Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 168486 dokumen yang sesuai dengan query
cover
Siagian, Borris Ficthe
"Artificial Intelligence (AI) model Machine Learning (ML) merupakan perkembangan teknologi yang memiliki potensi untuk berperan sebagai pengambil keputusan dalam kehidupan manusia. Teknolgi harus dijaga agar memberikan dampak positif dalam kehidupan masyarakat sesuai amanat dalam
Pasal 28C UUD 1945. Pemerintah yang memiliki kewajiban untuk memenuhi hal tersebut. Tujuan dari penelitian ini untuk menganalisa pengaturan terkait AI model ML terkait penggunaan dan pemanfaatan di Indonesia. Penelitian ini juga akan menganlisa peraturan hukum Indonesia dalam melingkupi prinsip Ethical and trustworty AI dalam penyelenggaraan AI model ML. Kemudian penelitian ini
juga mengalisa bentuk pertanggunjawaban hukum terkait AI di Indonesia. Metode yang digunakan dalam penelitian ini adalah penelitian yuridis normatif dengan pendekatan kualitif yang bersifat exploratoris. Hasil dari penelitian ini menunjukan Indonesia memiliki sisnas IPTEK untuk mencapai tujuan Pasal 28C UUD 1945. AI yang tergolong dalam sistem elektronik, menjadikan tunduk pada
aturan terkait penyelenggaraan sistem elektronik dalam UU ITE. Utilitarian purposes yang melekat pada teknologi AI membuat perlindungan kekayaan intelektual berada dalam perlindungan Paten. Ethical dan trustworthy pada AI
dapat dikrucutkan kedalam 5 prinsip utama dalam penggunaan dan pemanfaatan AI dalam industri. Prinsip tersebut adalah Keaman dan Keselamatan, Privasi, Keadilan, Transparansi serta Akuntabilitas. Prinsip ini telah tertanggulangi dalam prinsip dalam strategi nasional kecerdasan Artifisial. Pemenuhan standar produk AI dan Kode Etik yang mengadopsi prinsip ethical and trustworthy AI diperlukan dalam peraturan hukum di Indonesia saat ini. Berdasarkan peraturan yang ada, pertanggungjawaban dalam penyelenggaraan Sistem Elektronik, termasuk AI, menerapkan prinsip praduga bersalah. Besarnya risiko pada AI membuatnya termasuk kedalam dengerous activities, sehingga perlu diterapkan strict liability.

Artificial Intelligence (AI) Machine Learning (ML) model is a technologicaldevelopment that has the potential to be a decision maker in human life. According to the article 28C of the UUD 1945, technology must be maintained to has a positive impact on people's lives. Government has the obligation to fulfill this. The purpose of this research is to analyze regulations related to AI model ML about its use and utilization in Indonesia. This research will also analyze Indonesian regulations covering principles of Ethical and trustworthiness of AI in implementation of AI model ML. Then this reasearch also analyzes forms of legal liabiility related to AI in Indonesia. Analysis method used a normative juridical research with a qualitative approach. The results show that Indonesia has Sisnas IPTEK to achieve a possitive impact. AI is classified as an electronic system, making it subject to rules related to the implementation of electronic systems in UU ITE. AI being protect by Paten, because of utilitarian purposes attached to it.
Ethical and trustworthy of AI can be narrowed down into 5 main principles. These are Security and Safety, Privacy, Fairness, Transparency and Accountability. They have been addressed in Stragtegi Nasional Kecerdasan Artifisial. Current regulations require product standard and Code of Ethics that adopts ethical and trustworthy principles of AI. Based on existing regulations, legal liability in operation of Electronic Systems, including AI, applies the presumption of guilt.
Big risk in AI makes it included in dengerous activities, so it is necessary to applystrict liability.
"
Depok: Fakultas Hukum Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yudhistira Erlandinata
"Korpus relasi semantik dapat menunjang berbagai penelitian di bidang pengolahan bahasa manusia. Untuk Bahasa Indonesia, korpus relasi semantik yang berukuran besar dan berkualitas baik masih belum tersedia. Korpus relasi semantik dapat dibuat secara manual dengan melibatkan anotator dan juga dapat dihasilkan secara otomatis menggunakan algoritma rule-based atau machine learning. Penelitian ini bertujuan untuk mengevaluasiseberapa baik kualitas korpus relasi semantik Bahasa Indonesia, khususnya relasi hiponim-hipernim, apabila dibangun dengan pendekatan machine learning dan metode crowdsourcing yang menerapkan gamifikasi. Algoritma pattern-based yang sebelumnya pernah diteliti untuk Bahasa Indonesia akan digunakan untuk menghasilkan data training algoritma machine learning dan kandidat entri korpus untuk dianotasi dengan metode crowdsourcing. Kualitas korpus hasil metode crowdsourcing diukur berdasarkan tingkat persetujuan antar anotator dan diperoleh hasil yang cukup baik walaupun belum sempurna. Untuk pendekatan machine learning, beberapa model
machine learning yang diterapkan masih belum memberikan hasil optimal karena
keterbatasan resource.
