Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 153071 dokumen yang sesuai dengan query
cover
Farhan Ali
"Beton dan timbal merupakan material yang biasa digunakan sebagai dinding penahan radiasi. Beton dan timbal memiliki kelebihan dan kekurangannya masing-masing. Beton memiliki harga yang relatif lebih murah namun memerlukan ruang yang besar sedangkan timbal dengan nomor atom yang tinggi memiliki harga yang lebih mahal namun ukuran ruangan dapat diminimalisir. Perhitungan ketebalan dinding penahan radiasi dapat dilakukan dengan menggunakan persamaan Safety Report Series No. 47 dengan nilai pembatas dosis sesuai dengan Perka Bapeten no 3 tahun 2013 lalu dilakukan pemodelan menggunakan Monte Carlo EGSnrc untuk memastikan nilai dosis yang dihasilkan tidak melebihi pembatas dosis yang ditetapkan Bapeten. Pemodelan dengan menggunakan Monte Carlo umum digunakan ketika pengukuran secara langsung tidak memungkinkan. Hasil simulasi Monte Carlo juga mampu merepresentasikan kondisi yang sesungguhnya dengan memasukan berbagai parameter seperti memodelkan linac, memodelkan material yang digunakan, memodelkan dinding penahan radiasi, hingga melakukan kalibrasi linac sehingga didapatkan nilai dosis yang dapat dibandingkan dengan nilai dosis referensi yang digunakan. Pada penelitian dilakukan perhitungan dosis di luar dinding primer dengan memodelkan dinding beton densitas 2,35 g/cm3 dengan ketebalan 1,45 meter dan dinding timbal densitas 11,35 g/cm3 dengan ketebalan 21,73 cm lalu dibandingkan dengan nilai dosis referensi yang ditetapkan oleh Bapeten. Hasilnya nilai dosis pada simulasi Monte Carlo EGSnrc untuk material beton dan timbal lebih rendah dibandingkan dengan nilai dosis referensi yang digunakan akibat perbedaan komposisi material penyusun beton dan timbal yang digunakan dalam simulasi dengan referensi

Concrete and lead are materials commonly used as primary radiation walls. Concrete and lead have their respective advantages and disadvantages. Concrete has a relatively cheaper price but requires a large space, while lead with a high atomic number has a higher price, but the size of the room can be minimized. Calculation of the thickness of the radiation retaining wall can be carried out using the Safety Report Series No. 47 equations with a dose limiting value in accordance with Perka Bapeten Number 3. Of 2013 and then modeling using the Monte Carlo EGSnrc to ensure the resulting dose value does not exceed the limiting dose value by Bapeten. Monte Carlo modeling is commonly used when direct measurements are not possible. The Monte Carlo simulation results are also able to represent the real conditions by entering various parameters such as modeling the linac, modeling the materials used, modeling the primary radiation walls, and performing the linac calibration so that a dose value can be compared with reference dose value used. In this study, the dose calculation outside the primary wall was carried out by modeling a concrete wall with a density of 2,35 g/cm3 with a thickness of 1,45 meters and a lead wall with a density of 11,35 g/cm3 with a thickness of 21,73 cm and then compared with the reference dose value set by Bapeten. The result is that the dose value in the Monte Carlo EGSnrc simulation for concrete and lead materials is lower than the reference dose value used due to differences in the composition of the concrete and lead materials used in the simulation with reference"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Fatin Zulkhair Yusuf
"Beton menjadi salah satu material yang biasa digunakan sebagai dinding penghalang radiasi, khususnya pada radiasi yang berasal dari hamburan pasien dan kebocoran kepala linac. Semakin tebal beton yang digunakan maka semakin baik pula kemampuan dinding untuk menghalangi radiasi. Tetapi dinding beton yang terlalu tebal juga memiliki kekurangan, yaitu menghabiskan material yang lebih banyak dan luas daerah yang lebih besar. Sehingga perhitungan dilakukan untuk menentukan ketebalan dinding yang optimal dalam mendesain ruangan radioterapi. Selanjutnya kemampuan dinding dalam menghalangi radiasi di uji dengan menggunakan simulasi Monte Carlo. penelitian ini menggunakan simulasi Monte Carlo N-Particle eXtended (MCNPX) untuk menghitung dosis dari desain ruangan instalasi radioterapi dengan sumber linac 15 Mv. Ketebalan dinding ruangan radioterapi harus dapat menghalangi radiasi sekunder sampai pada nilai batas laju dosis 0,2 mSv per minggu untuk pekerja radiasi (pada area terkontrol) dan 0,001 mSv per minggu untuk masyarakat umum (pada area tidak terkontrol). perhitungan ketebalan dinding sekunder didasarkan pada persamaan Safety report series 47 dengan menggunakan parameter umum pada radioterapi. Pada penelitian ini dinding sekunder didesain dengan ketebalan 0,882 m pada area terkontrol dan 1,36 m pada area tidak terkontrol. Desain sampel digunakan untuk membandingkan tingkat efisiensi dan efektivitas dari desain ruangan yaitu dinding sekunder dengan ketebalan 1,8 m pada area terkontrol dan 2,8 m pada area tidak terkontrol. Hasilnya ketebalan dinding pada area terkontrol dapat menghalangi radiasi hingga di bawah standar, sedangkan area tidak terkontrol perhitungan masih perlu diperhatikan.

