Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 126093 dokumen yang sesuai dengan query
cover
Eka Kurnia Sari
"Perkembangan sistem teknologi telekomunikasi yang semakin canggih dan kompleks memicu meningkatnya kegagalan ataupun kesalahan sistem dalam sistem jaringan utama dan sistem pendukung layanan telekomunikasi, serta kesalahan yang terjadi pada bisnis proses dan sumber daya manusia yang terkait. Kegagalan dan kesalahan ini menyembabkan kerugian yang ditanggung perusahaan, kerugian yang ditimbulkan dengan istilah revenue leakage atau kebocoran pendapatan. Revenue Assurance memegang peranan penting dalam pengendalian terhadap resiko revenue leakage dengan membuat kontrol dalam mendeteksi dan mencegah terjadinya kebocoran agar mampu meminimalkan biaya dan memaksimalkan potensi pendapatan. Dalam tesis ini dikembangkan metode untuk menganalisis Big data CDR untuk mengoptimalkan proses analisis pada revenue assurance control dengan menggunakan algoritma K-means Clustering. Algortima ini mengelompokkan obyek pengamatan dalam beberapa kategori yang diindikasikan sebagai titik kebocoran. Hasil kelompok yang dihasilkan dengan kategori yang beresiko tinggi memiliki anggota yang sedikit dengan tingkat nilai evaluasi akurasi cluster, R-Squared, sekitar 90%.

In the telco industry, Revenue Assurance plays an important role to assure the company revenue from leakage. the revenue chain is established across the process and whole sophisticated system that technologically complex to provide the unstoppable services. This case increasing the probability of system or process failure leads to the leakage. Hence necessary the revenue assurance control to detect and prevent it then it can help to minimize cost and maximize revenue. In this thesis, developed the analysis method in big data CDR to optimize analysis process at revenue assurance control using K-means Clustering algorithm. The use of the K-means clustering algorithm method able to group the object areas with high risk indications of leakage. The cluster result of high risk of leakage is having low amount of member, and the cluster evaluation result of R-Squared giving the good value about 90%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Atal Malviya
"In today’s fast growing digital world, the web, mobile, social networks and other digital platforms are producing enormous amounts of data that hold intelligence and valuable information. Correctly used it has the power to create sustainable value in different forms for businesses. The commonly used term for this data is Big Data, which includes structured, unstructured and hybrid structured data. However, Big Data is of limited value unless insightful information can be extracted from the sources of data.
The solution is Big Data analytics, and how managers and executives can capture value from this vast resource of information and insights. This book develops a simple framework and a non-technical approach to help the reader understand, digest and analyze data, and produce meaningful analytics to make informed decisions. It will support value creation within businesses, from customer care to product innovation, from sales and marketing to operational performance.
The authors provide multiple case studies on global industries and business units, chapter summaries and discussion questions for the reader to consider and explore. Big Data for Managers also presents small cases and challenges for the reader to work on – making this a thorough and practical guide for students and managers."
New York: Routledge, 2019
e20529009
eBooks  Universitas Indonesia Library
cover
Teguh Winarto
"ABSTRAK
Kartu kredit sebagai kartu pembayaran adalah produk yang dikeluarkan oleh bank dan menjadi pilihan favorit nasabah bank dalam melakukan transaksi secara offline dan online. Berbagai program promosi yang dilakukan oleh bank untuk meningkatkan penerbitan kartu untuk nasabah baru dan untuk menarik penggunaan kartu bagi para pemegang kartu kredit saat ini. Bank XYZ, sebagai salah satu penerbit kartu kredit, secara intensif menawarkan promosi kepada pelanggannya untuk bertransaksi menggunakan kartu kredit melalui berbagai media seperti SMS Blast maupun email notifikasi. Konten promosi yang dikirimkan ke pelanggan dapat mempengaruhi keputusan pelanggan untuk melakukan transaksi di merchant manapun menggunakan kartu kredit Bank XYZ. Dengan memanfaatkan analisa Big Data dengan Recency, Frequency dan Monetary (RFM) dan Association Rules, Bank XYZ dapat mengirimkan konten promosi kartu kredit yang sesuai dengan profile pelanggan. Mengirimkan konten promosi yang sesuai dengan profil pelanggan akan meningkatkan transaksi pelanggan menggunakan kartu kredit mereka. Peningkatan transaksi ini akan berkontribusi terhadap pendapatan Bank XYZ.

