Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 165068 dokumen yang sesuai dengan query
cover
Dito Tunjung Parahyta
"Proses Thermal Mixing adalah jenis dari proses pencampuran yang penting di berbagai industri, seperti industri pangan, pupuk, farmasi, material sampai petrochemical. Proses Thermal Mixing merupakan proses Multi input multi ouput (MIMO), karena bekerja dengan mengendalikan dua flow air panas dan air dingin untuk mengendalikan temperatur dan level campuran. Meskipun memiliki respon yang kurang baik untuk mengendalikan MIMO, namun PID masih banyak digunakan karena kesederhanaannya. Algoritma non konvensional yang lebih baik seperti fuzzy control memiliki kerumitan yang tinggi dibanding PID. Algoritma Adaptive Fuzzy PID Controller (AFPIDC) merupakan gabungan dari keduanya, memiliki basis PID yang cukup sederhana namun ditambahkan aspek Fuzzy untuk mempercepat pengendalian dengan cara mengubah konstanta PID secara real-time (on the fly). Algoritma AFPIDC ini diterapkan pada simulasi sistem pengendalian temperatur dan level air pada proses water Thermal Mixing dan dilakukan pada program MATLAB/SIMULINK di PC. Fuzzy yang digunakan memiliki dua input berupa error dan perubahan error, dan memiliki tiga output berupa perubahan nilai konstanta PID. Pengujian sistem dilakukan dengan simulasi perubahan setpoint dan gangguan berupa kebocoran flow. Dari hasil pengujian sistem, pengendali AFPIDC memiliki performa yang lebih baik dari PID dalam mengendalikan temperatur dan level pada sistem. Dalam pengendalian temperatur, didapatkan nilai settling time PID sebesar 830 detik, AFPIDC sebesar 328 detik dan untuk nilai overshoot PID 6,3% dan AFPIDC 0%. Untuk pengendalian level didapatkan settling time PID 3221 detik dan AFPIDC 235 detik dengan nilai overshoot PID 10,5% dan AFPIDC 0%. Dari pengujian sistem terhadap gangguan kebocoran, pengendali temperatur membutuhkan waktu untuk kembali stabil pada PID 780 detik, AFPIDC 250 detik. Sedangkan untuk pengendalian level untuk kembali stabil membutuhkan waktu PID 4510 detik, AFPIDC 225 detik.

The Thermal Mixing Process is a type of mixing process that is important in various industries, such as the food, fertilizer, pharmaceutical, material to petrochemical industries. The Thermal Mixing Process is a multiple-input multiple-output process (MIMO), because it works by controlling hot water and cold-water flows to control the temperature and level of the mixture. Although it has a poor response to control MIMO system, PID is still widely used because of its simplicity. There are some better control algorithm, such as fuzzy control, but have higher complexity than PID. The Adaptive Fuzzy PID Control (AFPIDC) algorithm is a combination of the two, has a simple PID basis with added Fuzzy aspects to speed up control by changing the PID constant in realtime. The AFPIDC algorithm is applied to the simulation of temperature and water level control systems in the process of water Thermal Mixing and is done on the MATLAB/SIMULINK program on a PC. The fuzzy algorithm uses two inputs in the form of errors and changes in errors and has three outputs in the form of changes in the value of the PID constant. System testing is done by simulating setpoint changes and disruption in the form of leakage flow. From the results of system testing, AFPIDC controllers have better performance than PID in controlling temperature and level in the system. In temperature control, the PID settling time is 830 seconds, AFPIDC is 328 seconds and the PID overshoot is 6,3% and AFPIDC is 0%. In level control, the settling time of PID is 3221 seconds while AFPIDC is 235 seconds with PID overshoot is 10,5% while AFPIDC 0%. From testing the system with leakage disturbance, the temperature controller needs time to regain stability at PID 780 seconds, AFPIDC 250 seconds. Meanwhile the level controlling stabilizes at PID 4510 seconds, and AFPIDC at 225 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Syafieq Ridho
"Di dalam dunia industri, operasi pencampuran banyak digunakan untuk mengolah bahan mentah menjadi suatu produk seperti minyak bumi, bahan kimia, dan lainnya. Biasanya, pada plant skala industri digunakan PID kontroler sebagai sistem pengendaliannya, akan tetapi PID kontroler ini akan menjadi kurang baik ketika menghadapi sistem non-linear, sehingga pada penilitian ini dirancang suatu sistem kendali berbasis neural network yang diharapkan dapat memberikan performa yang lebih baik dan efisien dibandingkan PID konvensional. Model plant yang digunakan untuk simulasi di dalam penelitian ini adalah proses pencampuran air, dimana temperatur dan level air akan dikendalikan. Dibuat dua jenis sistem pengendali neural network (NN) dengan perbedaan pada input-nya, yaitu NN dengan input SP, PV(n), PV(n-1) dan NN dengan input SP, error, dan perubahan error. Kedua sistem pengendali neural network ini dibuat dengan menggunakan metode feed-forward neural network dan simulasinya dibuat dengan menggunakan Simulink. Berdasarkan hasil pengujian, dapat disimpulkan bahwa sistem pengendalian dengan menggunakan neural network memberikan performa yang lebih baik jika dibandingkan dengan sistem pengendalian PID konvensional, yaitu dengan settling time dan rise time yang lebih cepat, serta menghasilkan respon sistem yang tidak memiliki overshoot sama sekali.