Concrete is one of the materials commonly used as radiation barrier walls, especially in radiation from patient scattering and head leakage. The thicker the concrete used, the better the ability of the walls to block radiation. But if concrete walls that are too thick also have drawbacks, namely spend more materials and have a larger area. So the calculation is carried out to determine the optimal wall thickness in designing the radiotherapy room. Furthermore, the ability of the wall to block radiation is tested using a Monte Carlo simulation. This study uses a Monte Carlo N-Particle eXtended (MCNPX) simulation to calculate the dose from the design of the radiotherapy installation room with a 15 MV linac source. The wall thickness of the radiotherapy room must be able to block secondary radiation up to a dose rate limit of 0.2 mSv per week for radiation workers (in controlled area) and 0.001 mSv per week for the general public (in uncontrolled area). secondary wall thickness calculation is based on the equation on Safety report series 47 using general parameters in radiotherapy. In this study, the secondary wall was designed with a thickness of 0.882 m in controlled area and 1.36 m in uncontrolled area. The sample design is used to compare the efficiency and effectiveness of the room design, namely the secondary wall with a thickness of 1.8 m in the controlled area and 2.8 m in the uncontrolled area. As a result, the walls in the controlled area can withstand radiation below standard, while the uncontrolled area still needs attention."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Warokka, Rifqi Elvanogi Koto
"Penempatan sumber radiasi pada radioterapi memerlukan ruangan khusus untuk menahan radiasi tidak menyebar keluar ruangan. Keselamatan pasien, staf dan masyarakat umum akan menjadi pertimbangan utama dalam pelaksanaan program pengobatan radiasi. Dinding perisai ruang radioterapi memiliki peranan penting dalam proteksi dan keselamatan radiasi. Ketebalan dinding perisai akan berbeda-beda sesuai energi radiasi dan beban kerja yang digunakan. Pembatas dosis di Indonesia sesuai dengan Perka Bapeten no.3 tahun 2013 yaitu nilai batas dosis untuk pekerja radiasi rata-rata 20 mSv per tahun selama 5 tahun dan untuk masyarakat 1 mSv per tahun. Penelitian ini menggunakan simulasi Monte Carlo MCNPX untuk membandingkan dosis yang dihasilkan agar tidak melebihi pembatas dosis yang ditetapkan. Pada Simulasi monte Carlo dibuat model ruangan, model Linac, energi radiasi sumber Linac, dan jenis material dinding yang digunakan sesuai dengan kondisi ruangan yang telah disetujui Bapeten. Pada penelitian dilakukan perhitungan dosis di luar dinding primer dan dosis pada kedalaman dinding penahan radiasi dengan material dinding benton berdensitas 2,35 g/cm3. Hasilnya tidak terbaca nilai dosis pada titik referensi dengan metode simulasi monte carlo pada penelitian ini. Sementara itu dosis pada dinding menunjukan penetrasi sampai dengan 160 cm pada dinding kiri, 200 cm pada dinding atas dan 180 cm pada dinding kanan.

