Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 159681 dokumen yang sesuai dengan query
cover
Wahyu Dwi Lesmono
"Tingkat morbiditas penyakit tuberkulosis pada suatu populasi wilayah dan waktu tertentu. Ukuran ini digunakan untuk membantu lembaga kesehatan dalam merencanakan kebijakan pencegahan penyakit tuberkulosis di Indonesia. Selain itu, tingkat morbiditas digunakan dalam menentukan premi asuransi yang tepat bagi perusahaan asuransi sehingga dapat memprediksi cadangan dana yang cukup untuk menutupi klaim dari tertanggung pada periode selanjutnya. Penentuan tingkat morbiditas pada periode yang akan datang dapat ditentukan dengan menggunakan teknik peramalan runtun waktu. Beberapa metode peramalan yang dapat meramalkan data runtun waktu diantaranya seperti metode Autoregressive Integrated Moving Average (ARIMA) dan metode Fuzzy Time Series (FTS). Kedua metode peramalan ini masing-masing memiliki kelemahan tersendiri dalam prakteknya. Kelemahan dari metode ARIMA adalah adanya asumsi klasik yang harus dipenuhi agar metode ARIMA dapat digunakan dengan baik. Berdasarkan penelitian terdahulu, kelemahan dari metode FTS adalah model peramalan yang dibentuk bergantung pada penentuan banyaknya subinterval dan terkadang akurasinya tidak sebaik metode ARIMA. Penelitian ini menggunakan metode peramalan dengan Error Variation-Fuzzy Time Series (EV-FTS) berdasarkan ARIMA untuk mengatasi kekurangan dari metode ARIMA dan FTS. Hasil dalam penelitian ini menunjukkan bahwa metode peramalan dengan EV-FTS berdasarkan ARIMA memberikan nilai Mean Absolute Percentage Error (MAPE) yang lebih kecil dibandingkan nilai MAPE yang dihasilkan dari metode ARIMA dan metode FTS. Selain itu, untuk nilai pengamatan yang ekstrim diperoleh bahwa nilai peramalan yang dihasilkan dari metode EV-FTS berdasarkan ARIMA dapat mendekati nilai aktualnya. Hasil dari penelitian ini menunjukkan bahwa tingkat morbiditas tuberkulosis dengan menggunakan EV-FTS berdasarkan ARIMA diramalkan meningkat dari periode tahun 2022 hingga tahun 2031.

The tuberculosis morbidity rate measures the rate of tuberculosis disease in a population in a particular area and time. This measure is used to assist health institutions in planning policies to prevent tuberculosis in Indonesia. In addition, the morbidity rate is used in determining the right insurance premium for the insurance company so that it can predict sufficient fund reserves to cover claims from the insured in the next period. Determination of the morbidity rate in the future period can be determined using time series forecasting techniques. Several forecasting methods that can predict time series data include the Autoregressive Integrated Moving verage (ARIMA) method and the Fuzzy Time Series (FTS) method. Both of these forecasting methods have their weaknesses in practice. The weakness of the ARIMA method is that there are classical assumptions that must be met so that the ARIMA method can be used properly. Based on a previous study, the weakness of the FTS method is that the forecasting model formed is dependent on determining the number of subintervals and sometimes the accuracy is not as good as the ARIMA method. This study uses a forecasting method with Error Variation-Fuzzy Time Series (EV-FTS) based on ARIMA to overcome the drawbacks of the ARIMA and FTS methods. The results of this study indicate that the EV-FTS forecasting method based on ARIMA provides a Mean Absolute Percentage Error (MAPE) value which is smaller than the MAPE value generated from the ARIMA method and the FTS method. In addition, the forecast value generated from the EV-FTS method based on ARIMA can approach the extreme actual value. This forecasting method can be an alternative forecasting method to obtain the tuberculosis morbidity rate from next year 2022 and 2031."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sihombing, Anggia Abygail
"Peramalan tingkat morbiditas merupakan elemen yang penting bagi pemerintah dalam membuat kebijakan sosial-ekonomi di tahun-tahun mendatang. Begitu pun juga bagi perusahaan asuransi yang memerlukan tingkat morbiditas agar dapat menyediakan produk asuransi yang tepat sasaran di suatu wilayah atau negara. Pada penelitian ini, digunakan model Lee-Carter dalam meramalkan tingkat morbiditas tuberkulosis paru di Indonesia pada tahun 2022, menggunakan data tingkat morbiditas yang tersedia dari tahun 2014 hingga 2021, dan tersedia untuk tujuh kelompok umur, yaitu 0-14, 15-24, 25-34, 35-44, 45-54, 55-64, dan ≥65. Sumber data penelitian diambil dari Profil Kesehatan Indonesia Tahun 2018-2021 yang dirilis oleh Kementerian Kesehatan Republik Indonesia. Peramalan tingkat morbiditas melalui model Lee-Carter dimulai dengan mengestimasi nilai parameter pada model Lee-Carter menggunakan metode Least Square. Kemudian, dilakukan proyeksi nilai parameter yang bergantung waktu pada model Lee-Carter menggunakan metode Simple Moving Average (SMA), Double Moving Average (DMA), Simple Exponential Smoothing (SES), dan Holt’s Linear Trend (HLT). Dari hasil simulasi ditemukan bahwa metode terbaik untuk memproyeksi nilai parameter bergantung waktu untuk satu periode ke depan adalah metode Simple Exponential Smoothing (SES). Nilai proyeksi dari parameter yang diperoleh digunakan untuk menghitung nilai peramalan dari tingkat morbiditas. Hasil peramalan tingkat morbiditas tuberkulosis di Indonesia pada tahun 2022 menunjukkan terjadi penurunan untuk kelompok umur 0-14 tahun, 15-24 tahun, 35-44 tahun, dan 45-54 tahun, sedangkan untuk kelompok umur 25-34 tahun dan ≥65 tahun terjadi peningkatan.