In the industrial world, blending operations are widely used to process raw materials into products such as petroleum, chemicals, and others. Usually, in industrial-scale plants, the PID controller is used as a control system, but this controller will be less good when dealing with non-linear systems. In this study, a neural network-based control system is expected to provide better and more efficient performance compared to conventional PID control. The plant model used for simulation in this study is the process of mixing water, where the temperature and water level will be controlled. Created two types of neural network (NN) control systems with differences in the input, the first is a NN with SP, PV(n), PV(n-1) for the input, and the second is a NN with SP, error, and change of error for the input. Both of these neural network control systems are made using a feed-forward neural network method, and the simulation was created by using Simulink. Based on the test results, it can be concluded that the control system using a neural network provides better performance when compared to conventional PID control systems with a faster settling time and rise time, and produces a system response that has no overshoot at all.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aristia Reyhan Rafandi Betha
"Beragam kebutuhan industri, membuat jenis-jenis proses pada industri pengolahan menjadi beragam dengan berberapa parameter input dan output, salah satunya adalah proses thermal mixing yang menggunakan sistem multi input multi output. Thermal mixing atau continuous stirred-tank reactor mengendalikan 2 aliran dengan temperatur berbeda kedalam tanki pencampur sehingga mendapat temperatur dan ketinggian tangki sesuai yang diinginkan. pada penelitian ini telah dirancang sistem pengendali berbasis logika fuzzy pada pengendalian temperatur dan level. Penelitian ini sistem logika fuzzy menngunakan 2 input dan 1 output unutk masing-masing parameter pengendalian. 2 input fuzzy set menggunakan nilai error dan change of error. Setiap fuzzy set menngunakan 7 membership function yaitu negative big (NB), negative medium (NM), negative small (NS), zero (Z), positive small (PS), positive medium (PM), dan positive big (PB). Sistem dapat melakukan pengendalian temperatur dan level sesuai yang diinginkan. Sistem ini menggunakan simulasi berbasis aplikasi MATLAB Simulink. Berdasarkan hasil simulasi, dapat disumpulkan bahwa pengendalian menggunakan fuzzy logic controller lebih baik dibandingkan pengendalian PID. Hasil pengendalian fuzzy memiliki rata-rata rise time dan settling time yang lebih cepat dan tidak memiliki overshoot.

A variety of industrial needs, making the types of processes in the processing industry to be diverse with several input and output parameters, one of which is a thermal mixing process that uses a multi-input multi output system. Thermal mixing or continuous stirred-tank reactor controls 2 streams with different temperatures into the mixing tank so that the temperature and height of the tank are as desired. In this research a fuzzy logic based controller system has been designed for controlling temperature and level. This study uses a fuzzy logic system using 2 inputs and 1 output for each control parameter. 2 fuzzy input sets use error and change of error values. Each fuzzy set uses 7 membership functions, namely negative big (NB), negative medium (NM), negative small (NS), zero (Z), positive small (PS), positive medium (PM), and positive big (PB). The system can control the temperature and level as desired. This system uses a simulation based on the MATLAB Simulink application. Based on the simulation results, it can be concluded that the control using fuzzy logic controller is better than PID control. Fuzzy control results have a faster average rise time and settling time and do not have overshoot."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deden Ari Ramdhani
"Sistem pengendalian temperatur campuran dan ketinggian air merupakan pengaplikasian yang umum ditemukan dalam bidang industri. Salah satu proses yang menggunakan sistem pengendalian tersebut adalah proses water thermal mixing. Proses tersebut bertujuan untuk menjaga nilai temperatur dan ketinggian air pada nilai yang diinginkan. Hal tersebut dapat diicapai dengan cara mengatur flow input air panas dan air dingin serta mengatur flow out dengan nilai konstan. Pada penelitian ini, diterapkan Reinforcement Learning (RL) dengan Deep Deterministic Policy Gradient (DDPG) Agent untuk melakukan simulasi proses tersebut pada Matlab dan Simulink. Proses training diperlukan untuk memberikan agent pengalaman dalam mengendalikan proses tersebut. Performa dari pengendali RL akan dilihat dari beberapa parameter seperti rise time, settling time, overshoot, dan steady-state error sebagai data kualitatif. Berdasarkan hasil pengendalian, didapatkan nilai overshoot dan steady-state error yang cukup kecil yaitu 1.3% dan 1.76%.

