Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 127579 dokumen yang sesuai dengan query
cover
Fauhan Handay Pugar
"Dalam beberapa tahun terakhir, penelitian algoritma enkripsi citra menggunakan compressive sensing dan sistem chaotic telah banyak dikembangkan. Dengan memanfaatkan properti yang kompleks dari ergodisitas, tidak mudah untuk diprediksi, dan sensitifitas terhadap keadaan awal dari suatu sistem chaotic, suatu sistem chaotic dapat digabungkan dengan compressive sensing. Banyak algoritma enkripsi yang menggunakan sistem chaotic pada dimensi rendah menanggung risiko keamanan dan ekspansi data enkripsi. Selain itu, algoritma enkripsi menggunakan compressive sensing menghasilkan citra dekripsi dengan kualitas citra yang berbeda dengan citra awal. Penelitian ini bertujuan untuk mengatasi kelemahan ini dengan mengembangkan metode enkripsi citra menggunakan 2D Sine-Chebyshev-ICMIC Map, compressive sensing dan multi-level discrete wavelet transform. Representasi sparse dibentuk menggunakan multi-level discrete wavelet transform dengan mengelompokan koefisien wavelet. Fungsi hash SHA-256 dari citra awal digunakan untuk menghasilkan kondisi awal dari chaotic map sehingga dapat meningkatkan ketahanan terhadap serangan known-plaintext dan chosen-plaintext. Hasil penelitian menunjukkan metode enkripsi citra memiliki ketahanan dan keamanan dari beberapa serangan dengan hasil kompresi yang baik

In the past few years, the research in image encryption using compressive sensing and chaotic system has grown rapidly. With complex properties of ergodicity, unpredictability, and sensitivity to the initial states of chaotic system, chaotic system can be combined with compressive sensing. There are many encryption algorithm that used low-dimensional chaotic system that suffer security risks and expansion in encryption data. Furthermore, encryption algorithm using compressive sensing gives the differences between the plain image and the decrypted image. This study aims to overcome this weakness by developing image encryption method using 2D Sine-Chebyshev-ICMIC Map, compressive sensing and multi-level discrete wavelet transform by grouping the wavelet coefficient. SHA-256 hash function of the plain image is generated to calculate the initial states of chaotic system. Result from experiments shows that the enryption method has robustness and secure againts some attacks with good compression result"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Esti Ramaditia Mulatsih
" ABSTRAK
Analisis cluster merupakan teknik multivariat yang digunakan untuk mengelompokkan objek berdasarkan karakteristik yang dimilikinya. Salah satu teknik dalam analisis cluster adalah metode Fuzzy K-Means lebih dikenal dengan Fuzzy C-Means , yang merupakan versi fuzzy dari metode K-Means clustering. Seperti pada metode K-Means, FCM juga sangat sensitif terhadap penentuan pusat-pusat awal cluster. Untuk mengatasi permasalahan tersebut, diusulkan modifikasi dari metode FCM dengan menggunakan metode sampling dengan probabilitas. Metode sampling digunakan untuk menaksir lokasi pusat-pusat awal cluster untuk digunakan ke dalam proses clustering. Dalam tugas akhir ini, metode sampling yang digunakan adalah simple random sampling dan ranked set sampling. Modifikasi dari metode FCM dengan menggunakan kedua metode sampling tersebut masing-masingnya disebut dengan SRS Fuzzy C-Means dan Ranked Fuzzy C-Means. Kedua metode tersebut kemudian diuji pada himpunan data pasien liver di India. Hasil eksperimen menunjukkan bahwa Ranked Fuzzy C-Means lebih efisien dibandingkan SRS Fuzzy C-Means dan FCM.
