Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 26416 dokumen yang sesuai dengan query
cover
Desi Windatiningsih
"ABSTRAK
The changes in hydrological phenomena that occur due to natural change and human activity that causes the data conditions in the field are not in accordance with ideal conditions. This study was conducted to analyze homogeneity and trend validation test methods, to detect data deviations and to provide information about data quality conditions. This is useful to ensure that the hydrological data to be published is in accordance with the criteria. This validity test includes a
homogeneity test, a trend test, and the detection of data deviations. The data validation testing was applied in Upper
Citarum Watershed on 4 selected gauging stations, namely Citarum-Nanjung, Cigulung-Maribaya, CikapundungMaribaya and Cikapundung-Gandok. Pettitt and T methods were used for homogeneity test while Mann-Kendall and Spearman for trend test with a significance level of 5%. The results indicate that the homogeneity test using Pettitt method is more suitable since its discharge population data is not normally distributed. While for trend test, both MannKendall and Spearman methods give relatively the same significance, as both tests are non-parametric statistical methods. The strength of these two tests depends on significance level, sample size, as well as type of distribution. The test results show that homogeneity and trend of discharge data for four gauging stations in Upper Citarum Watershed are
not uniform."
Bandung : Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2019
551 JSDA 15:2 (2019)
Artikel Jurnal  Universitas Indonesia Library
cover
Desi Windatiningsih
"Adanya perubahan fenomena hidrologi yang terjadi akibat perubahan alam dan ulah manusia menyebabkan kondisi data di lapangan tidak sesuai dengan kondisi ideal. Kajian ini dilakukan untuk menganalisis metode uji validasi homogenitas dan trend, mendeteksi penyimpangan data dan memberikan informasi tentang kondisi kualitas data. Hal ini bermanfaat untuk memastikan data hidrologi yang akan dipublikasikan telah sesuai dengan kriteria yang
ditetapkan. Uji validitas ini mencakup uji homogenitas, uji trend, dan deteksi penyimpangan data. Uji validasi data debit pada DAS Citarum Hulu dilakukan pada 4 pos duga air terpilih yaitu pos Citarum-Nanjung, Cigulung-Maribaya, Cikapundung-Maribaya dan Cikapundung-Gandok. Untuk uji homogenitas, digunakan metode Pettitt dan T. Sedangkan untuk uji trend digunakan metode Mann-Kendall dan Spearman dengan tingkat signifikansi 5%. Hasil kajian
menunjukkan bahwa uji homogenitas dengan metode Pettitt lebih sesuai digunakan pada kajian ini karena memiliki populasi data debit yang tidak berdistribusi normal. Hasil uji trend dengan metode Mann-Kendall dan Spearman menunjukkan hasil signifikansi yang relatif sama, karena kedua uji tersebut memiliki metode statistik non parametrik. Kekuatan kedua uji ini tergantung pada tingkat signifikansi, ukuran sampel data, dan jenis distribusi. Hasil uji menunjukkan homogenitas dan trend data debit keempat pos di DAS Citarum Hulu tidak seragam. "
Bandung : Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2019
551 JSDA 15:2 (2019)
Artikel Jurnal  Universitas Indonesia Library
cover
Ira Sulistyowati
"Dalam rangka mendukung pengambilan keputusan yang tepat bagi pimpinan berbasis data (data driven organization), Kemenkeu menyusun inisiatif strategis optimalisasi Sistem Layanan Data Kementerian Keuangan (SLDK) dan pengembangan proyek data analytics. Dalam pengembangan data analytics, terdapat permasalahan rendahnya kualitas data sehingga data driven organization belum terwujud dengan optimal. Penelitian ini meggunakan metode kualitatif dengan melalui proses wawancara dan observasi. Pengukuran kualitas data dan tingkat kematangan kualitas data menggunakan kerangka kerja Loshin’s Data Quality, DAMA-Data Management Book of Knowledge (DMBoK), dan Government Data Qualiaty (GDQ). Hasil pengukuran kualitas data menunjukkan terdapat permasalahan data tidak akurat dan tidak lengkap dan tingkat kematangan kualitas data Kemenkeu berada pada level Repeatable. Menyusun strategi kualitas data, ketentuan teknis, tim kualitas data, dan prosedur pengelolaan kualitas data; identifikasi harapan dan aturan kualitas data; mengukur, memantau, dan melaporkan kualitas data; mengelola aturan, knowledge base, dan metadata; meningkatkan kesadaran; melakukan pelatihan; menyediakan tools, menerapkan aturan dan menangani permasalahan; memutakhirkan SLA; mengelola kinerja kualitas data; dan melakukan audit kualitas data merupakan strategi peningkatan kualitas data yang dilaksanakan dalam empat tahap pada Tahun 2022-2023.

