing Price prediction will be obtained by the Support Vector Regression method and see how low the result of RMSE and MAE value is compared with another method. To calculate, the study uses a daily data history from investing.com website between March 2017 to February 2020 period. The object data is a three big company in Indonesia which listed in IDX30."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Rismawati
"Departemen Teknik Elektro Universitas Indonesia telah mengembangkan suatu sistem berbasis Latent Semantic Analysis (LSA) untuk mendeteksi plagiarisme pada karya tulis berbahasa Indonesia dan Inggris. Data keluaran sistem deteksi plagiarisme berbasis LSA adalah nilai frobenius norm, slice, dan pad. Pada skripsi ini akan menjelaskan serta memberikan analisis pada pengembangan sistem deteksi plagiarisme yang telah ada yaitu dengan menerapkan algoritma Support Vector Machine (SVM).
Support Vector Machine (SVM) adalah suatu Learning Algoritm yang bertujuan untuk menemukan suatu hipotesis berupa bidang pemisah (hyperplan) terbaik dari sekumpulan data yang dapat dipisahkan secara linear maupun tidak linear. SVM akan memisahkan data hasil keluaran sistem deteksi plagiat bebasis LSA menjadi dua kelas yaitu "plagiat" dan "tidak plagiat" dengan menggunakan 2 metode yaitu kombinasi data input dan kombinasi data output dengan metode AND. Beberapa modifikasi terhadap imput program dilakukan diantaranya memvariasikan parameter-parameter pembelajaran dan memvariasikan data hasil keluaran program deteksi plagiarisme berbasis LSA.
Hasil dari analisis serta pengujian yang telah dilakukan yaitu jika menggunakan parameter serta kombinasi data yang tepat, SVM mampu untuk meningkatkan akurasi sistem dari sistem yang menggunakan metode Learning Vector Quantization (LVQ) pada penelitian sebelumnya hingga menghasilkan akurasi sebesar 63,15% hal ini dilihat jika mempertimbangkan keseimbangan terhadap aspek presisi dan relevansi program sedangkan jika dilihat melalui presentase jumlah data yang berhasil diklasifikasikan dengan tepat, SVM mampu menghasilkan akurasi sebesar 97,04%.

Department of Electrical Engineering, University of Indonesia has developed a system based on Latent Semantic Analysis (LSA) to detect plagiarism between two paper written in different languages, which are Indonesian and English. The output data of plagiarism detection system are frobenius norm, slice, and pad. This thesis will explain and provide analysis of the development of plagiarism detection system that already exist by applying Support Vector Machine (SVM) algorithm.
Support Vector Machine (SVM) is a Learning Algorithm that aims to find a best hypothetical form called hyperplan to separated a set of data that can be separated linearly and nonlinearly. SVM will separate output data of plagiarism detection system into two classes, "plagiat" class and "tidak plagiat" class by using two methods: combination of input data method and output data combined with AND method. Some modifications to input program are made, such as variating the parameters of learning and variating the output data of plagiarism detection program.
The results of analysis and test that has been done are: if the system use correct parameters and correct combinations of the data, SVM is able to improve accuracy of the system from the last research that using Learning Vector Quantization (LVQ). The accuracy of SVM is 63,15% if considering the balance of precision and relevance of the program, while when viewed through a percentage of the amount of data that appropriately classified, the accuracy of SVM is 97.04%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65023
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>