Kata kunci: relasi semantik, hiponim-hipernim, crowdsourcing, gamifikasi, machine
learning, pattern-based

Semantic relations corpus is vital to support research in the field of Natural Language
Processing. Currently, there is no existing corpus of semantic relations in Indonesian
language which is enormous and high-quality. The corpus can be constructed manually
by employing human annotators or built automatically using rule-based or machine
learning algorithms. This research aims to evaluate the quality of Indonesian hyponym-
hypernym semantic relations corpus that is produced by crowdsourcing mechanism with
gamification, and to test the model for semantic relations prediction using machine
learning algorithms. The pattern-based method is applied to obtain the training data for
machine learning experiments and corpus entry candidates to be annotated using the
crowdsourcing method. The quality of the crowdsourced corpus is measured using inter-
annotator agreement. The experimental result shows that the gamification-based
crowdsourcing method is promising to produce the corpus. On the other hand, machine
learning models tested in this research have not given optimal results yet due to the
limitations of the lexical resources in Indonesian language.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tatag Aziz Prawiro
"Normalisasi teks merupakan task pada NLP yang dapat digunakan untuk meningkatkan performa dari aplikasi-aplikasi NLP lain. Penelitian tentang normalisasi teks pada bahasa Indonesia masih jarang dan kebanyakan masih hanya menormalisasi pada tingkat token. Penelitian ini bertujuan untuk mengevaluasi pembangunan model normalisasi dengan menggunakan algoritma statistical machine translation (SMT). Isu dari pendekatan machine translation dalam penyelesaian task normalisasi teks
adalah butuhnya data yang relative banyak. Penelitian ini juga melihat bagaimana pengaruh dari pemelajaran semi-supervised dengan cara menggunakan pseudo-data dalam pembangunan model normalisasi teks dengan algoritma statistical machine translation. Model SMT memiliki performa yang cukup baik pada data tanpa tanda baca, namun memiliki performa yang buruk pada data bertanda baca karena banyaknya noise. Pendekatan semi-supervised menurunkan performa SMT secara keseluruhan, namun, pada jenis data tidak bertanda baca penurunan relatif tidak signifikan.

Text normalization is a task in NLP which can be used to improve the performance of other NLP
applications. Research on text normalization in Indonesian language is still rare and most only
normalize at the token level. This study attempts to improve the development of the normalization
model by using the statistical machine translation (SMT) algorithm. The issue in building a good
performing text normalization model using the machine translation approach is the relatively large
data needs. This research also looks at how using semi-supervised learning by using pseudo-data as
training data in SMT approach affects text normalization performance. The SMT model has a fairly
good performance on data without punctuation, but has poor performance on data with a punctuation
due to the amount of noise. The semi-supervised approach reduces the overall performance of the
SMT model, but the reduction in performance is relatively insignificant on data without punctuation.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bisyron Wahyudi
"ABSTRAK
Salah satu komponen penting dalam Sistem Monitoring Keamanan Jaringan adalah Intrusion Detection System IDS yang berfungsi untuk mendeteksi setiap potensi serangan yang mengancam keamanan jaringan. Keunggulan sebuah IDS ditentukan oleh kemampuannya untuk mendeteksi serangan siber secara akurat dan mudah beradaptasi terhadap perubahan lingkungan sistem yang terus berkembang. Sebuah IDS yang akurat mampu mendeteksi berbagai jenis serangan secara tepat dengan sedikit kesalahan deteksi false alarm .Penelitian ini merancang dan mengimplementasikan metode machine learning ke dalam IDS yang digunakan untuk mendeteksi serangan dalam jaringan sebenarnya secara akurat dan cepat. Dalam pengembangan model machine learning untuk IDS ini digunakan dataset KDDCUP rsquo;99 dan NSL-KDD. Dengan melakukan analisis pemilihan fitur diperoleh subset 28 fitur dari total 41 fitur dataset KDD yang paling relevan dan dapat diimplementasikan dalam jaringan sebenarnya. Dalam pengembangan model machine learning diperoleh hasil bahwa metode terbaik adalah menggunakan SVM.Pada tahap implementasi digunakan metode multi-stage detection yang memberikan hasil deteksi serangan yang lebih cepat dan akurat. Hasil ujicoba model IDS yang telah dikembangkan menggunakan metode machine learning dengan implementasi multi-stage detection mampu mendeteksi serangan dengan tingkat akurasi sampai 99,37 . Lebih jauh lagi, kecepatan proses deteksi meningkat dengan rata-rata 24 pada data testing dan rata-rata 10 pada lingkungan jaringan sebenarnya.