To support the right decision making for data-driven organizations, the Ministry of Finance (MoF) has developed a strategic initiative for optimizing the MoF's Data Service System (SLDK) and developing a data analytics project. In the development of data analysis, there is a problem of low data quality so that data-driven organizations have not been realized optimally. This study uses a qualitative method through interview and observation. Measurement of data quality and maturity level of data quality uses the Loshin's Data Quality framework, DAMA-Data Management Book of Knowledge (DMBoK), and Government Data Quality (GDQ). The results of the measurement of data quality indicate that there are problems with inaccurate and incomplete data and the MoF's data quality level is at the Repeatable level. Develop a data quality strategy, technical provisions, data quality team, and data quality management procedures; identification of data quality expectations and rules; measure, monitor, and report on data quality; manage rules, knowledge base, and metadata; raise awareness; conduct training; provide tools, apply rules and carry out problem solving; updating SLAs; manage data quality performance; and conducting data quality audits is a data quality improvement strategy implemented in four stages in 2022-2023.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rela Sabtiana
"Badan Pusat Statistik Kabupaten Kaur merupakan satuan kerja di bawah Badan Pusat Statistik Republik Indonesia yang bertanggung jawab melaksanakan kegiatan statistik di wilayah Kabupaten Kaur Provinsi Bengkulu. Meskipun Badan Pusat Statistik Kabupaten merupakan satuan kerja terkecil di bawah Badan Pusat Statistik Republik Indonesia, namun Badan Pusat Statistik Kabupaten menyumbang peran besar dalam pencapaian tujuan Badan Pusat Statistik untuk meningkatkan kualitas data. Hal ini disebabkan oleh peran Badan Pusat Statistik Kabupaten sebagai tombak dalam pengumpulan data langsung ke responden dan sekaligus sebagai pengolah dan diseminasi data. Sebagai contoh adalah pelaksanaan Survei Sosial Ekonomi Nasional yang tengah berlangsung pada semester I tahun 2019 saat penyusunan penelitian ini. Dari survei ini diperoleh permasalahan yaitu terdapat ketidaklengkapan, ketidakkonsistenan isian dan ketidaktepatan harga pada Modul Kor dan Konsumsi Pengeluaran saat entri data dalam aplikasi. Begitu pula saat pasca entri masih ditemukan ketidakkonsistensian dan ketidaktepatan isian. Untuk mengatasi permasalahan ini dilakukan evaluasi tingkat kematangan manajemen kualitas data menggunakan kerangka kerja Manajemen Kualitas Data Loshin. Hasil yang diperoleh menunjukkan bahwa tingkat kematangan berada pada kisaran 2 dan 3. Dari delapan dimensi, terdapat empat dimensi yang belum memenuhi target yang diharapkan yaitu harapan kualitas data, protokol kualitas data, standar data, dan teknologi. Selain itu, hasil dari pengukuran kualitas data statistik menggunakan kerangka kerja European Statistical System menunjukkan bahwa total skor yang dicapai adalah 5.7 dari target yang diharapkan sebesar 9.4. Dari hasil penelitian ini selanjutnya disusun rekomendasi peningkatan kualitas data.

