Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 144750 dokumen yang sesuai dengan query
cover
Tania Ashila Kusmawan
"Studi perbandingan katalis Cu/CeO2/Al2O3 dan Cu/ZnO/Al2O3 menjadi topik menarik untuk diteliti karena memiliki perbedaan konversi dan selektifitas terhadap produk alkohol. Katalis Cu/CeO2/Al2O3 dan Cu/ZnO/Al2O3 berhasil disintesis dan diuji kinerja katalisisnya dalam reaktor dengan perbandingan laju alir CO2:H2 sebesar 1:3 dengan suhu 250oC, 300oC dan 350oC. Penelitian ini bertujuan untuk melihat efektifitas dari kedua katalis dalam menghasilkan metanol dan ingin diketahui pengaruh pemberian beberapa variasi suhu. Hasil sintesis katalis dikarakterisasi menggunakan instrument SEM, XRD dan BET. Hasil reaksi hidrogenasi juga dikarakterisasi menggunakan VOC meter, IRGA dan GC-MS. Produk hasil hidrogenasi CO2 menggunakan katalis Cu-CeO2 menunjukkan konsentrasi senyawa organik secara beturut sebesar 4,7 ppm, 8,6 ppm dan 10,1 ppm dengan CO2 terkonversi sebesar 81,68%, 87,35% dan 90,14%, serta kromatogram GC-MS mengindikasikan senyawa metanol. Sedangkan dengan penggunaan katalis Cu-ZnO, didapatkan konsentrasi senyawa organik berturut sebesar 0,5 ppm, 1,0 ppm dan 2,4 ppm dengan CO2 terkonversi sebesar 81,46%, 81,58% dan 84,16%. Hasil tersebut menunjukan bahwa katalis Cu/CeO2/Al2O3 lebih efektif dalam menghidrogenasi CO2 menjadi metanol.

Comparative studies of Cu/CeO2/Al2O3 and Cu/ZnO/Al2O3 catalysts is an interesting topic to research because of the differences of their conversion rates and selectivity to produce alcohol. Cu/CeO2/Al2O3 and Cu/ZnO/Al2O3 catalysts were successfully synthesized and the performances has been tested in a reactor with the ratio flow rate of CO2:H2 which is 1:3 temperatures of 250oC, 300oC dan 350oC. This study aimed to determine the abilities of both catalyst in producing metanol and to find the effect of several temperature variations. The characterizations of the synthesized catalysts were performed using SEM, XRD and BET instruments. The results of the hydrogenation reaction were also characterized using a VOC meter, IRGA and GC-MS. Products resulting from hydrogenation of CO2 using a Cu-CeO2 catalyst showed concentrations of organic compounds of 4.7 ppm, 8.6 ppm and 10.1 ppm with converted CO2 of 81.68%, 87.35% and 90.14% and GC-MS chromatograms indicates a methanol compound. Meanwhile, with the use of Cu-ZnO catalyst, the concentration of organic compounds was obtained, respectively, 0.5 ppm, 1.0 ppm and 2.4 ppm with converted CO2 of 81.46%, 81.58% and 84.16%. These results indicate that the Cu/CeO2/Al2O3 catalyst is more effective in hydrogenating CO2 into methanol."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asmus, Hofriscan
Depok: Fakultas Teknik Universitas Indonesia, 1999
S50832
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nasha Putri Kowara
"Banyak isu global yang mempengaruhi kelangsungan hidup dan perkembangan manusia akibat meningkatnya temperatur sehingga menyebabkan krisis lingkungan global. Karena meningkatnya konsentrasi CO2 di atmosfer, saat ini banyak dilakukan konversi CO2 menjadi senyawa lain seperti CO, CH4 dan CH3OH. Pada penelitian ini dilakukan pengaruh perbandingan variasi rasio Ni/Co pada SiO2 mesopori sebagai pendukung katalis terhadap studi reaksi hidrogenasi CO2. Untuk mengetahui keberhasilan dari pembuatan katalis dilakukan karakterisasi menggunakan FTIR, XRD, TEM, SAA dan SEM-EDX pada katalis NiCo/SiO2. Hasil karakterisasi menggunakan TEM menunjukkan bahwa struktur dari penyangga sudah terbentuk dengan baik sesuai dengan bentuk SiO2 yang diinginkan dan juga logam Ni dan Co juga sudah terimpregnasi ke dalam SiO2. Hasil karakterisasi SEM-EDX menunjukkan persebaran yang