Klasifikasi stroke merupakan masalah yang harus diselesaikan dengan cepat dan tepat untuk menentukan pengobatan awal yang tepat bagi penderita stroke. Jika pengobatan awal yang tepat terlambat untuk dilakukan, maka hal ini dapat menyebabkan kecacatan bahkan kematian. Penelitian ini menyelesaikan masalah klasifikasi stroke menggunakan pendekatan machine learning dengan metode Minimally Spanned Support Vector Machine (MSSVM). Metode ini merupakan pengembangan dari metode Support Vector Machine (SVM) dimana metode ini mengaplikasikan algoritma Minimum Spanning Tree (MST) untuk mereduksi jumlah support vector pada SVM. Hal ini bertujuan untuk mempercepat waktu komputasi yang dibutuhkan oleh SVM dan meningkatkan kinerja SVM. Hal ini dikarenakan waktu komputasi yang dibutuhkan oleh SVM bergantung pada jumlah support vector dimana jumlah support vector yang semakin banyak memberikan waktu komputasi yang dibutuhkan semakin lama. Selain itu, pereduksian jumlah support vector dapat memberikan kesalahan generalisasi yang lebih kecil sehingga memberikan kinerja yang lebih baik. Pada penelitian ini, kinerja dari MSSVM dievaluasi dengan membandingkan beberapa parameter dengan kinerja SVM. Hasil yang diperoleh adalah bahwa MSSVM berhasil mereduksi jumlah support vector pada SVM sedemikian sehingga mempercepat waktu komputasi yang dibutuhkan oleh SVM dalam mengklasifikasikan data stroke tanpa mengurangi kinerja dari SVM.
Stroke classification is a problem that must be solved quickly and precisely to determine the right initial treatment for stroke sufferers. If the right initial treatment is too late to do so, this can cause disability and even death. This study solves the problem of stroke classification using a machine learning approach with Minimally Spanned Support Vector Machine (MSSVM) method. This method is a development of Support Vector Machine (SVM) method where this method applies the Minimum Spanning Tree (MST) algorithm to reduce the number of support vectors in SVM. This aims to speed up the computation time required by SVM and improve the performance of SVM. This is because the computation time required by SVM depends on the number of support vectors where the more support vectors give the required computation time longer. In addition, reducing the number of support vectors can provide smaller generalization errors, thus providing better performance. In this study, the performance of MSSVM was evaluated by comparing several parameters with the performance of SVM. The results obtained are that MSSVM has succeeded in reducing the number of support vectors in SVM thus accelerating the computational time needed by SVM in classifying stroke data without reducing SVM performance.
"Kanker adalah penyakit yang disebabkan akibat pertumbuhan (pembelahan) tidak normal dari sel jaringan tubuh. Kanker dapat menyebar ke jaringan lain yang terdekatnya. Menurut World Health Organization (WHO), tercatat pada tahun 2018 ada sebanyak 9,6 juta jiwa yang meninggal pada tahun 2018. Biasanya untuk dapat mengetahui sesorang terjangkit kanker atau tidak, ahli medis akan melakukan biopsi apabila disarankan oleh dokter. Namun, sekarang terknologi semakin berkembang, para saintis menggunakan metode komputasi dalam pendekatan pengolahan citra untuk meningkatkan penilaian histopatologis. Penelitian – penelitian sebelumnya telah menunjukan bagaimana machine learning dapat membantu pendeteksian kanker salah satunya mengguakan metode data scaling. Penelitian ini membahas algoritma data scaling membantu meningkatkan akurasi dalam proses klasifikasi kanker usus besar menggunakan Support Vector Machine. Hasil dari penelitian ini, algoritma data scaling memiliki nilai akurasi yang lebih tinggi dibandingkan dengan yang tidak menggunakannya.
Cancer is a disease caused by abnormal growth (division) of body tissue cells. Cancer can spread to other tissues closest to it. According to the World Health Organization (WHO), it was noted that in 2018 there were 9.6 million people who dies in 2018. Usually to be able to find out if someone has contracted cancer, a medical expert will do a biopsy if advised by a doctor. However, now that technology is growing, scientists use computational methods in image processing approaches to improve histopathological assessment. Previous studies have shown how machine learning can help detect cancer, one of which uses the method of data scaling. This study discusses the data scaling algorithm help to improve accuracy in the process of classification of colon cancer using Support Vector Machine. The result of this study, the data scaling algorithm has a higher accuracy than those who did not use it.
"Infark Serebri adalah kondisi dari suatu jaringan otak yang tidak teralirkan darah sehingga sel-sel otak tersebut kekurangan oksigen dan nutrisi. Hal ini dapat mengakibatkan kerusakan bahkan kematian sel-sel otak dan perlu dengan segera mendapatkan penanganan. Keadaan ini sering dikenal sebagai Stroke, dimana pada penulisan ini akan berfokus pada data stroke nonhemoragik (stroke tidak berdarah) yang diakibatkan penyumbatan pembuluh darah di otak. Biasanya penyakit ini dapat dikenali dari gejala kelumpuhan suatu bagian tubuh atau kesulitan menggunakan suatu alat indra. Menurut para ahli, penyakit ini harus dicegah sejak dini karena dapat berakibat fatal bagi keseluruhan fungsional tubuh. Salah satu tindakan yang dapat dilakukan sejak dini adalah mendeteksi kemungkinan penyakit agar dapat dilakukan penanganan secara tepat dan cepat. Dalam penelitian ini, Infark Serebri dideteksi dengan mengklasifikasi ada atau tidaknya sel abnormal pada jaringan otak pada hasil CT Scan otak pasien menggunakan Support Vector Machine dengan Seleksi Fitur RELIEF. Data yang digunakan berupa data numerik dari pasien yang melakukan pemeriksaan di RSUPN dr. Cipto Mangunkusumo Jakarta dalam bentuk hasil CT Scan otak. Terdapat Sembilan fitur indikator yang digunakan dan diproses dengan membandingkan Support Vector Machine dengan dan tanpa seleksi fitur RELIEF. Berdasarkan hasil uji coba, metode yang diusulkan mampu mencapai akurasi sebesar 95,23%. Sehingga, penggunaan seleksi fitur RELIEF pada SVM merupakan metode yang baik untuk menklasifikasi infark serebri.
The Cerebrovascular Infarction is a condition of an inflowed blood of brain tissue so that the brain cells lack oxygen and nutrients. This can cause the damage and even the death of brain cells and needed to get immediate treatment. This situation is often known as stroke, which at this writing will fokus on data on non-hemoragic strokes (non-bleeding strokes) caused by blockage of blood vessels in the brain. Usually this disease can be identified by symptoms of paralysis of some body part or difficulty using a human sensory. According to the experts, this disease must be prevented early because it can be fatal to the overall functional body. One of the actions that can be done early is to detect the possibility of a disease so that it can be handled appropriately and quickly. In this study, the cerebral infarction was detected by classifying the presence or absence of abnormal cells in brain tissue in the results of a CT brain scan of patients using Support Vector Machine with the RELIEF Selection Feature. The data used in the form of numerical data reports from patients who performed examinations at the RSUPN dr. Cipto Mangunkusumo Jakarta in the form of brain CT Scan. There are nine indicator features that are used and processed by comparing Support Vector Machine with and without RELIEF feature selection. Based on the results, the proposed method is able to achieve accuracy value of 95,23%. Thus, the use of RELIEF feature selection with SVM is a good method for classifying cerebral infarction.
"