ABSTRACT Cluster analysis is a multivariate technique that is used to group objects based on characteristics. One technique in cluster analysis is a method Fuzzy C Means or better known as Fuzzy C Means , which is a fuzzy version of K Means clustering method. As the K Means method, FCM is also very sensitive to the determination of the initial cluster centers. To overcome these problems, the proposed modification of the FCM method using probability sampling methods. The sampling method is used to estimate the initial cluster centers to be used in the clustering process. In this thesis, the sampling method used was simple random sampling and ranked set sampling. Modifications of the FCM method using both the sampling method each being with SRS Fuzzy C Means and Ranked Fuzzy C Means. Both methods are then tested on a data set of liver patients in India. The experimental results showed that Ranked Fuzzy C Means is more efficient than SRS Fuzzy C Means and FCM."
Depok: Universitas Indonesia, 2017
S66638
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eslim Suyangsu Rohmanullah
"Perkembangan era globalisasi dapat menyebabkan terjadinya persaingan didalamnya yang akan mendorong beberapa individu atau kelompok untuk terlibat dalam tindak kejahatan dengan metode ilegal dalam upaya untuk mencapai keunggulan atau mengalahkan pesaing. Tidak dapat dipungkiri jika tindak kejahatan di Indonesia semakin marak diberitakan melalui media elektronik ataupun media lainnya. Peristiwa ini didukung dengan peningkatan jumlah tindak pidana di Indonesia dalam tiga tahun terakhir. Demi mengurangi dampak negatif persaingan yang dapat memicu tindak kejahatan dan mencapai tujuan ke-16 SDGs untuk menciptakan lingkungan yang lebih aman bagi masyarakat, khususnya di era globalisasi, maka penting untuk memahami faktor-faktor yang dapat menjelaskan tingkat kriminalitas. Tujuan dari penelitian ini adalah menganalisis faktor-faktor yang menjelaskan tingkat kriminalitas di Sumatera Utara menggunakan metode Geographically and Temporally Weighted Regression (GTWR) dengan fungsi pembobot adaptive kernel Bisquare. Metode GTWR merupakan pengembangan dari metode Geographically Weighted Regression (GWR) yang tidak hanya mempertimbangkan heterogenitas spasial, tetapi juga heterogenitas temporal. Penelitian ini menggunakan variabel penjelas Kepadatan Penduduk (KPn), Jumlah Penduduk Miskin (JPM), Garis Kemiskinan (GKm), Rata-rata Lama Sekolah (RLS), Tingkat Pengangguran Terbuka (TPT), dan Pengeluaran Perkapita Disesuaikan (PKD). Hasil dari penelitian ini diperoleh 10 kelompok area berdasarkan perbedaan signifikansi variabel penjelas setiap tahunnya. Terdiri dari 3 kelompok area pada tahun 2019, 4 kelompok area pada tahun 2020, dan 3 kelompok area pada tahun 2021.

The development of era of globalization can lead to competition that may drive individuals or groups to engage in criminal activities using illegal methods to achieve an advantage or surpass competitors. Crime in Indonesia is inevitably increasing, whether reported by electronic media or other media. This phenomenon has auxiliary data on the increasing number of criminal in Indonesia over the past three years. In order to mitigate the adverse effects of competition that may lead to criminal behavior and accomplish Goal 16 of the Sustainable Development Goals (SDGs), which aims to create a safer environment for society, especially in the era of globalization, it is necessary to understand the factors that can explain the crime rates. The objective of this study is to analyze the factors that explain the crime rates in North Sumatra using the Geographically and Temporally Weighted Regression (GTWR) method with weighting functions adaptive Bisquare kernel. The GTWR method is an extension of the Geographically Weighted Regression (GWR) method, which considers spatial and temporal heterogeneity. This study uses explanatory variables such as Population Density (KPn), Number of Poor People (JPM), Poverty Line (GKm), Average Length of Schooling (RLS), Open Unemployment Rate (TPT), and Adjusted Per Capita Expenditure (PKD). The results of this study obtained 10 areas groups based on the significance of different explanatory variables for each year consisting of 3 broad groups in 2019, 4 broad groups in 2020, and 3 broad groups in 2021."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evan Haryowidyatna