merata dari logam Ni dan Co pada silika mesopore sesuai dengan rasio. Kemudian, katalis NiCo/SiO2 digunakan untuk reaksi hidrogenasi CO2 dengan menggunakan instrument GC (GasChromatography) yang dilengkapi detector TCD (Thermal Conductivity Detector) dan FID (Flame Ionization Detector). Didapatkan hasil perhitungan konversi CO2 dalam katalis Ni1Co1/SiO2 menggunakan hidrogen dengan perbandingan rasio gas H2/CO2 sebesar 7/1 pada temperatur 150°C, didapatkan konversi CO2 sebesar 35,7% dan selektivitas metanol sebesar 100%. Hal ini mengindikasikan bahwa katalis NiCo/SiO2 memiliki aktivitas pada reaksi hidrogenasi CO2 menjadi metanol.

Many global issues affect human survival and development due to rising temperatures causing a global environmental crisis. Due to the increasing concentration of CO2 in the atmosphere, currently a lot of CO2 conversion is carried out into other compounds such as CO, CH4 and CH3OH. In this study, the effect of the molar ratio of Ni to Co on mesoporous SiO2 as a catalyst support was investigated in the CO2 hydrogenation reaction. To determine the success of the catalyst preparation, characterization was carried out using FTIR, XRD, TEM, SAA and SEM- EDX on the NiCo/SiO2 catalysts. The results of characterization using TEM showed that the structure of the support was well formed according to the desired SiO2 shape, and that Ni and Co metals had also been incorporated into SiO2. The characterization of SAA showed a tendency for the silica surface area to decrease after being impregnated with metal because some of the pores of the silica were filled with Ni and Co metals. The results of SEM-EDX characterization showed an even distribution of Ni and Co metals on mesopore silica according to the ratio. Then, NiCo/SiO2 catalyst was used for the CO2 hydrogenation reaction using GC (Gas Chromatography) instrumentation equipped with a TCD (Thermal Conductivity Detector) and FID (Flame Ionization Detector) detector. The optimum CO2 hydrogenation reaction condition was obtained over Ni1Co1/SiO2 catalyst using hydrogen to CO2 ratio of 7/1 at a reaction temperature of 150°C which gave CO2 conversion of 35.7% and methanol selectivity of 100%. This result indicates that the catalyst has activity in the hydrogenation reaction of CO2 into methanol."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Oktaviani
"Reaksi hidrogenasi CO2 dilakukan melalui katalis bimetalik Ni-Ga dan Ni-Ga termodifikasi Ag yang didukung pada karbon mesopori (MC). MC berhasil disintesis menggunakan metode soft-template dengan menggunakan phloroglucinol sebagai prekursor karbon dan pluronik F-127 sebagai template. Katalis Ni-Ga dan Ni-Ga yang termodifikasi Ag disintesis menggunakan metode impregnasi dengan variasi Ni5Ga3/MC, Ni5Ga3Ag0,1/MC, Ni5Ga3Ag0,3/MC, dan Ni5Ga3Ag0,5/MC. Berdasarkan karakterisasi XRD, pembentukan bimetal Ni-Ga dan nanopartikel Ag pada penyangga MC telah terkonfirmasi. Gambar mapping EDX menunjukkan Ni-Ga maupun NiGa-Ag terdistribusi secara merata pada permukaan MC. BET-SAA menunjukkan ukuran diameter pori katalis Ni5Ga3/MC dan Ni5Ga3Ag0,1/MC masing-masing adalah 5,5 nm dan 6,0 nm yang mana termasuk dalam ukuran mesopori 2-50 nm. Aktivitas katalis dalam reaksi hidrogenasi CO2 dilakukan pada reaktor fixed-bed. Pada katalis Ni5Ga3/MC dan Ni5Ga3Ag/MC terdeteksi produk metanol dan formaldehida. Penambahan Ag pada katalis Ni5Ga3/MC meningkatkan konversi CO2 dan yield produk metanol maupun formaldehida pada katalis Ni5Ga3Ag0,1/MC. Yield optimum metanol dan formaldehida dihasilkan dengan rasio H2/CO2 7/1 pada suhu 170 °C yaitu masing-masing 0,02 dan 2,26%.. Konversi CO2 semakin kecil dengan semakin meningkatnya suhu reaksi karena kondisi reaksinya yang eksoterm.