The BPS-Statistics of Kaur Regency is a work unit under the BPS-Statistics of the Republic of Indonesia which is responsible for carrying out statistical activities in the regency area, precisely the Regency of Kaur, Bengkulu Province. Although the Regency Statistics Agency is the smallest work unit, the BPS-Statistics of Kaur Regency contributes a large role in achieving the goals of the BPS-Statistics of Republic of Indonesia to improve data quality. This is due to the role of the Regency Statistics Agency as a spearhead in collecting data directly to respondents and at the same time as data processors. An example is the implementation of the National Socio-Economic Survey which was taking place in the first semester of 2019 during the preparation of this study. From this survey, there are problems, namely there are incompleteness, inconsistency in the contents and inaccuracy of the price range in the Cor Module and Expenditure Consumption during data entry in the application. Likewise, inconsistencies and inaccuracies are found after post entries. To overcome this problem, an evaluation of the maturity level of data quality management using the Loshin’s Data Quality Management was done. The results indicate that the maturity level is in the range of 2 and 3. Of the eight dimensions, there are four dimensions that have not met the expected targets, namely expectations of data quality, data quality protocols, data standards, and technology. In addition, the results of measuring the quality of statistical data using the European Statistical System indicate that the total score achieved is 5.7 of the expected target of 9.4. From the results of this study, recommendations were made for improving data quality."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Syafi Muhammad Tauhid
"Pemanfaatan data untuk menghasilkan informasi yang dapat mendukung pengambilan keputusan bisnis semakin banyak diaplikasikan oleh berbagai perusahaan. Salah satu data yang dimanfaatkan dalam pengambilan keputusan tersebut adalah data pelanggan mengingat perannya dalam mengetahui perilaku pelanggan. Salah satu perusahaan yang memanfaatkan data pelanggan dalam pengambilan keputusan bisnis adalah English First (EF). Dalam membantu menetapkan strategi bisnis untuk meningkatkan perfoma penjualan, perusahaan menghadapi kendala penurunan performa penjualan perusahaan yang disebabkan oleh buruknya kualitas data pelanggan, sehingga strategi bisnis yang dihasilkan kurang tepat. Perusahaan berfokus kepada beberapa dimensi kualitas data pelanggan di perusahaan yaitu completeness, accuracy, dan consistency. Strategi untuk manajemen peningkatan kualitas data pada perusahaan perlu disusun guna penyusunan strategi bisnis yang tepat dan dapat meningkatkan performa penjualan. Penyusunan strategi manajemen peningkatan kualitas data dilakukan dengan melakukan penilaian terhadap dimensi-dimensi kualitas data untuk mengidentifikasi kondisi kualitas data saat ini di perusahaan EF. Selain itu, identifikasi kondisi manajemen dan praktek kualitas data di perusahaan saat ini juga dilakukan untuk dapat mengetahui kesenjangan antara kondisi perusahaan saat ini dengan kondisi yang diharapkan oleh perusahaan. Strategi peningkatan kualitas data yang dihasilkan dari analisis kesenjangan kondisi kualitas data dan manajemen & praktek kualitas data terdiri dari 8 (delapan) domain manajemen kualitas data. Delapan domain tersebut yaitu harapan dari kualitas data, penggunaan dimensi dari kualitas data, kebijakan data, prosedur, tata kelola data, standarisasi data, teknologi, dan pengelolaan kerja. Hasil dari strategi tersebut disusun menjadi rekomendasi solusi dan diurutkan berdasarkan prioritas dengan balance scorecard. Strategi yang memperoleh prioritas tinggi yaitu standardiasi aktifitas dan isu kualitas data serta mengidentifikasi ekspektasi dari kualitas data pada setiap dimensi kualitas data.