ABSTRACT
Credit cards as a payment card are products issued by banks and become favorite customer`s choice to pay multiple transactions offline and online. Many promotion programs are done by banks to raise card issuances for new customer and to attract card usage for current credit card holders. Bank XYZ, as one of credit card issuer in Indonesia, is intensively offering promotions to its customer to use their credit cards through communication media such as SMS blast and email notifications. Media content may affect customer decision to purchase in any merchant using Bank XYZ credit card. By utilizing Big Data analysis with Recency, Frequency and Monetary(RFM), and Association Rules, Bank XYZ may send credit card promotional content fit with a customer profile. Sending proper promotional content fit with a customer profile will raise customer spending using their credit cards. Transactions rising contribute to Bank XYZ revenue.

"
2019
T53698
UI - Tesis Membership  Universitas Indonesia Library
cover
"The volume on Data Management, Analytics and Innovations presents the latest high-quality technical contributions and research results in the areas of data management and smart computing, big data management, artificial intelligence and data analytics along with advances in network technologies. It deals with the state-of-the-art topics and provides challenges and solutions for future development. Original, unpublished research work highlighting specific research domains from all viewpoints are contributed from scientists throughout the globe. This volume is mainly designed for professional audience, composed of researchers and practitioners in academia and industry."
Singapore: Springer Singapore, 2019
e20502590
eBooks  Universitas Indonesia Library
cover
"This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. "
Switzerland: Springer Nature, 2019
e20507207
eBooks  Universitas Indonesia Library
cover
Nidaul Muiz Aufa
"Tesis ini membahas penyebaran malware Avalanche pada infrastruktur internet Indonesia. Penelitian dilakukan dengan metode analisis big data dengan menggunakan Algoritma K-mean (k=3). Dataset pada penelitian ini menggunakan dataset yang diperoleh dari CERT-bund. Hasil penelitian ini menggambarkan bahwa infrastruktur internet Indonesia masih terinfeksi malware Avalanche dengan aktivitas sebanyak 44.254.374 sepanjang tahun 2018 dan 2019. Aktivitas ini melibatkan 969 AS Number, 3.173.254 IP Address, dan 26 jenis malware. Hasil Clustering menggunakan Splunk terhadap AS Number dan IP Address menghasilkan masing-masing 3 cluster. Cluster AS Number yang paling produktif
adalah cluster1 yang memiliki populasi 3 AS Number. Sedangkan Cluster IP Address yang paling produktif adalah cluster1 dengan populasi 32.991 IP Address.

This thesis discusses the spread of Avalanche malware on Indonesian internet infrastructure. The research was conducted by using the big data analysis method using the K-mean algorithm (k = 3). The dataset in this study was obtained from the CERT-bund. The results of this study illustrate that Indonesia's cyber infrastructure is still infected with Avalanche malware with a total of 44,254,374 activities throughout 2018 and 2019. This activity involved 969 AS Numbers, 3,173,254 IP Addresses, and 26 types of malware. The results of clustering using Splunk on the AS Number and IP Address resulted in 3 clusters each. The most productive AS Number cluster is cluster1 which has a population of 3 AS Number. Meanwhile, the most productive cluster IP address is cluster1 with a population of 32,991 IP addresses."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nico Juanto
"E-commerce dan big data merupakan bukti dari kemajuan teknologi yang sangat pesat. Big data berperan cukup penting dalam perusahaan e-commerce untuk menangani perkembangan semua data, mengolah setiap data tersebut dan menjadi competitive advantage bagi perusahaan. Perusahaan XYZ.com mengalami kesulitan dalam menganalisis stok dan tren dari produk yang dijual. Jika hal ini tidak ditanggulangi, maka perusahaan XYZ.com akan kehilangan opportunity gain. Untuk menentukan tren dan stok produk secara cepat dengan akurat, dibutuhkan big data predictive analysis. Penelitian ini mengolah data transaksi menjadi data yang dapat dianalisis untuk menentukan tren dan prediksi tren produk berdasarkan kategorinya dengan menggunakan big data predictive analysis. Hasil dari penelitian ini akan memberikan informasi kepada pihak manajemen kategori apa yang berpotensi menjadi tren dan jumlah minimal stok yang harus disediakan dari kategori produk tersebut.