ABSTRACT
An important component in Network Security Monitoring System is Intrusion Detection System IDS . IDS serves to detect any potential attacks that threaten network security. The reliability of an IDS is determined by its ability to detect cyber attacks accurately, and to dynamically adapt to ever-evolving system environment changes. An accurate IDS is able to detect different types of attacks appropriately with minimum false alarm.This research designs and implements machine learning method into IDS to detect actual network attacks accurately and quickly. In the development of machine learning model for IDS, KDDCUP 39;99 and NSL-KDD dataset are used. By performing feature selection analysis, a subset of 28 most relevant features of a total of 41 features of KDD dataset is obtained and can be implemented in the actual network. In the development of machine learning model it is found that the best method for our approach is by using SVM.In the implementation phase the proposed multi-stage detection method provides faster and more accurate attack detection. The experiments also show that combining machine learning method with multi-stage detection implementation improves detection accuracy up to 99.37 . Further, the proposed method increases the average speed of detection process up to 24 in data testing and up to 10 average in the real network environment."
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2498
UI - Disertasi Membership  Universitas Indonesia Library
cover
Qusyairi Ridho Saeful Fitni
"Dalam beberapa tahun terakhir, keamanan data pada sistem informasi organisasi telah menjadi perhatian serius. Banyak serangan menjadi kurang terdeteksi oleh firewall dan perangkat lunak antivirus. Untuk meningkatkan keamanan, intrusion detection systems (IDS) digunakan untuk mendeteksi serangan dalam lalu lintas jaringan. Saat ini, teknologi IDS memiliki masalah kinerja mengenai akurasi deteksi, waktu deteksi, pemberitahuan alarm palsu, dan deteksi jenis serangan baru atau belum diketahui. Beberapa studi telah menerapkan pendekatan pembelajaran mesin (machine learning) sebagai solusi, dan mendapat beberapa peningkatan. Penelitian ini menggunakan pendekatan pembelajaran ensemble (ensemble learning) yang dapat mengintegrasikan manfaat dari setiap algoritma pengklasifikasi tunggal. Pada penelitian ini, dibandingkan tujuh pengklasifikasi tunggal untuk mengidentifikasi pengklasifikasi dasar yang digunakan untuk model ensemble learning. Kemudian dataset IDS terbaru dari Canadian Institute for Cybersecurity yaitu CSE-CIC-IDS2018 digunakan untuk mengevaluasi model ensemble learning. Hasil percobaan menujukan bahwa implementasi metode ensemble learning khususnya majority voting dengan tiga algoritma dasar (gradient boosting, decision tree dan logistic regression) dapat meningkatkan nilai akurasi lebih baik dibandingkan implementasi algoritma klasifikasi tunggal, yaitu 0,988. Selanjutnya, implementasi teknik pemilihan fitur spearman-rank order correlation pada dataset CSE-CIC-IDS2018 menghasilkan 23 dari 80 fitur, dan dapat meningkatkan waktu pelatihan model, yaitu menjadi 11 menit 4 detik dibanding sebelumnya 34 menit 2 detik.