"Per 9 Februari 2023, 87% dari total populasi kendaraan pribadi di Indonesia merupakan sepeda motor. Persebaran sepeda motor terpadat di Indonesia berada di Pulau Jawa dengan persentase sebesar 60%. Tingginya populasi sepeda motor dan fakta bahwa 80% rumah tangga di Pulau Jawa sudah memiliki sepeda motor membuat pasar sepeda motor semakin mengecil. Dalam jangka panjang, kondisi ini dapat berdampak buruk bagi industri sepeda motor yang terus ingin berkembang. Penelitian ini membahas tentang pengelompokan kabupaten dan kota di Pulau Jawa berdasarkan karakteristik demografinya. Kemudian, diberikan saran keputusan yang dapat dilakukan oleh industri sepeda motor berdasarkan kelompok kabupaten dan kota yang terbentuk menggunakan teknik clustering. Hal ini bertujuan agar produsen yang bergerak di industri sepeda motor dapat memfokuskan produknya pada kelompok kabupaten dan kota yang memiliki potensi terbaik. Terdapat 12 variabel demografi yang digunakan dalam penelitian ini, dan variabel tersebut terbagi menjadi tiga kategori: kondisi ekonomi masyarakat, kondisi kehidupan masyarakat, dan kondisi demografis daerah. Metode yang digunakan dalam penelitian ini adalah metode partitional hard clustering. Sebelumnya, dilakukan pembuatan dataset melalui proses data scrapping pada situs terpercaya, dan dilanjutkan dengan proses Exploratory Data Analysis (EDA) pada dataset. Setelah dataset terbentuk, dilakukan pengelompokan dengan metode partitional hard clustering yang terdiri dari metode K-Means Clustering dan metode K-Medoids Clustering. Kemudian, dilakukan evaluasi cluster untuk menentukan metode clustering yang paling sesuai dengan menggunakan empat metrik evaluasi yaitu Indeks Silhouette, Indeks Dunn, Indeks Davies Bouldin, dan Indeks Calinski Harabasz. Didapatkan hasil bahwa metode K-Medoids Clustering dengan 5 kelompok merupakan yang terbaik untuk mengelompokkan kabupaten dan kota di Pulau Jawa. Setelah kelompok terbentuk, setiap kelompok diberikan rekomendasi keputusan yang sebaiknya diambil oleh industri sepeda motor. Terdapat 4 rekomendasi yang dapat diberikan, yaitu distribusi suku cadang, pembuatan bengkel, penjualan sepeda motor kelas menengah ke atas, dan penjualan sepeda motor kelas menengah ke bawah.

As of February 9, 2023, 87% of the total population of private vehicles in Indonesia consists of motorcycles. The densest distribution of motorcycles in Indonesia is found on the Island of Java, with a percentage of 60%. The high population of motorcycles and the fact that 80% of households in Java already have motorcycles are causing the motorcycle market to shrink. In the long run, this condition can have negative impacts on the motorcycle industry that continues to seek growth. This research focuses on the clustering of regencies and cities in Java based on their demographic characteristics. Subsequently, decision recommendations will be provided for the motorcycle industry based on the formed groups using clustering techniques. The aim is to enable manufacturers in the motorcycle industry to focus their products on regencies and cities with the best potential. There are 12 demographic variables used in this research, divided into three categories: the economic conditions of society, the living conditions of society, and the demographic conditions of the region. The method used in this research is the partitional hard clustering method. Firstly, a dataset is created through the data scraping process on trusted sites, followed by the Exploratory Data Analysis (EDA) process on the dataset. Once the dataset is formed, clustering is performed using the partitional hard clustering method, consisting of the K-Means Clustering and K-Medoids Clustering methods. Subsequently, cluster evaluation is carried out to determine the most suitable clustering method using four evaluation metrics: Silhouette Index, Dunn Index, Davies Bouldin Index, and Calinski Harabasz Index. The results show that the K-Medoids Clustering method with 5 clusters is the best for grouping regencies and cities in Java. After the groups are formed, each group is given decision recommendations that the motorcycle industry should consider. There are four recommendations: spare parts distribution, workshop establishment, sales of mid- to high-end motorcycles, and sales of mid-range motorcycles and below."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Athiyyah Fadillah Eriri