E commerce and big data are evidence of rapid technological advances. Big data plays an important role in e commerce companies to handle and analyze all data changes, and become a competitive advantage for the company. XYZ.com experience a difficulty in analyzing stocks and commerce product trend. If this issue not addressed, XYZ.com company will lose an opportunity gain. To determine trends and stock accurately, XYZ.com can use big data predictive analysis. This study processes transaction data into data that can be analyzed to determine trends and predictions of product trends based on its categories using big data predictive analysis. The results of this study give massive informations to management about what categories will potential become trends and minimum stock required to be provided."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2017
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Febtriany
"Saat ini kompetisi di industri telekomunikasi semakin ketat. Perusahaan telekomunikasi yang dapat tetap menghasilkan banyak keuntungan yaitu perusahaan yang mampu menarik dan mempertahankan pelanggan di pasar yang sangat kompetitif dan semakin jenuh. Hal ini menyebabkan perubahan strategi banyak perusahaan telekomunikasi dari strategi 'growth '(ekspansi) menjadi 'value added services'. Oleh karena itu, program mempertahankan pelanggan ('customer retention') saat ini menjadi bagian penting dari strategi perusahaan telekomunikasi. Program tersebut diharapkan dapat menekan 'churn' 'rate 'atau tingkat perpindahan pelanggan ke layanan/produk yang disediakan oleh perusahaan kompetitor.
Program mempertahankan pelanggan ('customer retention') tersebut tentunya juga diimplementasikan oleh PT Telekomunikasi Indonesia, Tbk (Telkom) sebagai perusahaan telekomunikasi terbesar di Indonesia. Program tersebut diterapkan pada berbagai produk Telkom, salah satunya Indihome yang merupakan 'home services' berbasis 'subscriber' berupa layanan internet, telepon, dan TV interaktif. Melalui kajian ini, penulis akan menganalisa penyebab 'churn' pelanggan potensial produk Indihome tersebut, sehingga Telkom dapat meminimalisir angka 'churn' dengan melakukan program 'customer retention' melalui 'caring' yang tepat.
Mengingat ukuran 'database' pelanggan Indihome yang sangat besar, penulis akan menganalisis data pelanggan tersebut menggunakan metoda 'Big Data Analytics'. 'Big Data' merupakan salah satu metode pengelolaan data yang sangat besar dengan pemetaan dan 'processing' data. Melalui berbagai bentuk 'output', implementasi 'big data' pada perusahaan akan memberikan 'value' yang lebih baik dalam pengambilan keputusan berbasis data.

Nowadays, telecommunication industry is very competitive. Telecommunication companies that can make a lot of profit is the one who can attract and retain customers in this highly competitive and increasingly saturated market. This causes change of the strategy of telecommunication companies from growth strategy toward value added services. Therefore, customer retention program is becoming very important in telecommunication companies strategy. This program hopefully can reduce churn rate or loss of potential customers due to the shift of customers to other similar products.
Customer retention program also implemented by PT Telekomunikasi Indonesia, Tbk (Telkom) as the leading telecommunication company in Indonesia. Customer retention program implemented for many Telkom products, including Indihome, a home services based on subscriber which provide internet, phone, and interactive TV. Through this study, the authors will analyze the cause of churn potential customers Indihome product, so that Telkom can minimize the churn number by doing customer retention program through the efficient caring.
Given by huge customer database the author will analyze using Big Data analytics method. Big Data is one method in data management that contain huge data, by mapping and data processing. Through various forms of output, big data implementation on the organization will provide better value in data-based decision making.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ishmah Naqiyya
"Perkembangan teknologi informasi dan internet dalam berbagai sektor kehidupan menyebabkan terjadinya peningkatan pertumbuhan data di dunia. Pertumbuhan data yang berjumlah besar ini memunculkan istilah baru yaitu Big Data. Karakteristik yang membedakan Big Data dengan data konvensional biasa adalah bahwa Big Data memiliki karakteristik volume, velocity, variety, value, dan veracity. Kehadiran Big Data dimanfaatkan oleh berbagai pihak melalui Big Data Analytics, contohnya Pelaku Usaha untuk meningkatkan kegiatan usahanya dalam hal memberikan insight yang lebih luas dan dalam. Namun potensi yang diberikan oleh Big Data ini juga memiliki risiko penggunaan yaitu pelanggaran privasi dan data pribadi seseorang. Risiko ini tercermin dari kasus penyalahgunaan data pribadi Pengguna Facebook oleh Cambridge Analytica yang berkaitan dengan 87 juta data Pengguna. Oleh karena itu perlu diketahui ketentuan perlindungan privasi dan data pribadi di Indonesia dan yang diatur dalam General Data Protection Regulation (GDPR) dan diaplikasikan dalam Big Data Analytics, serta penyelesaian kasus Cambridge Analytica-Facebook. Penelitian ini menggunakan metode yuridis normatif yang bersumber dari studi kepustakaan. Dalam Penelitian ini ditemukan bahwa perlindungan privasi dan data pribadi di Indonesia masih bersifat parsial dan sektoral berbeda dengan GDPR yang telah mengatur secara khusus dalam satu ketentuan. Big Data Analytics juga memiliki beberapa implikasi dengan prinsip perlindungan privasi dan data pribadi yang berlaku. Indonesia disarankan untuk segera mengesahkan ketentuan perlindungan privasi dan data pribadi khusus yang sampai saat ini masih berupa rancangan undang-undang.