In recent years, data security in organizational information systems has become a serious concern. Many attacks are becoming less detectable by firewall and antivirus software. To improve security, intrusion detection systems (IDSs) are used to detect anomalies in network traffic. Currently, IDS technology has performance issues regarding detection accuracy, detection times, false alarm notifications, and unknown attack detection. Several studies have applied machine learning approaches as solutions. This study used an ensemble learning approach that integrates the benefits of each single classifier algorithms. We made comparisons with seven single classifiers to identify the most appropriate basic classifiers for ensemble learning. Then the latest IDS dataset from the Canadian Institute for Cybersecurity, CSE-CIC-IDS2018, was used to evaluate the ensemble learning model. The experimental results show that the implementation of the ensemble learning method, especially majority voting with three basic algorithms (gradient boosting, decision tree and logistic regression) can increase the accuracy rate better than the implementation of a single classification algorithm, which is 0.988. Furthermore, the implementation of the spearman-rank order correlation feature selection technique in the CSE-CIC-IDS2018 dataset produced 23 of the 80 features, and could increase the model training time, which was 11 minutes 4 seconds compared to 34 minutes 2 seconds before."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dessy Ana Laila Sari
"ABSTRAK
Klasifikasi emosi manusia merupakan salah satu topik hangat yang dapat dimanfaatkan dalam berbagai bidang, baik medis maupun militer. Emosi manusia sendiri dapat diklasifikasi dengan berbagai metode, salah satunya adalah Machine Learning (ML). Machine learning merupakan proses pembelajaran computer untuk menyelesaikan task tertentu, dengan menggunakan metode ini hasil yang didapatkan akan lebih akurat dan konstan. Dalam tesis ini akan dikembangkan sistem klasifikasi emosi manusia berdasarkan sinyal EEG dari DEAP yang berbasis ML dengan berbagai studi metode ML, seperti Backpropagation Neural Network (BPNN), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) hingga Random Forest (RF). Sistem klasifikasi kemudian akan dikembangkan kembali menggunakan metode Convolutional Neural Network (CNN). Dari penelitian ini didapatkan bahwa nilai recognition rate yang dihasilkan hanya berkisar 50% dengan nilai maksimal 62%. Sistem juga diberikan feature selection layer untuk memaksimalkan recognition rate, namun penambahan ini tidak memberikan hasil yang signifikan. Dengan demikian recognition rate pada sistem klasifikasi menggunakan sinyal EEG sangat bergantung pada pemrosesan sinyal raw.

ABSTRACT
The classification of human emotions is a hot topic that can be utilized in various fields, both medical and military. Human emotions themselves can be classified by various methods, one of which is Machine Learning (ML). Machine learning is a process of learning computers to complete certain tasks, using this method the results obtained will be more accurate and constant. In this thesis a human emotion classification system will be developed based on EEG signals from DEAP dataset using various ML method studies, such as Backpropagation Neural Network (BPNN), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) to Random Forest (RF). The classification system will be developed again using the Convolutional Neural Network (CNN) method. From this study it was found that the value of the recognition rate produced is only around 50% with a maximum value of 62%. The system is also given a feature selection layer to maximize recognition rate, but this addition does not provide significant results. Thus the recognition rate in the classification system using EEG signals is very dependent on raw signal processing."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Desti Fitriati
"Penelitian ini melakukan klasifikasi stadium penyakit Diabetik Retinopati (DR) menjadi 2 hirarki, yaitu Global dan Lokal. Hirarki Global hanya terdiri dari normal (0) dan abnormal (1). Sedangkan klasifikasi lokal terdiri dari 4 kategori yaitu kategori normal (R0), early NPDR (R1), advanced NPDR (R3), dan PDR (R4). Kategori early NPDR adalah stadium mild NPDR, sedangkan advanced NPDR adalah gabungan dari moderate dan severe NPDR.
Secara umum penelitian ini dilakukan untuk menyelesaikan masalah yang timbul akibat adanya kemiripan citra per kenaikan stadium yang tidak bisa dinilai secara kasat mata. Sehingga membutuhkan sebuah penanganan dimana citra retina dapat digolongkan ke dalam kategori yang tepat. Berdasarkan masalah tersebut, dilakukan 2 mekanisme percobaan untuk setiap hirarki, yaitu melalui pendekatan computer vision yang hanya fokus untuk mengolah citra secara keseluruhan dan pendekatan yang dilakukan oleh medis dimana sebelum menentukan kategori citra, terlebih dahulu dilakukan deteksi fitur penanda DR seperti eksudat, mikroaneurisma, dan pembuluh darah. Data yang digunakan ada 2 jenis yaitu data citra dari RSCM Jakarta dan database publik Diaretdb0.
Metode klasifikasi ELM yang diusulkan mampu memberikan performansi yang cukup baik dari sisi waktu dan akurasi, dimana rata-rata klasifikasi menggunakan cross validation mencapai 50% untuk data RSCM dan 60% untuk data DB0. Sedangkan untuk klasifikasi lokal mencapai 50% untuk data RSCM dan 40% untuk data DB0.