Mixture temperature and water level control systems are common applications in industrial field. One of the process that uses the control system is water thermal mixing process. The goal of the process is to maintain a temperature and water level at expected value. The goal can be achieved by adjusting the input flow of hot and cold water plus adjust flow out on a constant value. In this study, Reinforcement Learning (RL) with Deep Deterministic Policy Gradient (DDPG) agent was applied to simulate the process in Matlab and Simulink. The training process is needed to give agents experience in controlling the process. The performance of the RL controller will be seen from several parameters such as rise time, settling time, overshoot, and steady-state error as qualitative data. Based on the control results, the overshoot and steady-state error values are quite small, namely 1.3% and 1.76%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Miftahur Roziqiin
"Sistem pengendalian merupakan suatu sistem yang banyak ditemukan dan berhubungan dengan beragam jenis proses yang ada pada berbagai bidang, terutama bidang industri. Proses pengendalian yang umum ditemukan dalam industri adalah proses thermal mixing. Salah satu contoh proses thermal mixing yang cukup sederhana adalah proses pencampuran air panas dan air dingin atau water thermal mixing, dengan tujuan untuk mencapai temperatur campuran yang diinginkan, tetapi tetap menjaga ketinggian air agar tidak melebihi kapasitas wadah. Nilai temperatur tersebut dapat dicapai dengan cara mengatur debit aliran air yang masuk ke dalam wadah pencampuran. Pada penelitian ini, diimplementasikan sistem pengendalian menggunakan Reinforcement Learning dengan algoritma Soft Actor-Critic pada simulasi pengendalian ketinggian dan temperatur air pada proses water thermal mixing menggunakan Simulink pada MATLAB. Agent dilatih agar dapat mengendalikan sistem secara cepat dan tepat dalam menentukan action berupa nilai untuk mengatur valve menghasilkan debit aliran air yang diperlukan. Hasil dari penelitian ini menunjukkan bahwa algoritma SAC dapat digunakan untuk mengendalikan sistem dengan baik, dengan nilai overshoot terbesar yaitu 1.33% untuk pengendalian ketinggian air dan steady-state error terbesar yaitu 0.33℃ saat mengendalikan temperatur campuran, dan nilai settling time terbesar yaitu 160 sekon saat terjadi perubahan set point untuk ketinggian air dari 2.5 dm menjadi 5 dm, serta mampu mengendalikan kestabilan sistem ketika mengalami gangguan dalam waktu 93 sekon.

The control system is a system that is widely found and relates to various types of processes that exist in various sector, especially the industrial sector. The control process commonly found in industry is the thermal mixing. One of the thermal mixing processes is the process of mixing hot and cold water or water thermal mixing, with the aim of reaching the desired temperature, but still maintaining the water level, so that it does not exceed the capacity of the container. This temperature value can be reached by adjusting the flow of water entering the mixing container. In this study, a control system was implemented using Reinforcement Learning with Soft Actor-Critic algorithm on a simulation of controlling water level and temperature in the water thermal mixing using Simulink in MATLAB. Agents are trained to be able to control the system quickly and precisely in determining the action in the form of a value to adjust the valve to produce the required water flow rate. The results of this study indicate that the SAC algorithm can be used to control the system properly, with the biggest overshoot of 1.33% for controlling water level and steady-state error of 0.33℃ when controlling the temperature of the mixture, and the settling time of 160 seconds when the set point value change for the water level from 2.5 dm to 5 dm, as well as being able to control the stability of the system when experiencing disturbances within 93 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Vadhel Akbariza
"Dalam penelitian ini dilakukan simulasi pengendalian temperatur dan level air (multivariable) pada proses pencampuran dalam suatu tangki berkapasitas 80 liter menggunakan MATLAB Simulink. Tujuan dari penelitian ini adalah menjaga temperatur dan level air di set point pada sebuah proses dengan mengendalikan debit air dingin dan panas yang masuk ke tangki pencampuran. Keterkaitan antara satu variabel dengan variabel lainnya dapat direduksi menggunakan decoupling. Sistem akan diuji dengan banyak perubahan set point dan diberikan input gangguan berupa ketidakakuratan temperature transmitter dalam membaca temperatur air campuran. Pengujian sistem dilakukan menggunakan pengendali PI dan ANFIS. Pengendali PI digunakan sebagai data training ANFIS. Pada penelitian ini diberikan batasan bahwa debit maksimal yang digunakan adalah 15 l/min, temperatur maksimum pada tangki campuran adalah 90℃, dan level air maksimum tangki adalah 75 cm. Performa dari kedua pengendali akan dibandingkan dengan melihat parameter-parameter seperti RMSE, rise time, settling time, dan %Overshoot sebagai data kualitatif. Penelitian ini menunjukkan bahwa pengendali ANFIS secara keseluruhan lebih baik daripada pengendali PI dalam pengujian perubahan set point yang dapat dilihat dari nilai RMSE ANFIS untuk kendali temperatur berada di angka rata-rata 0.174 dan level pada angka 0.196. RMSE pengendali PI untuk kendali temperatur adalah 0.21 dan level 0.2. Pemberian input gangguan menunjukkan pengendali ANFIS lebih baik daripada pengendali PI dalam menangani adanya kesalahan pembacaan sensor oleh temperature transmitter.