The study of CO2 hydrogenation reaction was carried out using bimetallic Ni-Ga and Ag-modified Ni-Ga catalysts supported on mesoporous carbon (MC). MC was successfully synthesized using the soft-template method by using phloroglucinol as a carbon precursor and pluronic F-127 as a template. The Ni-Ga and Ag-modified Ni-Ga catalysts were synthesized using the impregnation method with variations in Ag loading to give Ni5Ga3/MC, Ni5Ga3Ag0.1/MC, Ni5Ga3Ag0.3/MC, and Ni5Ga3Aug0.5/MC catalyst. Based on the characterization of XRD, the formation of bimetallic Ni5Ga3 and Ag nanoparticles on MC have been confirmed. The EDX mapping image shows both Ni-Ga and NiGa-Ag were evenly distributed on the MC surface. BET-SAA analysis shows the pore diameter of Ni5Ga3/MC and Ni5Ga3Ag0.1/MC catalysts are 5.5 nm and 6.0 nm respectively which are included in the mesoporous size of 2-50 nm. The activity of the catalyst in the hydrogenation reaction of CO2 was carried out in a fixed-bed reactors. Both Ni5Ga3/MC and Ag-modified Ni5Ga3/MC catalysts gave methanol and formaldehyde as CO2 hydrogenation products. The addition of Ag to the Ni5Ga3/MC catalyst increases the CO2 conversion and yield of methanol and formaldehyde products. The highest yield of methanol of 0.02% and formaldehyde of 2.26% were obtained over Ni5Ga3Ag0.1/MC catalyst with a H2/CO2 ratio of 7/1 at 170 °C. The conversion of CO2 is getting smaller with increasing reaction temperature due to its exothermic reaction conditions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Graciella Stephanie Dwiningtyas
"Pemanasan global dan perubahan iklim merupakan isu lingkungan terbesar pada abad ke-21 yang mengakibatkan emisi gas CO2 yang terus meningkat setiap tahunnya. Peningkatan emisi gas CO2 yang disebabkan oleh aktivitas manusia menyebabkan upaya pengurangan emisi terus dilakukan. Reaksi hidrogenasi merupakan salah satu reaksi yang dapat dilakukan untuk mengubah CO2. Sifat CO2 yang stabil secara termodinamik dan inert menyebabkan katalis digunakan untuk mempermudah reaksi. Katalis berbasis nikel merupakan katalis yang banyak digunakan menggantikan katalis logam mulia untuk hidrogenasi CO2. Pada penelitian ini, katalis NiSn tersangga oleh karbon mesopori (NiSn/MC) disintesis untuk mengkonversi CO2 menjadi formaldehida dan metanol melalui reaksi hidrogenasi. Pola difraksi NiSn/MC menunjukkan puncak pada 26.02°; 28,6°; 33,8°; 42,5°; 44,9°; 59,2°; 71,2°; 79,5°; 86,6°. yang merupakan puncak difraksi dari grafit dan NiSn. Karakterisasi SEM-EDX mapping dan TEM menunjukkan partikel NiSn tersebar merata pada permukaan karbon mesopori dan tidak membentuk klaster tersendiri. Berdasarkan hasil reaksi yang dilakukan, material Ni5Sn1/MC memberikan konversi CO2 tertinggi sebesar 39.86% dibandingkan Ni1Sn1/MC, Ni3Sn1/MC, Ni/MC, Sn/MC, dan NiSn NPs. Yield metanol Ni5Sn1/MC sebesar 86.31 mmol/gcat. Kondisi optimum untuk reaksi hidrogenasi CO2 didapat pada temperatur 175°C dengan rasio gas CO2:H2 sebesar 1:7.