This study determined the classification of the stage of disease Diabetic retinopathy (DR) into two hierarchies , namely the Global and the Local . Global hierarchy consisting only of normal (0) and abnormal (1). While local classification consists of 4 categories: normal category (R0), early NPDR (R1), advanced NPDR (R3), and PDR (R4). Categories early stages of NPDR is Mild NPDR, whereas advanced NPDR is a combination of moderate and severe NPDR.
In general, this study was conducted to resolve the problems arising from the similarity image that stage increments can not be assessed by naked eye . Thus require a treatment in which the retinal image can be classified into appropriate categories . Based on these issues, conducted 2 experiments for each hierarchy mechanism, namely through the computer vision approach that only focuses on the image of the overall process and the approach taken by a medical before determining which image category , first detection of features such as bookmarks DR exudates, microaneurysms, and blood vessels . The data used there are 2 types of image data from public databases RSCM Jakarta and Diaretdb0.
The proposed classification method ELM is able to provide good enough performance in terms of time and accuracy , where the average classification using cross validation to achieve 50 % for data RSCM and 60 % for data DB0. Whereas for the local classification, data RSCM achieve 50 % and 40 % for data DB0.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2014
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Widyo Jatmoko
"Memprediksi penjualan produk sangatlah penting bagi perusahaan FMCG terutama pada kondisi ekonomi yang tak menentu saat ini. Kemampuan untuk mencapai efisiensi dalam pembuatan, pendistribusian, dan pemasaran barang, sangatlah bergantung pada seberapa akurat perkiraan penjualan. Pengaruh prediksi penjualan yang salah dapat menyebabkan perubahan perilaku konsumen terhadap produk, persediaan berlebih, dan kurangnya stok di pasar. Banyak penelitian yang menunjukkan bahwa metoda machine learning saat ini adalah metoda terbaik untuk memprediksi penjualan, namun, banyak perusahaan masih kesulitan untuk menggunakan metoda machine learning ini dikarenakan banyak variabel yang dibutuhkan untuk memprediksi penjualan agar hasilnya menjadi lebih akurat. Penelitian ini mengusulkan kerangka sederhana untuk memprediksi penjualan produk menggunakan metoda machine learning regresi linear, decision tree, random forest serta support vector machine dalam variabel seperti harga produk, tingkat distribusi, pemasaran dan variabel eksternal seperti inflasi, indeks kepercayaan konsumen dan tingkat bunga. Hasilnya menunjukkan bahwa menggabungkan regresi random forest untuk meramalkan Indeks kepercayaan Konsumen dan kemudian menggunakan regresi support vector dalam variabel-variabel ini cukup akurat untuk memprediksi penjualan.

Predicting the sales of the product is becoming more critical for fast-moving consumer goods company especially during unprecedented times. The ability to achieve efficiency for manufacturing, distributing, and marketing for the goods, are really dependent on how accurate the sales forecast is. The effect of wrong sales prediction could lead to consumer behavior changes towards the product, excessive inventory, and out of stocks in the market. Many papers show that machine learning techniques are currently the best practice to predict sales, however, many companies are still struggling to use these machine learning techniques due to many variables that are being needed to forecast the sales for the result to become more accurate. This study proposed a simple framework to forecast the sales of products using the combined supervised machine learning technique between multiple linear regression, decision tree regression, random forest regression, and support vector regression within internal marketing variables such as product price, distribution level, and marketing spends and external variables such as inflation, consumer confidence index and interest rate. The results show that combining random forest regression to forecast the Consumer Confidence Index and then using support vector regression within these variables is quite accurate to predict the sales."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dyah Lalita Luhurkinanti
"Sistem penilai otomatis SIMPLE-O untuk bahasa Jepang telah diteliti selama beberapa tahun belakangan. Namun, penilaian yang dilakukan belum mencakup nilai morfologis, padahal morfologi merupakan hal yang penting dalam ujian sastra. Penelitian ini melakukan clustering pada 215 jawaban mahasiswa dan mengelompokkannya ke 6 cluster berdasarkan topiknya. Berdasarkan hasil, didapatkan bahwa K-means clustering mengelompokkan dengan lebih baik dibanding hierarchical agglomerative clustering (HAC), terutama dengan penambahan Romanisasi. K-means clustering dengan Romansasi menunjukkan 96.5% precision dan 96% recall, sementara HAC memiliki 95% precision dan 93.7% recall. Pada proses penilaian, jawaban dinilai pertopik atau nomor soal dan dicari rasio antara nilai yang didapat dari LSA dengan nilai morfologi dengan akurasi tertinggi. LSA memiliki rata-rata akurasi 79.92%. Penambahan analisis morfologi pada nilai akhir mendapatkan akurasi tertinggi sebesar 78.77% dengan bobot 10% nilai morfologi dan 90% nilai LSA.