In this research, a simulation program for temperature and level control on a liquid (water) mixing process with assumed to have a tank volume 80 liter is proposed using MATLAB Simulink. The purpose of this study is to maintain the temperature and water level at the set point in a process by controlling the flowrate of cold and hot water that enters the mixing tank. The influence of one variable with others can be reduced using decoupling technique. The system will be tested with many set point changes and given input an inaccurate transmitter temperature in reading the temperature of the mixed water. System testing is performed using a PI and ANFIS Controller. PI Controller is used to generate the ANFIS training data. In this research, a limit is given that the maximum discharge used is 15 liters/min, the maximum temperature and level in the mixed tank is 90℃ and 75 cm. The performance of those two controllers will be compared by observing parameters such as RMSE, rise time, settling time, and %Overshoot as qualitative data. This research shows that ANFIS controllers are generally better than PI controllers when tested with set point changes which can be seen from the ANFIS RMSE values ​​for temperature control at an average rate of 0.174 and a level of 0.196. The RMSE of the PI controller for temperature control is 0.21 and level 0.2. Tests with disturbance input show that ANFIS controllers are better at handling inaccurate transmitter temperature in reading the temperature of the mixed water than PI Controller."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Ahmad Nafiys Ismail
"Proses sistem kendali adalah proses penting yang terjadi di dunia perindustrian, salah satunya di ranah industri hulu migas. Salah satu instrumen utama pada proses upstream migas adalah separator yang memiliki fungsi untuk memisahkan kandungan fluida minyak mentah yang mengalir melalui pipa menjadi beberapa wujud fase. Pada kenyataanya hampir semua proses pengendalian separator pada fasilitas produksi PT. Pertamina EP masih menggunakan model pengendalian PID konvensional yang harus terus dimonitoring oleh sumber daya manusia selama 24 jam per hari. Oleh karenanya, pada penelitian ini dirancang sebuah metode pengendalian berbasis intelligent system, yaitu simulasi pengendalian Neuro Fuzzy. Metode pengendalian Neuro-Fuzzy ini didesain menggunakan algoritma ANFIS dengan input berupa setpoint, error, dan selisih error dari proses variabel fluida separator, yaitu level (h) fluida. Penelitian dilakukan menggunakan aplikasi Simulink/MATLAB dengan memasukkan fungsi transfer dari model matematis separator lalu melakukan perbandingan dengan melihat grafik respon dan parameter antara model pengendali PID dan ANFIS. Hasil dari penelitian menunjukan bahwa performa pengendali model ANFIS secara rata-rata memiliki overshoot yang jauh lebih baik dari model PID karena selalu mendekati nol dalam tiap kondisi set point serta model ANFIS memiliki nilai error yang lebih baik pada saat set point bernilai 5 dengan perbedaan error 0,712 dari error model pengendali PID.