Global warming and climate change are the biggest environmental issues in the 21st century due to the increase of CO2 emissions in the atmosphere. The increasing CO2 emissions has led to continuing efforts to reduce CO2 levels. One of the methods to reduce CO2 emission is to convert CO2 through chemical reactions such as the hydrogenation reaction into more valuable chemicals. The nature of CO2 which is stable and inert causes the reaction of CO2 needs to be facilitated by a catalyst. This research synthesized NiSn nanoparticles on mesoporous carbon (NiSn/MC) to convert CO2 into formaldehyde and methanol. The diffraction patterns of NiSn/MC exhibit peaks at 26.02°, 28,6°; 33,8°; 42,5°; 44,9°; 59,2°; 71,2°; 79,5°; 86,6° which correspond to diffraction peaks of graphite and NiSn. SEM-EDX Mapping and TEM characterization reveal that NiSn are uniformly dispersed on the mesoporous carbon surface and do not form distinct clusters. Based on the conducted reactions, Ni5Sn1/MC demonstrated the highest CO2 conversion of 39.86% compared to Ni1Sn1/MC, Ni3Sn1/MC, Ni/MC, Sn/MC, and NiSn NPs. The methanol yield of CO2 hydrogenation with Ni5Sn1/MC is 86.31 mmol/gcat. The optimum conditions for the CO2 hydrogenation reaction were achieved at a temperature of 175°C and CO2:H2 gas ratio of 1:7."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Pertiwi
"Karbondioksida merupakan gas rumah kaca yang menjadi salah satu faktor pemanasan global dan perubahan iklim secara drastis. Namun, di samping dampak negatif emisi gas CO2 secara alami maupun melalui hasil kegiatan antropogenik, CO2 dapat dimanfaatkan sebagai sumber C1 reaksi organik, salah satunya reaksi karboksilasi. Periodic Mesoporous Organosilica (PMO) merupakan material mesopori silika yang memiliki keunggulan, di antaranya memiliki ukuran pori cukup besar yang dapat memfasilitasi transfer massa dengan baik, luas permukaan besar yang memungkinkan banyak sisi katalitik, maupun integrasi dari spesi organik dan atom logam dalam kerangka PMO. Logam nikel merupakan logam yang secara luas digunakan dalam bidang katalisis, karena logam tersebut memiliki orbital d tidak terisi penuh, sehingga dapat membentuk ikatan kovalen koordinasi dan memudahkan proses pembentukan intermediet pada permukaan katalis. Pada penelitian ini, dilakukan sintesis PMO dengan prekursor 4,4’- bis(trietoksisilil)bifenil dan dilanjutkan dengan fungsionalisasi gugus amina melalui proses nitrasi dan aminasi. Selanjutnya, dilakukan imobilisasi kompleks Ni(acac)2 pada material Bph-PMO untuk digunakan sebagai katalis pada reaksi karboksilasi fenilasetilena dengan CO2. Analisis XRD menunjukkan bahwa fungsionalisasi gugus amina pada Bph-PMO tidak merubah komponen maupun struktur periodik pada Bph-PMO, begitu pula setelah nikel diimobilisasi pada Bph- PMO yang terfungsionalisasi gugus amina. Analisis FTIR Ni/NH2-Bph-PMO menunjukkan puncak serapan pada 1605 cm-1 yang mengindikasikan pembentukan ikatan C=N dari reaksi kondensasi Schiff antara gugus amina dengan C=O pada Ni(acac)2. Material Ni/NH2-Bph-PMO memiliki ukuran partikel rata-rata 420 nm, dengan pemuatan nikel 2,8% berdasarkan analisis SEM-EDX. Analisis TEM menunjukkan keberadaan struktur mesopori pada NH2-Bph-PMO. Ukuran diameter pori dan luas permukaan BET material Ni/NH2-Bph-PMO berturut-turut sebesar 3,16578 nm dan 490,742 m2/g. Uji katalitik material Ni/NH2-Bph-PMO pada karboksilasi fenilasetilena dengan CO2 dilakukan pada tiga variasi suhu, di mana kondisi optimum diperoleh pada suhu 25 °C, dengan konsentrasi produk fenil maleat 244,5899 ppm.