The placement of radiation sources in radiotherapy requires a special room to prevent radiation from spreading out of the room. The safety of patients, staff, and the general public will be a major consideration in the implementation of a radiation treatment program. The shield wall of the radiotherapy room has an important role in radiation protection and safety. The thickness of the shield wall will vary according to the radiation energy and the workload used. The dose limit in Indonesia is under Bapeten Perka No. 3 of 2013 which is the dose limit value for radiation workers an average of 20 mSv per year for 5 years and the community 1 mSv per year. This study uses a Monte Carlo MCNPX simulation to compare the resulting doses so as not to exceed the prescribed dose limit. In the Monte Carlo simulation, a room model, a Linac model, Linac source radiation energy, and the type of wall material used are made according to the room conditions that have been approved by Bapeten. In this study, the dose calculation outside the primary wall and the dose at the depth of the radiation retaining wall with a concrete wall material with a density of 2.35 g/cm3 were calculated. The result is not reading the dose value at the reference point with the Monte Carlo simulation method in this study. Meanwhile, the dose on the wall showed penetration up to 160 cm on the left wall, 200 cm on the upper wall, and 180 cm on the right wall."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Satrial Male
"ABSTRAK
Elektron biasanya digunakan untuk pengobatan kanker payudara sebagai dosis
tambahan. Pengukuran dosis yang diterima pasien pada rentang energi 6 MeV, 10
MeV dan 12 MeV dari kepala linac, lapangan aplikator 14 x 14 cm2, SSD 95 cm
disimulasikan. Dosis pada paru disimulasikan dengan sistem EGS monte carlo.
Distribusi dosis yang dikalkulasi dengan teknik monte carlo berbeda dengan hasil
TPS. Hal ini karena adanya koreksi dari densitas jaringan (inhomogenitas)
disekitar paru pada simulasi monte carlo sedangkan pada kalkulasi TPS ISIS tidak
memperhitungkan hal tersebut. Dosis 10% di paru hasil kalkulasi simulasi monte
carlo diperoleh pada kedalaman 4.22 cm sedangkan pada TPS 2.98 cm untuk
energi 6 MeV. Sedangkan untuk 10 MeV dan 12 MeV dosis 10% untuk simulasi
monte carlo dan TPS berutur-turut adalah 4.69 cm, 5.72 cm dan 5,79 cm dan 6.95
cm.

ABSTRACT
Treatment option by using electron beam is always done after surgery as booster
doses. Dose measurement in patient lung in energy range 6 MeV, 10 MeV and 12
MeV, filed size 14 x 14 cm2 and SSD 95 cm was simulated. The modelings in
Monte Carlo simulation are modeling treatment head and water phantom by using
BEAMnrc and DOSXYZnrc based on EGSnrc codes. The result from
measurement and simulation is diffrent because correction factors of
inhomogenity lung not included in the TPS ISIS. Depth Dose 10% in lung from
calculation with monte carlo simulation is 4.22 cm and TPS is 2.98 cm with
energy of 6 MeV. For energy of electron 10 MeV and 12 MeV, depth dose 10%
from simulation monte carlo and TPS 4.69 cm, 5.72 cm and 5,79 cm, 6.95 cm."
2012
T30854
UI - Tesis Open  Universitas Indonesia Library
cover
Dewa Ngurah Yudhi Prasada
"Radioterapi merupakan salah satu modalitas yang digunakan untuk menghancurkan sel tumor/kanker menggunakan radiasi pengion, yang umumnya menggunakan pesawat Linear Accelerator (LINAC) medik. Namun, penggunaan LINAC medik dengan potensial > 10 MV dapat berpotensi menyebabkan adanya kontaminasi neutron. Kontaminasi neutron berpotensi memberikan dosis berlebih yang tidak diperlukan oleh pasien. Pada studi ini, telah dilakukan studi terkait kalkulasi dosis neutron yang dihasilkan dari pesawat LINAC 15 MV. Pengukuran akan dilakukan dengan teknik simulasi Monte Carlo menggunakan program MCNPX, serta pengukuran secara langsung, dengan menggunakan pasangan TLD-600 dan TLD-100 dalam fantom. Hasil kalkulasi MCNPX menunjukkan bahwa fotoneutron yang terbentuk dari pesawat LINAC didominasi oleh neutron cepat. Dosis ekivalen neutron pada fantom air dapat mencapai 14,197 μSv/MU. Hasil pengukuran dengan TLD-600 dan TLD-100 menunjukkan nilai bacaan dosis ekivalen yang lebih rendah dibandingkan dengan hasil simulasi. Karakteristik TLD-600 sebagai alat ukur dapat mempengaruhi hasil secara cukup signifikan.