Data utilization to generate insights to support business decision making has been implemented in many companies. One of the most utilized data is customer data as it could provide information regarding customer’s behavior. One of the companies that utilize customer data is English First (EF). EF is a company in education sector and have more than 20 years of experience in Indonesia. EF utilize customer data in Customer Relationship Management system to produce a business strategy to boost company performance. However, since data in Customer Relationship Management system is stored by human, it has a low quality and resulted in a mismatch business strategy. Strategy to improve data quality management in the company needs to be produced in order to generate a precise business strategy and could boost company sales performance. Data quality assessment towards data quality dimensions needs to be done to produce a improve data quality management strategy. The assessment is needed to identify current data quality condition in EF. Other than that, identification of data quality management and practices in the company are needed to identify as-is management & practices in the company, company’s data quality expectation, and identify the gap between best practice & current condition. The result of data quality improvement strategy consists of 8 (eight) data quality management domains. Those domains are data quality expectation, data quality management, data quality, data policy, data procedure, data governance, data standardization, technology, and work management. The end result is a solution recommendation to improve data quality in EF and sorted by priority with the help of balance scorecard. The strategies that have high priority are company needs to standardized data quality activities and issues in the company as well as identify business expectation of each data quality dimension."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Siahaan, Hilman Wisnu
"Data pelanggan merupakan salah satu data yang paling penting digunakan dalam OVO untuk menjalankan strategi dan mencapai visi perusahaan. Untuk itu dibutukan strategi yang baik dalam melakukan pengelolaan data pelanggan tersebut untuk mendapatkan kualitas data yang lebih baik. Penelitian ini dilakukan untuk mengukur tingkat kematangan pengelolaan kualitas data yang saat ini dilakukan dan memberikan strategi manajemen kualitas data berdasarkan kerangka kerja Loshin (2011) dan DAMA-DMBOK. Dari hasil pengukuran tingkat kematangan didapatkan bahwa secara umum pengelolaan data kualitas di OVO sudah berada di level 3 (defined) dengan beberapa dimensi masih berada pada level 2 (repeatable). Selanjutnya dilakukan analisis kesenjangan terhadap harapan yang kemudian menjadi input untuk menyusun strategi manajemen untuk meningkatkan kualitas data di OVO. Adapun rekomendasi strategi manajemen yang disarankan yaitu penggunaan dimensi kualitas data yang diselaraskan dengan hasil review business rules, implementasi single source of truth, membentuk dan menentukan data stewards, membentuk dewan pengawas kualitas data, melakukan sertifikasi sumber data yang terpercaya, memberikan partisipasi terhadap business partner dalam aktifitas DQM, membangun metrik kualitas data yang selaras dengan bisnis, menetapkan SLA, melakukan pemantauan aturan kualitas data, melakukan analisis dampak data, menyusun prosedur terkait DQM, melakukan pelaporan data quality scorecard secara rutin, menggunakan tools dalam pengecekan, menambahkan detail prosedur dalam pengawasan dengan metode otomatis, membangun aturan data yang selaras dengan bisnis, dan melakukan validasi data menggunakan aturan yang sudah didefenisikan.