The research on automated grading system SIMPLE-O for Japanese language has been done for a few years. However, in the grading system, there is still no means to grade the morphological component even though it is an important part of language test. This research groups 215 student answers to 6 cluster according to the topics. According to the results, K-means clustering performs better than hierarchical agglomerative clustering (HAC) especially with Romanization. K-means clustering with Romanization shows 96.5% precision and 96% recall while HAC has 95% precision and 93.7% recall. For the grading prosess, the answers will be scored by its topic or question number and the ratio between similarity measurement score and morphological score with the highest accuracy will be selected. LSA has the average accuracy of 79.92%. With the addition of morphological analysis on the final score, the highest average accuracy of 78.77% is selected with the ratio of 10% morphological score and 90% LSA score."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aldo Sultan Manneken
"Dalam pelaksanaan distribusi listrik yang dilakukan PT.”X” terhadap pelanggan PT. “X”, terdapat susut energi listrik yang terjadi baik secara teknis maupun non teknis. Susut energi listrik ini mengakibatkan kerugian yang cukup besar bagi PT.”X” setiap tahunnya. Dalam upaya untuk mengatasi dan mengurangi susut energi non teknis, PT.”X” mengadakan kegiatan P2TL dimana pada kegiatan ini, petugas P2TL akan melakukan pengecekan pada pelanggan PT.”X” yang terindikasi melakukan susut energi non teknis. Namun, dalam pelaksanaan kegiatan P2TL, PT.”X” masih melakukan proses penentuan target operasi P2TL secara manual. Untuk membantu kinerja PT.”X” dalam melakukan kegiatan P2TL, diperlukan pendekatan lain dalam melakukan penentuan target operasi P2TL. Penelitian ini akan melakukan pendekatan berbasis machine learning dengan metode supervised learning untuk melakukan deteksi pencurian tenaga listrik. Terdapat tiga algoritma yang akan digunakan dalam penelitian ini, yaitu: Naïve bayes, Naïve bayes dengan AdaBoost, dan logistic regression. Dalam penelitian ini, dataset yang digunakan adalah dataset pemakaian bulanan 423.216 pengguna listrik PT.”X” pascabayar selama 49 bulan yaitu sejak bulan Agustus tahun 2018 hingga bulan Agustus tahun 2022. Hasil penelitian ini menunjukkan rata-rata akurasi model yaitu Naïve bayes sebesar 53%, Naïve bayes dengan AdaBoost sebesar 64%, dan logistic regression sebesar 75%. Algoritma logistic regression menunjukkan performa paling baik dibandingkan dengan kedua algoritma lainnya yaitu rata-rata precision score 74%, rata-rata F1 score 59% dan rata-rata recall score adalah 60%.

In the implementation of electricity distribution carried out by PT. “X”-to-PT.”X” customers, there are losses in electrical energy that occur both technically and non-technically. This loss of electrical energy results in substantial losses for PT.”X” every year. To overcome and reduce non-technical energy losses, PT.”X” holds P2TL activities where in this activity, P2TL officers will check PT.”X” customers who are suspected of carrying out non-technical energy losses. However, in carrying out P2TL activities, PT.”X” is still carrying out the process of determining P2TL operational targets manually. To assist PT. “X”'s performance in carrying out P2TL activities, another approach is needed in determining P2TL operational targets. This research will use a machine learning-based approach using supervised learning method to detect electricity theft. There are three algorithms that will be used in this study, namely: naïve bayes, naïve bayes with AdaBoost, and logistic regression. In this study, the dataset used is the monthly usage dataset of 423,216 postpaid PT.”X” electricity users for 49 months, from August 2018 to August 2022. The results of this study show that the average accuracy of the model by naïve bayes is 53%, naïve bayes with AdaBoost is 64%, and logistic regression is 75%. The logistic regression algorithm shows the best performance compared to the other two algorithms, where the average precision score is 74%, the average F1 score is 59% and the average recall score is 60%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>