ABSTRACT
Carbon dioxide is a greenhouse gas that affecting global warming and produces climate change. However, aside from the negative effects of natural CO2 gas emissions and through anthropogenic activities, CO2 has been used as a source of C1 organic reactions, for example, carboxylation reaction. Periodic Mesoporous Organosilica (PMO) is a superior silica mesoporous material, which has a large pore to facilitate mass transfer, a large area that allows many catalytic sides, which also associated with organic species and metal atoms in PMO. This property supports PMO to be applied as a metal catalyst support. Nickel metal is a metal that is widely used in the catalysis field, because this metal has d orbitals and is not fully filled, so it can form covalent bonds and fasilitate process of making intermediates on the surface of the catalyst. In this study, PMO was synthesized with 4,4'-bis (triethoxysilyl) biphenyl precursor and continued with the functionalization of amine groups through nitration and amination process. Furthermore, immobilization of Ni(acac)2 complex was carried out on the Bph-PMO material to be used as a catalyst in the carboxylation reaction of phenylacetylene with CO2. Analysis of XRD shows that the functionalization of amine groups on Bph-PMO does not change the periodic structure of Bph-PMO, as well as after nickel immobilized on aminated Bph-PMO. Absorption peak at 1605 cm-1 of Ni/NH2- Bph-PMO revealed from FTIR analysis, indicating new C=N bond from Schiff condensation between amine group and C=O from Ni(acac)2. Ni/NH2-Bph-PMO material has an average particle size of 420 nm, with 2,8% nickel loading based on SEM-EDX analysis. Mesoporous structure of NH2-Bph-PMO has been proved by TEM analysis. The pore diameter size and BET surface area of Ni/NH2-Bph-PMO are 3,16578 nm and 490,742 m2/g, respectively. The catalytic test of Ni/NH2-Bph- PMO on phenylacetylene carboxylation with CO2 was carried out at three temperature variations, which shows that optimum condition was obtained at 25 °C, with a concentration of phenyl maleic product of 244,5899 ppm.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Astri Pertiwi
"Modifikasi dilakukan pada sistem katalis yang terdiri dari logam Ni dan Zn sebagai promotor dengan penyangga karbon aktif agar dapat menurunkan keasaman dalam menghidrogenasi CO dan CO2 secara simultan menjadi metanol. Karbon aktif berasal dari batubara bituminous yang mengandung unsur Si, Al, Fe, Ca, S dan Mg. Katalis dibuat secara impregnasi dilanjutkan dengan pengeringan dalam oven 110oC selama 20 jam dan kalsinasi pada suhu 400oC selama 4 jam. Tahap awal uji aktivitas katalis didahului oleh reduksi secara in-situ dalam fixed bed reactor dengan massa katalis 0.5 gram selama 1.5 jam pada suhu 350oC menggunakan gas H2 sebagai pereduksi. Proses hidrogenasi CO dan CO2 dilangsungkan pada kondisi 20 bar dan suhu 270oC selama 4 jam kontinyu. Sebagai umpan digunakan campuran gas H2/CO/CO2/N2 dengan komposisi 69.98% H2, 17.78% CO, 6.41% CO2, 5.75% N2 dan 0.08% CH4. Katalis dengan loading Ni tertinggi (57.58% Ni dan 9.46% Zn) dengan keasaman 0.1565 mmol/g.Kat dan luas area permukaan 758.04 m2/gram menghasilkan konversi CO2 tertinggi sebesar 97.72% dan konversi CO sebesar 12.34% untuk membentuk CH4, C2H4, C2H6 dan metanol.