Customer data is one of the most critical data in OVO to carry out strategies and achieve the company's vision. Therefore, the company requires a good strategy in managing customer data to get better data quality. This research was conducted to measure the current maturity level of data quality management, and provide data quality management strategies based on the Loshin data quality maturity framework and DAMA-DMBOK framework. From the assessment of data quality maturity level, found that in general the quality data management in OVO was already at the third level (Defined), although some dimensions are still at the second level (Repeatable). Furthermore, an analysis of the gap against expectations is conducted which it’s results later become an input for formulating data management strategies to improve data quality in OVO. The results of data management strategy recommendations are use the data quality dimensions that are aligned with the results of reviewing business rules, implementation of a single source of truth, develop data stewards, develop data quality oversight board, certifying reliable data sources, giving participation to business partners in DQM activities, building data quality metrics that are aligned with the business, setting SLAs, monitoring data quality rules, conducting data impact analysis, compiling procedures related to DQM, reporting on data quality scorecards regularly, using tools in checking, adding detailed procedures for data monitoring with automated methods, develop data rules that comply with business, and perform data validation using predefined."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Albert Kurniawan
"ABSTRAK
Dalam era informasi saat ini, data menjadi sumber daya yang vital dan menjadi kebutuhan yang memasuki level sangat penting untuk organisasi. Data yang berkualitas baik akan menghasilkan informasi yang bermanfaat untuk kemajuan organisasi. Data profil pelanggan berdasarkan aktifitas digitalnya atau dikenal dengan broadband customer profile BCP merupakan salah satu strategi Telkomsel untuk menciptakan peluang baru dalam rangka meningkatkan revenue. Dengan berjalannya platform BCP selama dua tahun lebih, data BCP mempunyai kondisi kualitas data yang rendah. Hal ini menjadi perhatian manajemen mengingat pentingnya data ini, sehingga dibutuhkan pengelolaan kualitas data yang baik.Penelitian ini dilakukan untuk memberikan rekomendasi strategi data quality management untuk meningkatkan kualitas data berdasarkan penilaian tingkat kematangan pengelolaan kualitas data menggunakan Data Quality Framework dari David Loshin, praktik manajemen kualitas data Data Management Body of Knowledge DMBOK dari DAMA institute, dan Big Data Quality Assessment dari Cai dan Zhu. Penelitian menggunakan metode kualitatif dengan melakukan wawancara ke tiga orang narasumber di bagian pengelolaan data BCP dan data governance di PT. Telkomsel, hasil yang didapatkan dari wawancara diolah dengan menggunakan metode data reduction dan data coding.Tingkat kematangan kualitas data diperoleh secara umum berada pada level 2 repeatable . Berdasarkan beberapa kesenjangan dari harapan yang ada, diperlukan strategi untuk meningkatkan kualitas data dari aktivitas manajemen kualitas data DMBOK. Rekomendasi strategi yang dihasilkan, yaitu: pertemuan komite DG secara berkala, evaluasi peran data steward, sosialisasi KD DG secara berkala untuk promosi data quality awareness, penambahan informasi kebutuhan secara detail dan analisis dampak bisnis di dokumen request report/data, penerapan master data management dan metadata management, penambahan proses validasi dan prosedur pemeriksaan data untuk tiap dimensi kualitas data, menetapkan SLA kualitas data, evaluasi kinerja incident tracking system, laporan kualitas data secara berkala, dan evaluasi pengelolaan data secara regular.

ABSTRACT
In this information era, data has become a vital resource and a necessity that enters a very important level for the organization. Good data quality will produce useful information for organization. Customer profile data based on digital activity or known as broadband customer profile BCP is one of Telkomsel 39 s strategy to create new opportunities in order to increase revenue. With the running of BCP platform over the next two years, BCP data has low data quality conditions. This is a concern of management given the importance of this data, so that required good data quality management.This research was conducted to give recommendation of data quality management strategy to improve data quality based on the assessment of data quality management maturity level using Data Quality Framework from David Loshin, data quality management practices Data Management Body of Knowledge DMBOK from DAMA institute, and Big Data Quality Assessment From Cai and Zhu. This research use qualitative method by conducting interviews to three interviewees in the data management section of BCP and data governance at PT. Telkomsel, the results obtained from interviews processed using data reduction and data coding methods.The maturity level of data quality is generally found at level 2 repeatable . Based on some gaps in existing expectations, strategies are needed to improve data quality from DMBOK data quality management activities. Recommendations of the strategies are regular meetings of DG committees, evaluation of steward data roles, regular socialization of KD DGs for promotion of data quality awareness, detail information of needs and business impact analysis in document request report data, implementation of master data management and metadata management, additional validation process and data checking procedures for each data quality dimension, establishing data quality SLA, incident tracking system performance evaluation, regular data quality reporting, and regular data management evaluation."