"Pengelompokan atau clustering adalah pengelompokan objek-objek yang dilakukan atas dasar kesamaan atau jarak (perbedaan) di mana tidak ada asumsi yang dibuat mengenai banyaknya cluster atau struktur cluster. Salah satu metode yang banyak digunakan dalam penyelesaian masalah clustering adalah algoritme K-Means. Pada algoritme ini, suatu objek yang telah menjadi anggota cluster tertentu, tidak bisa menjadi anggota cluster yang lainnya. Metode ini dikenal sebagai hard clustering. Pendekatan lain dalam melakukan pengelompokan didasarkan pada teori himpunan fuzzy yang dikenal dengan pengelompokan fuzzy. Teori himpunan fuzzy memiliki nilai kekaburan antara salah atau benar. Jadi, dalam melakukan pengelompokan, setiap objek memiliki peluang menjadi anggota pada setiap cluster. Salah satu metode pengelompokan fuzzy adalah Fuzzy C-Means (FCM). Pada tugas akhir ini, metode K-Means dan FCM digunakan untuk mengelompokkan nagari-nagari di Kabupaten Agam. Nagari-nagari di Kabupaten Agam dikelompokan berdasarkan indikator pembangunan keluarga yang berasal dari Laporan Pendataan Keluarga tahun 2015 yang bersumber dari BKKBN (Badan Kependudukan dan Keluarga Berencana Nasional). Pada penelitian ini diperoleh empat cluster hasil dari indeks xie and beni. Jumlah anggota setiap cluster hasil dari algoritme K-Means adalah 32, 28, 11 dan 11. Sedangkan jumlah anggota setiap cluster hasil dari algoritme Fuzzy C-Means adalah 31, 18, 21, dan 12. Perbedaan jumlah anggota cluster yang dihasilkan algoritme K-Means dan Fuzzy C-Means adalah 14.29%. Karena rasio simpangan baku dalam dan antar cluster pada algoritme K-Means memberikan nilai yang lebih kecil dibandingkan algoritme Fuzzy C-Means maka algoritme K-Means memberikan hasil yang lebih baik dari pada algoritme Fuzzy C-Means dalam pengelompokan nagari-nagari di Kabupaten Agam.

Grouping or clustering is a method to group objects that are carried out on the basis of similarity or distance (difference) where no assumptions are made regarding the number of clusters or cluster structures. One method that is widely used in solving clustering problems is the K-Means algorithm. In this algorithm, if an object has become a member of a particular cluster, then it cannot become a member of another cluster. This method is known as hard clustering. Another approach to grouping is based on fuzzy set theory, known as fuzzy grouping. Fuzzy set theory has a blurring value between right or wrong. So, in grouping process, each object has the opportunity to become a member in each cluster. One of the fuzzy grouping methods is Fuzzy C-Means. In this study, the two methods, K-Means and Fuzzy C-Means, are used to group nagari-nagari in Agam District. Nagari is equivalent to villages in other provinces in Indonesia. The nagari grouping in Kabupaten Agam is based on family development indicators derived from the 2015 Family Data Collection Report sourced from BKKBN (Badan Kependudukan dan Keluarga Berencana Nasional). In this study four clusters were obtained based on xie and beni’s index. The numbers of members of each cluster as the result of the K-Means algorithm are 32, 28, 11 and 11. While the numbers of members of each cluster as the result of the Fuzzy C-Means algorithm are 31, 18, 21, and 12. The different cluster members produced by the K-Means and Fuzzy algorithms C-Means is 14.29%. Because the standard deviation ratio within and between clusters in the K-Means algorithm gives a smaller value than the Fuzzy C-Means algorithm, the K-Means algorithm gives better results than the Fuzzy C-Means algorithm on the nagari grouping in Agam District."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diah Rosida
"Analisis regresi adalah suatu teknik statistik yang digunakan untuk menyelidiki dan menunjukkan hubungan antara variabel-variabel yang dianggap berpengaruh.