Modifications carried out on a catalyst system consisting of Ni metal and Zn as a promoter with activated carbon as a support in order to lower the acidity in the hydrogenate of CO and CO2 that simultaneously produce methanol. Activated carbon derived from bituminous coal containing elements of Si, Al, Fe, Ca, S and Mg. The catalyst is made by impregnation followed by drying in an oven 110oC for 20 hours and calcination at a temperature of 400oC for 4 hours. The initial stage of the catalyst activity test was preceded by in-situ reduction in the fixed bed reactor with a catalyst mass of 0.5 grams for 1.5 hours at a temperature of 350oC using H2 as a reductant. The process of hydrogenation of CO and CO2 held in conditions of 20 bar and a temperature of 270oC for 4 hours continuously. gas mixture (H2 / CO / CO2 / N2) is used as a feedstock with each composition 69.98% H2, 17.78% CO, 6:41% CO2, 5.75% N2 and 0.08% CH4. Nickel catalyst with the highest loading (57.58% 9:46% Ni and Zn) with the acidity 0.1565 mmol /g.Kat and surface area 758.04 m2/gram have the highest conversion of CO2 97.72% and the conversion of CO reach 12.34% to form CH4, C2H4, C2H6 and methanol."
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45691
UI - Tesis Membership  Universitas Indonesia Library
cover
Putri Nurul Amalia
"ABSTRAK
Karbon dioksida (CO2) merupakan senyawa yang potensial digunakan sebagai sumber karbon dalam sintesis fine chemicals karena keberadaannya melimpah di alam, bersifat non toksik, ekonomis, dan termasuk ke dalam sumber yang dapat diperbaharui. Namun pemanfaatan CO2 secara luas masih terkendala karena sifatnya yang inert dan stabil. Oleh karena itu, keberadaan katalis sangat diperlukan dalam proses konversi CO2. Penelitian ini bertujuan untuk mensintesis Cu terimpregnasi pada karbon mesopori sebagai katalis karboksilasi fenilasetilena dengan CO2 menjadi asam karboksilat. Pembuatan karbon mesopori dilakukan dengan metode soft template menggunakan Pluronik F-127 sebagai pembentuk pori, formaldehida dan floroglusinol sebagai sumber karbon, dan HCl sebagai katalis asam. Material Cu/MC yang dihasilkan dikarakterisasi dengan FTIR, XRD, SAA, dan SEM-EDX. Analisis BET terhadap karbon mesopori menunjukkan bahwa material tersebut memiliki luas permukaan sebesar 405,8 m2/g dengan rata-rata pori sebesar 7,2 nm. Hasil analisa dengan XRD memperlihatkan puncak pada 2θ 36,62°; 43,47°; 50,63°; dan 74,19° yang mengindikasikan bahwa Cu telah berhasil terimpregnasi yang mewakili spesi Cu(0) dan Cu(I). Reaksi karboksilasi fenilasetilena dengan CO2 dilakukan dengan variasi suhu (25°C; 50°C; dan 75°C), variasi jumlah katalis (28,6; 57,2; dan 85,8 mg) dan variasi basa (Cs2CO3; K2CO3; dan Na2CO3). Hasil reaksi dianalisa dengan HPLC dan memperlihatkan %konversi terbaik terjadi pada suhu 75°C yaitu 41,32% dengan menggunakan Cs2CO3 sebagai basa, dan produk yang terbentuk diidentifikasi dengan FTIR dan LC-MS.