2017
TA-Pdf;
UI - Tugas Akhir  Universitas Indonesia Library
cover
Evelline Kristiani
"Bervariasinya kapasitas, potensi dan tingkat perkembangan daerah menyebabkan perbedaan mutu yang lebar antar program studi maupun institusi perguruan tinggi di penjuru Indonesia. Perbedaan mutu ini menjadi fokus para pemangku kepentingan perguruan tinggi, khususnya calon mahasiswa, pemerintah dan pasar tenaga kerja. Agar dapat menjaga mutunya, Universitas Kristen Krida Wacana (UKRIDA) sebagai salah satu dari institusi perguruan tinggi di Indonesia wajib memenuhi standar dari kriteria yang ditetapkan oleh Badan Akreditasi Nasional Perguruan Tinggi (BAN-PT). Kemudian, untuk dapat bersaing, UKRIDA juga perlu menetapkan keputusan-keputusan maupun rencana strategis yang dibuat memanfaatkan data yang sama dengan yang digunakan untuk pengukuran pemenuhan standar kriteria akreditasi agar selaras dengan tujuan utama peningkatan mutu. Namun, ternyata melalui analisis akar-akar masalah Loshin yang diantaranya manusia, proses, teknologi dan kebijakan ditemukan kualitas data dari salah satu kewajiban Tri Dharma yaitu pendidikan dan pengajaran secara khusus pada data mahasiswa dan akademik, masih buruk baik itu manajemen maupun kondisi dari data itu sendiri. Berdasarkan hal tersebut, penelitian ini bertujuan untuk menyusun strategi peningkatan kualitas data mahasiswa dan akademik UKRIDA. Menggunakan metode kualitatif, pengumpulan data dilakukan melalui wawancara, query langsung dan studi dokumen. Penilaian terhadap kualitas data saat ini menggunakan dimensi kualitas data dari Loshin dan PermenristekDikti RI Nomor 61 Tahun 2016 Pasal 12, penilaian terhadap tingkat kematangan manajemen kualitas data menggunakan Data Quality Maturity Model Loshin. Penilaian menghasilkan temuan penyebab permasalahan dan temuan kesenjangan manajemen. Analisis kemudian digunakan untuk menghasilkan rekomendasi strategi, yang pertama lewat pemetaan penyebab permasalahan umum DMBOK2 dibentuk strategi peningkatan kondisi kualitas data dan yang kedua, lewat pemetaan best practive aktivitas manajemen kualitas data DMBOK2 yang dipadu dengan poin-poin konsiderasi strategi kualitas data Loshin dibentuk strategi peningkatan manajemen kualitas data. Secara garis besar strategi yang diajukan menyarankan perbaikan struktur data dan antarmuka aplikasi, pendefinisian tata kelola data, penyelenggaraan dokumentasi aturan, SOP dan SLA yang lengkap hingga ke unit bisnis dan peningkatan pengukuran dan pelaporan.