Hasil analisis, yang disebut model regresi, akan baik jika data pengamatan yang dipakai sudah memenuhi asumsi-asumsi yang ada dan mempunyai pengaruh yang sama pada saat pencocokan regresi, dalam hal ini pada taksiran β. Artinya, tidak ada sebagian atau satu pengamatan yang lebih berpengaruh dibandingkan dengan data pengamatan yang lain.
Untuk mengetahui apakah ada data pengamatan yang lebih berpengaruh tersebut, dilakukan pendeteksian terhadap data yang ada dengan menggunakan pendekatan penghapusan. Pendekatan ini menguji bagaimana suatu pengamatan dapat mengubah kuantitas yang terlibat dalam analisis regresi.
Ada 2 metode pendeteksian pengamatan yang berpengaruh pada β , yaitu :
1. Berdasarkan jarak titik pada ruang X - Y
1.1 Elemen diagonal matrik V
1.2 Jarak Mahalanobis
1.3 WSSD
1.4 Elemen diagonal matrik VZ
2. Berdasarkan Kurva Pengaruh ( pusat elipsoida keperoayaan)
2.1 Cook distance
2.2 Welsch distance
2.3 Welsch-Kuh distance
2.4 Modifikasi Cook distance."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1992
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Henny Heryandini
"Metode Conjugate Gradient merupakan salah satu cara untuk optimumkan fungsi f(x) untuk x tanpa kendala (unconstrained optimisation). Optimisasinya dijalankan secara iteratif dengan bantuan garis-garis arah yang saling conjugate. Karena metode ini sangat efisien dalam pemanfaatan storage, maka timbullah usaha untuk mengembangkannya. Salah satu pengembangannya adalah dengan menghubungkan metode CG ini dengan metode BFGS, yang kemudian menghasilkan suatu metode baru yang disebut VSGCG."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1991
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kartina Widyani Saifudidin
"Model Cox, Ingersol and Ross (CIR) merupakan salah satu model stokastik yang menggambarkan perubahan tingkat bunga untuk jangka waktu yang pendek. Model ini mempunyai sifat mean reversion. Untuk jangka waktu yang lama, diperoleh bahwa mean dan variansi dari tingkat bunga pada saat jatuh tempo mendekati suatu nilai. Pada skripsi ini akan dihitung harga dari zero ? coupon bond untuk tingkat bunga mengikuti model CIR. Diperoleh bahwa jika tingkat bunga naik, harga dari zero ? coupon bond akan turun."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S27680
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agnes Nabila
"ABSTRAK
Analisis regresi linier memodelkan hubungan linier antara variabel respon dengan variabel regresor. Analisis regresi linier menghasilkan suatu model yang disebut model regresi linier. Metode yang sering digunakan untuk menaksir parameter pada model regresi linier adalah metode ordinary least square OLS . Metode OLS akan menghasilkan taksiran terbaik ketika semua asumsinya terpenuhi. Namun pada kenyataannya, asumsi-asumsi tersebut seringkali tidak terpenuhi. Asumsi yang seringkali tidak terpenuhi adalah adanya multikolinieritas dan outlier. Multikolinieritas akan menyebabkan variansi dari taksiran parameter regresi membesar, sedangkan outlier akan membuat taksiran parameter menjadi bias. Jika terdapat multikolinieritas dan outlier pada data, digunakan jackknife ridge M-estimator. Jackknife ridge M-estimator adalah taksiran koefisien regresi yang memiliki sifat robust sehingga tidak terpengaruh oleh outlier dan menggunakan metode ridge untuk mengatasi masalah multikolinieritas serta menggunakan metode jackknife untuk mereduksi bias yang dihasilkan metode ridge. Pada regresi linier berganda, model regresi dapat terdiri dari banyak kandidat variabel regresor. Metode subset selection digunakan untuk memilih sebagian kecil saja dari kandidat variabel regresor pada model regresi linier berganda yang paling baik dalam memprediksi nilai dari variabel respon. Kriteria seleksi yang dapat digunakan pada metode subset selection apabila terdapat outlier dan multikolinieritas pada data yaitu kriteria GSp yang merupakan generalized version dari kriteria Sp. Hal tersebut dikarenakan, kriteria GSp didasarkan oleh jackknife ridge M-estimator yang dapat mengatasi masalah outlier dan multikolinieritas. Selanjutnya, kriteria GSp diimplementasikan untuk mendapatkan model terbaik pada data IQ yang memiliki masalah outlier dan multikolinieritas. Berdasarkan analisis data, diperoleh bahwa untuk mengetahui IQ seseorang orang tersebut tidak harus melakukan 5 tes kepribadian berbeda, karena dengan hanya melakukan 3 tes kepribadian saja yaitu tes 1, tes 3 dan tes 5, sudah dapat diketahui besar IQ dari orang tersebut, dimana hal tersebut dapat mengurangi waktu, biaya dan tenaga yang diperlukan.