The development of information technology and the internet in various sectors of life has led to an increase in data growth in the world. This huge amount of data growth gave rise to a new term, Big Data. The characteristic that distinguishes Big Data from conventional data is that Big Data has the characteristic of volume, velocity, variety, value, and veracity. The presence of Big Data is utilized by various parties through Big Data Analytics, for example for Corporation to incurease their business activities in terms of providing broader and deeper insight. But this potential provided by Big Data also comes with risks, which is violation of one's privacy and personal data. One of the most scandalous case of abuse of personal data is Cambridge Analytica-Facebook relating to 87 millions user data. Therefor it is necessary to know the provisions of privacy and personal data protection in Indonesia and which are regulated in the General Data Protection (GDPR) and how it applied in Big Data Analytics, as well as the settlement of the Cambridge Analytica-Facebook case. This study uses normative juridical methods sourced from library studies. In this study, it was found that the protection of privacy and personal data in Indonesia is still partial and sectoral which is different from GDPR that has specifically regulated in one bill. Big Data Analytics also has several implications with applicable privacy and personal data protection principles. Indonesia is advised to immediately ratify the provisions on protection of privacy and personal data which is now is still in the form of a RUU."
Depok: Fakultas Hukum Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christhoper Nugraha
"ABSTRAK
Deteksi topik adalah proses menganalisis kumpulan data tekstual untuk menentukan topik pengumpulan data tekstual. Salah satu metode pengelompokan yang dapat digunakan untuk deteksi topik adalah metode Fuzzy C-Means (FCM). Namun, penggunaan FCM sederhana untuk pendeteksian topik tentang big data kurang efektif, karena akan memakan waktu lama dan banyak memori. FCM sederhana juga memiliki masalah lain, ketika melakukan deteksi topik aktif data dimensi tinggi, FCM sederhana hanya akan menghasilkan satu topik. Dalam penelitian ini, suatu gabungan metode Single-Pass Fuzzy C-Means (SPFCM) dan Fuzzy C-Means Berbasis Eigenspace (EFCM) diusulkan, yaitu Single-Pass Eigenspace-Based Fuzzy C-Means (SPEFCM) metode untuk mengatasi masalah ini. Data yang digunakan untuk deteksi topik adalah
tweet yang berasal dari aplikasi Twitter. Lalu, keakuratan topik didapat menggunakan SPEFCM dan EFCM akan dibandingkan berdasarkan nilai koherensi. Itu hasil simulasi menunjukkan bahwa nilai koherensi topik yang diperoleh menggunakan SPEFCM adalah sebanding dengan EFCM. Ini menunjukkan bahwa SPEFCM adalah metode yang tepat untuk mendeteksi topik pada data besar, tanpa mengurangi kualitas topik yang dihasilkan.

ABSTRACT
Topic detection is the process of analyzing a textual data set to determine the topic of textual data collection. One of the grouping methods that can be used for topic detection is the Fuzzy C-Means (FCM) method. However, the use of simple FCM for the detection of topics about big data is less effective, because it will take a long time and a lot of memory. Simple FCM also has another problem, when detecting active topics of high dimensional data, simple FCM will only produce one topic. In this study, a combination of the Single-Pass Fuzzy C-Means (SPFCM) method and the Fuzzy C-Means Based on Eigenspace (EFCM) is proposed, namely the Single-Pass Eigenspace-Based Fuzzy C-Means (SPEFCM) method to overcome this problem. The data used for topic detection is
tweets that come from the Twitter application. Then, the accuracy of the topics obtained using SPEFCM and EFCM will be compared based on coherence values. The simulation results show that the topic coherence value obtained using SPEFCM is comparable to EFCM. This shows that SPEFCM is the right method for detecting topics in big data, without reducing the quality of the topics produced."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>