ABSTRACT
Carbon dioxide (CO2) is a compound that has the potential to be used as carbon source in the synthesis of fine chemicals because it is abundant in nature, non-toxic, inexpensive, and is included as a renewable source. However, utilization of CO2 is still
constrained due to its inert and stable nature. Therefore, the presence of a catalyst is needed in CO2 conversion. This study aims to synthesize impregnated Cu on mesoporous carbon (Cu/MC) as a catalyst for phenylacetylene carboxylation reaction with CO2 into carboxylic acid. The synthesis of mesoporous carbon was performed via soft template method using Pluronic F-127 as a pore forming agen, formaldehyde and phloroglucinol as carbon sources, and HCl as an acid catalyst. The Cu/MC material produced was characterized by FTIR, SAA, XRD, and SEM-EDX. BET surface area analysis of mesoporous carbon showed that the material has a surface area of 405.8 m2/g with an average pore diameter of 7,2 nm. XRD pattern of Cu/MC showed some sharp peaks at 2θ of 36.62°; 43.47°; 50.63°; and 74.19° which indicates that Cu has been successfully impregnated in the form of Cu(0) and Cu(I). Phenylacetylene carboxylation reaction with CO2 was carried out by varying reaction temperatures (25, 50, and 75 °C), the amount of catalyst (28.6, 57.2, and 85.8 mg) and the type of base (Cs2CO3, K2CO3, and Na2CO3). The reaction mixtures were analyzed by HPLC and showed that highest phenylacetylene conversion of 41% was obtained for the reaction at 75°C using Cs2CO3 as a base. The product was further identified using FTIR and LCMS."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardha Bariq Fardiansyah
"Hidrogenasi katalitik CO2 menjadi CH3OH memiliki prospek yang cerah seiring dengan permintaan pasar yang tinggi. Metanol CH3OH dibutuhkan sebagai bahan baku di industri petrokimia untuk memproduksi formaldehida, klorometana, amina asetat dan juga sebagai alternatif energi baru yang ramah lingkungan. Penelitian ini bertujuan untuk mendapatkan pengaruh katalis CuO/ZnO/Al2O3 dan pengaruh temperatur umpan dalam bentuk konversi CO2, selektivitas CH3OH, dan yield CH3OH. Preparasi katalis CuO/ZnO/Al2O3 dilakukan dengan metode kopresipitasi menghasilkan persentase rasio komposisi logam Cu-Zn-Al yaitu 66,7: 27,4: 4,29 dan luas permukaan katalis sebesar 98,3411 m2/g. Komposisi perbadingan gas umpan H2 : CO2 yaitu sebesar 3 : 1. Reaktor unggun tetap dengan diameter dalam 1,5 cm; panjang 19 cm bed katalis 5 cm, dan furnace 5 cm. Reaksi dilakukan pada tekanan 30 bar dan laju alir dijaga konstan. Variasi yang dilakukan dalam reaksi yaitu variasi temperatur umpan pada 220, 250, 280 oC. Didapatkan nilai konversi CO2 yang tertinggi terjadi pada saat temperatur umpan 250 oC dengan waktu reaksi hingga mencapai kondisi stabil yaitu selama 240 menit. Sehingga kondisi reaksi pada temperatur 250 oC dikatakan sebagai kondisi optimal dengan didapatkan nilai konversi CO2 sebesar 21,8, selektivitas CH3OH sebesar 82,76, dan yield CH3OH sebesar 18,04.