The control system process is an important process that occurs in the industrial world, one of which is in the upstream oil and gas industry. One of the main instruments in the upstream oil and gas process is a separator which has afunction to separate the crude oil fluid content flowing through the pipe into several phases. In fact, almost all separator control processes at PT. Pertamina EP still uses the conventional PID control model which must be continuously monitored by human resources 24 hours per day. Therefore, in this study, a control method based on intelligent systems is based on Neuro Fuzzy control of the level (h) of the fluid. The research was conducted using the Simulink/MATLAB application by entering the transfer function of the separator mathematical model and then making comparisons by looking at the response and parameter charts between the PID and ANFIS controller. The results of the study show that the ANFIS model controller performance on average has a much better overshoot than the PID model because it is always close to zero in each set point condition and the ANFIS model has a better error value when the set point is 5 with an error difference of 0.712. of the PID controller model error."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Zidane Alfaiz
"Kopling virtual adalah suatu teknik yang digunakan untuk menghubungkan dua kereta atau lebih secara virtual, tanpa adanya koneksi fisik langsung antara keduanya. Penggunaan pengendali fuzzy PID pada kopling virtual dapat memberikan kemampuan adaptif yang lebih baik terhadap perubahan kondisi kereta dibandingkan dengan pengendali PID biasa. Penelitian ini bertujuan untuk menguji kinerja kopling virtual yang menggunakan pengendali fuzzy-PID. Penelitian dilakukan dengan aplikasi matlab, dan mengujikan 4 metode, yaitu Mamdani dan sugeno dengan masing masing tipe 1 dan 2. Hasil penelitian menunjukkan bahwa pengendali fuzzy PID mampu mengontrol sistem dengan lebih baik dibandingkan dengan pengendali PID biasa, dengan deviasi posisi yang lebih kecil untuk mencapai set poin yang diinginkan

Virtual coupling is a technique used to connect two or more trains virtually, without a direct physical connection between them. The use of fuzzy PID controllers in virtual coupling can provide better adaptive capabilities to changes in train conditions compared to ordinary PID controllers. This research aims to test the performance of virtual coupling using fuzzy-PID controller. The research was conducted with the Matlab application, and tested 4 methods, namely Mamdani and Sugeno with types 1 and 2 respectively. The results showed that the PID fuzzy controller was able to control the system better than the ordinary PID controller, with a smaller position deviation to achieve the desired set point."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ikbal Faturohman
"Air limbah sebelum dibuang ke lingkungan harus memenuhi baku mutu lingkungan, di antaranya memenuhi pH netral. Karena itu, pengendalian pH sangat penting dilakukan. Unit mini plant WA921 bekerja untuk mengolah air buangan asam atau basa seperti yang digunakan di industri. Semula setelan parameter pengendali PID dan PID Non-linear didasarkan pada kondisi air di tempat peralatan itu dibuat sehingga perlu diuji kinerjanya dengan menggunakan kondisi air lokal. Penelitian sebelumnya sudah mendapatkan setelan parameter pengendali PID yang optimum, sedangkan setelan parameter pengendali PID Non-linear yang optimum belum dievaluasi. Pengujian kinerja dilakukan pada kondisi air lokal dengan pH larutan asam dan basa 0,1 N, dan perubahan pH dari 3,8 ke 7,0 dalam rangka mendapatkan kondisi non-linear. Hasilnya, untuk skema proses Short didapat setelan terbaik parameter pengendali PID non-linear adalah PB 10, Ti 120, Td 10, Gw 10, dan Gg 0.3 dengan IAE (integral of absolute error) sebesar 154, lebih kecil dibanding dengan IAE pengendali PID linear sebesar 223. Sedangkan untuk skema Long, setelan terbaiknya pada PB 5, Ti 425, Td 40, Gw 30, dan Gg 0.25 dengan IAE sebesar 656 lebih kecil dibanding dengan IAE PID linear sebesar 888.

Waste water before discharge into the environment must meet environmental quality standards, of which meets a neutral pH. Therefore, pH control is very important. WA921 unit mini plant work for processing waste water of acid or base as used in the industry. Original PID controller parameter settings and Non-linear PID based on water conditions at the place it was made, so that the equipment needs to be tested its performance by using local water conditions. Previous research had a PID controller parameter setting reach the optimum, while the non-linear PID controller parameter setting the optimum has not been evaluated. Performance testing conducted on local water conditions with a pH of 0.1 N acid and base, and changes in pH from 3.8 to 7.0 in order to obtain non-linear conditions. The result, for the scheme Short the best suits obtained for non-linear PID control parameters are PB 10, 120 Ti, Td 10, Gw 10, and 0.3 Gg by IAE (integral of absolute error) of 154, is smaller than the IAE for PID linear controller 223. As for the scheme Long, his best suit on the PB 5, 425 Ti, Td 40, Gw 30, and 0:25 with IAE Gg of 656 smaller than the IAE for PID linear 888."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42690
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>