Radiotherapy is basically a cancer treatment using high energy photon radiation, generated by medical linear accelerator (LINAC). Aside from its effectiveness, the utilization of >10 MV LINAC may produce photoneutron contaminations, which lead to excessive equivalent dose to the patients. In this study, the neutron contamination from LINAC head for 15 MV LINAC has been calculated using MCNPX. The secondary data was also measured with TLD-600 and TLD-100 in the slab phantom. The simulation result finds that the neutron contamination was dominated by fast neutron. The neutron equivalent dose may achieve as high as 14.197 μSv/MU. The TLD-600 measurement was underestimating the neutron doses inside the phantom. The significant differences between these results may conclude that TLD-600 measurement method needs other correction factors in neutron measurement."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rum Sapundani
"Telah dilakukan simulasi Monte Carlo pada berkas foton 6 MV Linac Elekta di dalam fantom air dan PMMA. Dalam simulasi digunakan code BEAMnrc berbasis 2 processor sistem Linux. File phase-space yang diperoleh menjadi input bagi code BEAMDP untuk memperoleh informasi karakteristik dan kontaminasi partikel. File yang sama juga menjadi input code DOSXYZnrc untuk menghasilkan PDD. Hasil PDD dibandingkan dengan hasil eksperimen dengan deviasi sangat kecil.

A Monte Carlo simulation on a Linac Elekta 6 MV photon beam has been performed using BEAMnrc code running on Linux-based 2 processor system. A phase- space files obtained were input to a BEAMDP code subsequently to produce information on particles characteristics and contamination. The same files were also input to a DOSXYnrc code to produce PDD in virtual water and PMMA phantoms. PDD results were compared with experimental results with significantly small deviation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
T21093
UI - Tesis Membership  Universitas Indonesia Library
cover
Choirul Anam
"Telah dilakukan studi kontaminasi elektron pada berkas foton 6MV pesawat Linac Elekta SL15 menggunakan simulasi Monte Carlo. Pemodelan kepala Linac menggunakan program BEAMnrc, analisis phase space file menggunakan program BEAMDP dan perhitungan dosis radiasi dalam phantom air menggunakan program DOSXYZnrc. Dalam simulasi ini, energi awal elektron yang optimum adalah 6.3 MeV, dan intensitas radialnya memiliki FWHM 1.0 mm karena diketahui paling sesuai dengan pengukuran. Dalam simulasi diperoleh, semakin besar ukuran lapangan radiasi, dosis kontaminasi elektron mengalami kenaikan. Pada kedalaman 1.0 mm dan ukuran lapangan radiasi 5x5, 10x10, 20x20, 30x30, dan 40x40 cm2, dosis kontaminasi elektron secara berurutan sebesar 3.71, 5.19, 14.39, 18.97 dan 20.89%. Semakin ke dalam, dosis kontaminasi elektron semakin berkurang dan pada kedalaman 15 mm, kontribusinya hanya sekitar 1%. Kontaminasi elektron terutama dihasilkan oleh udara antara Linac dan fantom, mirror dan flattening filter. Bagian lain dari kepala Linac, hanya memberikan kontribusi yang kecil.