Variations in capacity, potential, and level of regional development cause wide differences in quality between study programs and higher education institutions throughout Indonesia. These quality differences become the focus of higher education stakeholders, especially prospective students, the government, and the labor market. To maintain its quality, Krida Wacana Christian University (UKRIDA) as one of the higher education institutions in Indonesia must meet the standards of criterias set by the National Accreditation Body for Higher Education (BAN-PT). Then, to be able to compete, UKRIDA also needs to establish strategic decisions and plans that are made based on the same data used to measure accreditation criteria standards fulfillment so that they are aligned with the main objective of quality improvement. However, through analysis of Loshin’s domain of problem root causes include humans, processes, technology, and policies, turns out that the quality of data from one of the obligations of the Tri Dharma, namely education and teaching specifically on student and academic data is still poor both in terms of management and the condition of the data itself. Based on these founds, this study aims to develop strategies for improving the UKRIDA student and academic data quality. Using qualitative methods, data collection was carried out through interviews, direct queries and document study. Assessment of the current data quality uses data quality dimensions from Loshin and PermenristekDikti RI Number 61 of 2016 Article 12, assessment of the maturity level of data quality management using Loshin's Data Quality Maturity Model. The assessment results in: findings of problems causes and findings of management gaps. Further analysis was carried out to produce strategic recommendations, firstly through mapping DMBOK2 common problems causes; a strategy for improving data quality conditions was formed. Secondly, through mapping of DMBOK2 best practice data quality management activities combined with Loshin’s data quality strategy points of consideration, a data quality management improvement strategy was formed. Broadly speaking, the proposed strategy suggests corrections of data structures and application interfaces, defining data governance, organizing complete documentation of rules, SOPs, and SLAs up to business units also measurement and reporting improvement."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aris Setiawan
"Data adalah aset yang berharga bagi organisasi karena data yang berkualitas dapat memberikan keuntungan dan nilai bagi perusahaan serta memberikan peluang adanya pengembangan bisnis baru apabila dikelola dengan baik. Sedangkan kualitas data yang buruk dapat memberikan dampak negatif antara lain keputusan bisnis yang tidak akurat, penurunan pendapatan, peningkatan biaya operasional, penurunan kepercayaan dan kepuasan pelanggan, peningkatan waktu pemrosesan data, dan tidak dapat memenuhi kepatuhan terhadap peraturan maupun ekspektasi bisnis. PT IDN adalah fintech yang memberikan kemajuan teknologi digital dalam sektor pendidikan di Indonesia dengan menawarkan pengelolaan dan pembayaran tagihan pendidikan secara online. Penelitian ini mencoba untuk menilai tingkat kematangan kualitas data di PT IDN dengan menggunakan delapan karakteristik kualitas data dalam Loshin’s Data Quality Framework. Hasil dari penilaian ini didapatkan bahwa PT IDN memiliki tingkat kematangan kualitas data sebesar 1 pada komponen prosedur, tata kelola, standar, teknologi, dan pengelolaan kinerja. Sedangkan tingkat kematangan kualitas data sebesar 2 ditemukan pada komponen harapan, dimensi, dan kebijakan informasi. Berdasarkan hasil dari penilaian maturitas manajemen kualitas data saat ini dan tingkat maturitas kualitas data yang diinginkan, maka didapatkan adalah 12 rekomendasi aktivitas-aktivitas yang dapat dilakukan oleh PT IDN untuk meningkatkan kualitas datanya berdasarkan DAMA-DMBOK.

Data is an asset for organizations because quality data can provide benefits and value to the company and provide opportunities for new business development if managed properly. Meanwhile, poor data quality can have negative impacts including inaccurate business decisions, decreased revenue, increased operating costs, decreased customer trust and satisfaction, increased data processing time, and unable to meet regulatory compliance and business expectations. PT IDN is a fintech that provides advances in digital technology in the education sector in Indonesia by offering online management and payment of education bills. This study tries to assess the maturity level of data quality at PT IDN by using eight data quality characteristics in Loshin's Data Quality Framework. The results of this assessment show that PT IDN has a maturity level of data quality of 1 on the components of procedures, governance, standards, technology, and performance management. While the maturity level of data quality of 2 is found in the components of expectations, dimensions, and information policies. Based on the results of the current data quality management maturity assessment and the desired level of data quality maturity level, it is found that there are 12 recommended activities that PT IDN can do to improve its data quality based on DAMA-DMBOK."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Probo Herawani
"ABSTRAK
Menurut Undang-undang No. 12 tahun 2012 tentang Pendidikan Tinggi Pasal 56, Pangkalan Data Pendidikan Tinggi (PD Dikti) merupakan kumpulan data penyelenggaraan pendidikan tinggi seluruh perguruan tinggi yang terintegrasi secara nasional. PD Dikti berperan penting dalam sistem penjaminan mutu pendidikan tinggi, yaitu berfungsi sebagai sumber informasi bagi lembaga akreditasi untuk melakukan akreditasi program studi dan perguruan tinggi; bagi pemerintah untuk melakukan pengaturan, perencanaan, pengawasan, pemantauan dan evaluasi serta pembinaan dan koordinasi program studi dan perguruan tinggi; dan bagi masyarakat untuk mengetahui kinerja program studi dan perguruan tinggi.