The catalytic hydrogenation of CO2 to CH3OH has a bright prospect along with high market demand. Methanol CH3OH is needed as raw material in the petrochemical industry to produce formaldehyde, chloromethane, amine acetate and also as an alternative new environmentally friendly energy. This study aims to obtain the effect of CuO ZnO Al2O3 catalyst and the influence of feed temperature in the form of CO2 conversion, CH3OH selectivity, and yield of CH3OH. Preparation of CuO ZnO Al2O3 catalysts by coprecipitation method resulted in percentage ratio of Cu Zn Al metal composition of 66,7 27,4 4,29 and catalyst surface area of catalyst 98,3411 m2 g. H2 CO2 gas ratio composition of 3 1. Fixed bed reactor with 1.5 cm inner diameter length of 19 cm bed catalyst 5 cm, and furnace 5 cm. The reaction is carried out at a pressure of 30 bar and the flow rate is kept constant. Variations made in the reaction are variation of feed temperature at 220, 250, 280 oC. The highest CO2 conversion value occurs when the 250 oC feed temperature with reaction time reaches a stable condition of 240 minutes. So that the reaction condition at 250 oC is said to be the optimal condition with a CO2 conversion value of 21.8, CH3OH selectivity of 82.76, and CH3OH yield of 18.04."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farid Mujiantono
"Konversi karbon dioksida CO2 menjadi senyawa lain menjadi sangat menguntungkan karena jumlahnya di atmosfer yang melimpah, namun karbon dioksida CO2 memiliki termodinamik dan kinetik yang stabil sehingga diperlukan bantuan logam bervalensi rendah contohnya Ni 0 untuk dapat bereaksi. Pada penelitian ini digunakan ZSM-5 terimpregnasi logam nikel sebagai katalis reaksi karboksilasi asetilena dengan karbon dioksida menjadi asam akrilat. Hasil karakterisasi XRD menunjukan bahwa material ZSM-5 memiliki kristalinitas yang tinggi berhasil disintesis. Analisa menggunakan SEM menunjukan bahwa ZSM-5 memiliki morfologi bentuk coffin-like dan setelah diimpregnasi tidak mempengaruhi struktur morfologi kristal. Karakterisasi menggunakan BET ZSM-5 hirarki yang disintesis memiliki pori berukuran meso karena terbentuk hystheresis loop. Analisa menggunakan AAS menghasilkan loading logam nikel pada ZSM-5 mikropori sebesar 1,9 sedangkan ZSM-5 hirarki sebesar 2,1. Karakterisasi XPS menunjukan logam nikel pada ZSM-5 memiliki biloks nol 0. Pada reaksi karboksilasi asetilena dengan karbon dioksida dengan target produk asam akrilat, analisis HPLC tidak menunjukan adanya asam akrilat dalam reaksi. Namun, terdapat puncak lain pada waktu retensi 3,625 dimana pada material ZSM-5 hirarki didapatkan kondisi optimum pada suhu 80oC dengan suhu 12 jam dan menggunakan katalis Ni 0 /ZSM-5 mikropori didapatkan kondisi optimum pada suhu 40oC dan waktu 12 jam.

Conversion of carbon dioxide CO2 into other compounds become very advantageous because of the abundance in the atmosphere, but carbon dioxide CO2 has thermodynamic and kinetic stable so it need low valent metal for example Ni 0 to react. In this studym ZSM 5 impregnated with nickel metal as catalyst of carboxylation reaction of acetylene with carbon dioxide to acrylic acid. XRD characterization results ZSM 5 material has high crytalinity successfully synthesized. Analysis using SEM obtain ZSM 5 has coffin like morphology and after impregnation doesnt affect the crystal morphology structure. Characterization using BET proves that ZSM 5 hierarchy has meso sized pore because of the hysthereses loop. Analyzing using AAS obtained that load of nickel metal on ZSM 5 micropore equal to 1,9 meanwhile ZSM 5 hierarchy equal to 2,1. The characterization of XPS show nickel metal on ZSM 5 has zero 0 oxidation. Carboxylation reaction of acetylene with carbon dioxide targeted acrylic acid product, HPLC analysis doesnt show the presence of acrylic acid in the reaction. However, there was another peak at retention time of 3,625 where in herarchical ZSM 5 material the optimum condition was obtained at temperature 80oC with 12 hours while using Ni 0 ZSM 5 micropore catalyst obtained 80oC with 12 hours.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>