Study on electron contamination for 6 MV photon beams from Elekta SL15 linac by using Monte Carlo simulation has been done. The linear accelerator head was simulated by BEAMnrc code and the phase-space file then was analyzed by BEAMDP, while the absorbed dose in water phantom was calculated using DOSXYZnrc code. In this simulation, the optimal initial electron beam parameters were 6.3 MeV in energy and 1.0 mm in FWHM (full width at half maximum) on the radial intensity distribution. They were found to be in good agreement with the measured data. It was obtained in this reasearch that the electron contamination increases as the field size increases. At 1.0 mm in depth and the field size 5x5, 10x10, 20x20, 30x30, and 40x40 cm2, the dose from electron cotamination respectively 3.71, 5.19, 14.39, 18.97 and 20.89%. The electron contamination decreases with depth. At 15 mm in depth, the contribution of electron contamination is about 1%. The electron contamination is mainly produced from air volume between the linac head and water phantom, mirror and flattening filter. The other parts of linac head only give small contribution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
T29121
UI - Tesis Open  Universitas Indonesia Library
cover
Muhammad Stani Amrullah Andriansyah
"Pada kamera gamma tidak tercantum laju dosis yang diterima oleh pasien, melainkan hanya terdapat satuan count per second (cps), padahal laju dosis radiasi akibat radioisotop menentukan keamanan pasien. Pada penelitian ini dilakukan estimasi dosis permukaan pada simulasi pemeriksaan tiroid : studi fantom dan kalkulasi monte carlo pada kamera gamma. Penelitian ini dilakukan dengan menempatkan sumber Tc-99 m sebesar 2; 2,5; 3; 3,5; 4; 4,5 dan 5 mCi pada Neck Thyroid Phantom yang telah diletakkan Thermoluminiscence Dosimeter (TLD) di atasnya. Selanjutnya kamera gamma mencacah selama 5 menit dan hasilnya dibandingkan dengan hasil dari bacaan TLD. Dari penelitian ini didapatkan hasil dosis rata-rata TLD terhadap cacahan Kamera Gamma 5,77 x 10-8 ± 0,91 x 10-8 mGy/cacah dan dosis Monte Carlo terhadap cacahan Kamera Gamma 7,14 x 10-8 mSv/cacah.

In Gamma camera, there is not listed the dose rate received by the patient, but there is only count per second (cps), while the radiation dose rate due to the radioisotope determine the safety of patients. In this research surface dose estimates on thyroid exam simulation : phantom studies and monte carlo calculations performed on a gamma camera was done. This research was carried out by placing the source of Tc-99 m by 2; 2,5; 3; 3,5; 4​​; 4,5 and 5 mCi on Neck Thyroid Phantom that has been placed Thermoluminiscence Dosimeters (TLD) on it. Furthermore, the radiation was counted with a gamma camera for 5 minutes and the results were compared with the results of the TLD reader. From this research the results of the average dose TLD toward Gamma Camera count 5,77 x 10-8 ± 0,91 x 10-8 mGy/count and dose Monte Carlo toward Gamma Camera count 7,14 x 10-8 mSv/count were obtained.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45182
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdi Wadud Syafi`i
"Telah dilakukan studi simulasi Monte Carlo untuk perhitungan besaran dosimetri dari berkas sinar X 6 MeV tanpa filter perata yang dihasilkan Linac Elekta SL-15. Pemodelan kepala Linac menggunakan program BEAMnrc, analisis phase space file menggunakan program BEAMDP dan perhitungan dosis radiasi dalam medium air menggunakan program DOSXYZnrc. Parameter awal elektron dalam simulasi ini menggunakan hasil yang sudah diperoleh oleh saudara Anam C. Perhitungan PDD dalam medium air dilakukan dengan variasi ukuran lapangan 5x5, 10x10, 20x20 dan 40x40 cm2 dengan SSD 100 cm. Dosis profil dihitung dengan variasi ukuran lapangan yang sama dengan kedalaman 10 cm.
Hasil perhitungan PDD tanpa filter relatif lebih rendah dibanding dengan PDD dengan filter dan tidak dipengaruhi ukuran lapangan radiasi. Spektrum berkas sinar-X tanpa filter perata mempunyai fraksi komponen energi rendah relatif lebih tinggi dibanding dengan sinar-X dengan filter perata sehingga kurva PDD-nya relatif lebih rendah. Hasil perhitungan dosis profil menunjukan dengan melepaskan filter perata akan meningkatkan fluence dan energi fluence serta laju dosis untuk setiap lapangan radiasi.
Hasil penting lainnya adalah dosis permukaan yang jauh lebih tinggi dibanding dengan sinar X yang ber-filter mencapai 59.42 % untuk lapangan 5x5 cm2 dan 70.13 % untuk lapangan 40x40 cm2 dan dosis yg tinggi pada daerah build-up diakibatkan kontaminasi elektron. Berdasarkan hasil yang didapat penggunaan sinar X tanpa perata akan menurunkan skin sparring effect, sehingga tidak cocok untuk dipakai pada Linac. Namun, masih mungkin digunakan untuk teknik IMRT yang membutuhkan intensitas output yang tinggi.