Mengingat pentingnya PD Dikti tersebut, tersedianya data yang berkualitas pada PD Dikti menjadi salah satu target yang ingin dicapai Pusat Data dan Informasi Iptek Dikti, Kementerian Riset, Teknologi, dan Pendidikan Tinggi. Target pengelolaan PD Dikti tahun 2016 akan fokus pada kualitas data, yaitu bagaimana dapat menyediakan data yang berkualitas. Untuk itu, perlu adanya strategi untuk menjamin dan meningkatkan kualitas data pada PD Dikti.
Berdasarkan hal tersebut, penelitian ini menyusun strategi untuk meningkatkan kualitas data pada PD Dikti. Untuk menyusun strategi tersebut dilakukan penilaian manajemen kualitas data saat ini, yaitu melalui penilaian terhadap dimensi kualitas data dan penilaian terhadap maturitas manajemen kualitas data. Langkah- langkah penelitian yang dilakukan meliputi identifikasi masalah, penilaian manajemen kualitas data, analisis kesenjangan untuk hasil penilaian maturitas manajemen kualitas data, analisis akar masalah untuk hasil penilaian dimensi kualitas data, dan menyusun strategi peningkatan kualitas data.
Hasil penelitian ini adalah rekomendasi strategi peningkatan kualitas data pada PD Dikti. Strategi tersebut meliputi peningkatan proses pada 7 (tujuh) domain manajemen kualitas data, yaitu pendefinisian harapan/kebutuhan kualitas data, pengukuran dimensi kualitas data, penetapan kebijakan informasi, peningkatan tata kelola data, penetapan prosedur, perbaikan teknologi, dan pengelolaan kinerja. Rekomendasi tersebut diharapkan dapat digunakan sebagai acuan dalam melakukan program kualitas data pada PD Dikti.

ABSTRACT
According to Law No. 12 of 2012 about Higher Education clause 56, Higher Education Database is a collection of higher education management data from all Indonesian universities that is integrated nationally. Higher Education Database plays an important role in the Quality Assurance System of Higher Education, which serves as a source of information for accrediting agencies to carry out accreditation of study programs; for the government to make arrangements, planning, supervision, monitoring and evaluation; and for the public to know the performance of the study program and universities. Clause 52 of the same Law also noted that the Higher Education Quality Assurance System is based on Higher Education Database.
Because of the importance of the Higher Education Database, availability of high quality data became one of the targets to be achieved by the Data and Information Center. One of the targets for the implementation of the Higher Education Database in 2016 is to focus on the quality of the data.
Therefore, it need strategies to ensure and improve the quality of data on Higher Education Database. Based on the above, this study recommends strategies for improving the quality of the data on Higher Education Database. To develop the strategy, the author assessed the current data quality management. Assessment of the current data quality management was done through an assessment of the dimensions of data quality and assessment of the maturity of data quality management. Research steps undertaken included problem identification, assessment of data quality management, gap analysis for maturity assessment of data quality management, root cause analysis for assessment of data quality dimensions, and formulation of strategy for improving data quality.
Results of this research include recommendation of data quality improvement strategy in Higher Education Database. The strategy includes improvement management in seven (7) data quality management domain, comprising of defining the expectations of dataquality, measurement of data quality dimension, establishment of information policy, improving data governance, establishment of procedures, technological improvements, and performance management. The recommendations are expected to be used as a reference in the data quality program on Higher Education Database.
"
2016
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>