ABSTRACT
Linear regression analysis model the linear relation between response variable with regressor variables. Linear regression analysis produce a linear regression model. Ordinary least squares OLS method is often utilized to estimate parameters of linear regression model. OLS method will produce the best estimates when all the assumptions are met. However, in real data, those assumptions are often not violated. Such as the multicollinearity and outliers. Multicollinearity will produce a large variance of the regression parameters, while outliers will cause a biased estimates. Jackknife ridge M estimator is recommended to be implemented in the model when these problems are present. Jackknife ridge M estimator is the regression with robust property, which makes it able not to be influenced by the presence of outlier, and ridge method is utilized to overcome multicollinearity, where the jackknife method is utilized to reduce the bias from the result of the ridge method. In multiple linear regression, regression model could possibly contain many regressor variable candidates. Subset selection method is utilized to select some of those regressor variable candidates on the multiple linear regression model that best predicts the value of the response variable. The selection criterion that can be utilized on the subset selection method when outlier and multicollinearity are present is the GSp criterion which is the generalized version of the Sp criterion. The reason for this is because the GSp criterion is based on jackknife ridge M estimator, which is able to solve the problem of outlier and multicollinearity. Furthermore, GSp criterion is implemented to obtain the best model on IQ data that has outlier and multicollinearity issues. Based on the data analysis, it was found that to know the IQ of a person the person does not need to do 5 different personality tests, because by only doing 3 personality test which is test 1, test 3 and test 5, it can be known the IQ of that person, where it can reduce the time, cost and energy required."
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Supardi Sudiro, Author
"Salah satu indikator penting untuk mengetahui miskin atau tidaknya suatu rumah tangga adalah jumlah pengeluaran rumah tangga tersebut per bulan. Tugas akhir mi membandingkan kontribusi pengeluaran pangan dan non pangan pada pengeluaran per bulan dengan memperhatikan karakteristik-karakteristik demografis dan sosial rumah tangga. Metode analisis yang digunakan adalah model regresi linier berganda, berdasarkan data rumah tangga hasil Survei Sosial Ekonomi Nasional 1990 (BPS 1990) untuk wilayah propinsi Jawa Barat. Beberapa model regresi di buat untuk rumah tangga miskin dan tidak miskin baik di kota maupun di desa. Hasil yang didapat adalah adanya perbedaan kontribusi pengeluaran pangan maupun non pangan pada pengeluaran rumah tangga per bulan antara rumah tangga miskin dan tidak miskin baik di kota maupun di desa. Kontribusi pengeluaran pangan pada rumah tangga miskin lebih besar dibandingkan rumah tangga tidak miskin, di kota maupun di desa. Sedangkan kontribusi pengeluaran non pangan pada rumah tangga tidak miskin lebih besar dibandingkan rumah tangga miskin, di kota maupun di desa. Karakteristik-karakteristjk yang diperhatikan dalam model adalah jenis kelamin kepala keluarga, sumber penghasilan utama, status pekerjaan, tingkat pendidikan kepala keluarga, jumlah pekerja dan jumlah anggota rumah tangga."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1994
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>