Study on dosimetric properties for an unflattened 6-MV photon beams of an Elekta SL15 linac was calculated using Monte Carlo simulation has been done. The linear accelerator head was simulated by BEAMnrc code and the phase-space file then was analyzed by BEAMDP, while the absorbed dose in water phantom was calculated using DOSXYZnrc code. Initial parameters of electrons in this simulation using the results already obtained by Anam C. PDD calculations performed in water medium by variation of field size 5x5, 10x10, 20x20 and 40x40 cm2 with SSD 100 cm. Dose profiles calculated with the same field size variation with depth of 10 cm.
PDD calculation results without the filter is relatively lower compared with the PDD with the filter and not influenced by the size of the radiation field. The spectrum of unflattened X-ray beam has a fraction of the low energy component is higher than with flattened X-rays so that the PDD curve is relatively lower. The results of dose calculation shows the release flattening filter will increase the fluence and energy fluence and dose rate for each radiation field.
Another important outcome is that the surface dose is much higher than with flattened X-ray to the field reaches 59.42% and 70.13% of 5x5 cm2 to 40x40 cm2 field and on high doses in the build-up due to contamination of electrons. Based on the results obtained using unflattened X-rays the skin sparring effect will decrease, making it unsuitable for use in the linac. However, it still may be used for IMRT techniques that require high output intensity.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
T29797
UI - Tesis Open  Universitas Indonesia Library
cover
Nikita Ciamaudi
"Reaksi fotoneutron adalah salah satu reaksi inti yang terjadi pada kepala linac, baik pada linac berkas foton ataupun berkas elektron. Reaksi fotoneutron menghasilkan produk berupa neutron dengan tingkat energi tertentu. Penelitian ini bertujuan untuk mensimulasikan berapa besar dosis neutron yang mungkin diterima oleh pasien radioterapi saat proses radioterapi dengan pesawat linac Varian iX 15 MV lapangan 10 cm × 10 cm. Simulasi pengukuran dilakukan pada posisi isocenter kedalaman 1 cm – 15 cm untuk membentuk kurva PDD. Pengukuran off-axis pada permukaan fantom, 2 cm, 3 cm, dan 15 cm juga dilakukan agar dapat membentuk off-axis profile.
Verifikasi simulasi dilakukan dengan membandingkan data pengukuran berkas foton lapangan 30 cm × 30 cm dengan beam data commissioning (BDC) Varian iX 15 MV Rumah Sakit Siloam MRCCC. Hasil Penelitian menunjukkan nilai dosis posisi isocenter adalah 1,24 × 10-2 Sv Gy-1 pada permukaan fantom, 4,82 × 10-2 Sv Gy-1 pada kedalaman 2 cm, 1,25 × 10-1 Sv Gy-1 pada kedalaman 3 cm, dan 1,89 × 10-6 Sv Gy-1 kedalaman 15 cm. Namun, nilai dosis tertinggi terdapat pada posisi -2 cm kedalaman 2 cm, yaitu 2,05 × 100 Sv Gy-1. Pada posisi isocenter, nilai dosis tertinggi berada pada kedalaman 7 cm dengan nilai 2,70 × 10-1 Sv Gy-1.

Photoneutron reaction is one of the reactions that occur in the linac head, both in the photon and the electron beam. The reaction produces neutrons with a certain energy level. This study aims to simulate how much neutron dose that may be received by radiotherapy patients during the process of radiotherapy with Varian iX 15 MV 10 cm × 10 cm field. Measurement simulation is carried out at an isocenter position depth of 1 cm - 15 cm to create a PDD curve. Off-axis measurements on phantom surfaces, 2 cm, 3 cm, and 15 cm are also carried out to make an off-axis profile.
Verification is done by comparing 30 cm × 30 cm field measurement data with beam data commissioning (BDC) of MRCCC Siloam Hospital’s Varian iX 15 MV linac. The result showed the dose value of the isocenter position is 1,24×10−2 Sv Gy-1 on the phantom surface, 4,82×10−2 Sv Gy-1 at a depth of 2 cm, 1,25×10−1 Sv Gy-1 at a depth of 3 cm, and 1,89×10−6 Sv Gy-1 at a depth of 15 cm. However, the highest dose value is -2 cm in 2 cm depth, which is 2,05 × 100 Sv Gy-1. In the  socenter position, the highest dose value is 2,70×10−1 Sv Gy-1 in 7 cm depth.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>