Forecasting morbidity rates is an important element for the government in making socio-economic policies in the coming years. Likewise, insurance companies need morbidity rates in order to provide targeted insurance products in a region or country. In this study, the Lee-Carter Model was used to forecast the morbidity rate of pulmonary tuberculosis in Indonesia in 2022, using morbidity rate data available from 2014 to 2021, and available for seven age groups, namely 0-14, 15-24, 25-34, 35-44, 45-54, 55-64, and ≥65. The research data source was taken from the 2018-2021 Indonesian Health Profile released by the Ministry of Health of the Republic of Indonesia. Forecasting the morbidity rate through the Lee-Carter model begins with estimating the parameter values in the Lee-Carter model using the Least Square method. Then, time-dependent parameter values are projected on the Lee-Carter model using the Simple Moving Average (SMA), Double Moving Average (DMA), Simple Exponential Smoothing (SES), and Holt's Linear Trend (HLT). From the simulation results it was found that the best method for projecting time-dependent parameter values for one period into the future is the Simple Exponential Smoothing (SES) method. The projected values of the parameters obtained are used to calculate the forecasting value of the morbidity rate. The results of forecasting the tuberculosis morbidity rate in Indonesia in 2022 showed a decrease for the age groups 0-14 years, 15-24 years, 35-44 years, and 45-54 years, while for the age groups 25-34 years and ≥65 years there was an increase."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anak Agung Adi Widya Kusuma
"Tingkat morbiditas tuberkulosis (TB) di Indonesia menunjukkan banyaknya penduduk di Indonesia yang menderita TB. Tingkat morbiditas TB dapat digunakan oleh perusahaan asuransi untuk memprediksi risiko seseorang terkena TB sehingga perusahaan asuransi dapat menentukan premi yang akan dibebankan kepada pemohon asuransi berdasarkan risikonya. Oleh karena itu, kemampuan untuk memperkirakan tingkat morbiditas TB secara akurat sangat penting bagi perusahaan asuransi untuk dapat menentukan jumlah premi yang tepat namun tetap kompetitif. Penelitian ini bertujuan untuk membangun dan membandingkan dua model yang dapat digunakan untuk memprediksi angka morbiditas TB di Indonesia. Model ini dibangun menggunakan metode Temporal Convolutional Neural Network (TCNN) dan exponential smoothing. Data yang digunakan dalam penelitian ini diperoleh dari situs resmi Kementerian Kesehatan Republik Indonesia. Sebelum model dibangun, data yang digunakan dalam penelitian ini disusun menjadi dataset pelatihan dan validasi. Model tersebut dibangun dengan menggunakan dataset training dan divalidasi menggunakan dataset validasi. Hasil validasi model kemudian dievaluasi dan dibandingkan berdasarkan nilai mean squared error (MSE). Hasil dari penelitian ini menunjukkan bahwa model TCNN yang dibangun menghasilkan nilai MSE yang lebih rendah dari pada model exponential smoothing.

Tuberculosis (TB) morbidity rate in Indonesia shows the number of population in Indonesia who suffer from TB. The TB morbidity rate can be used by insurance companies to predict a person's risk of TB so that insurance companies can determine the premiums that will be charged to insurance applicants based on the risks. Thus, the ability to estimate the TB morbidity rate accurately is essential for insurance companies to be able to determine the right premium amount while remaining competitive. This study compared two models that can be used to predict TB morbidity rate in Indonesia. The model was built using the temporal convolutional neural network (TCNN) and exponential smoothing methods. The data that is used in this study are obtained from the official website of the ministry of health of the Republic of Indonesia. Before the model was built, the data used in this study were compiled into training and validation datasets. The model is built using a training dataset and validated using the validation dataset. The results of the model's validation are then evaluated and compared based on the value of the mean squared error (MSE). The result of this study shows that the TCNN model provides lower MSE compared to exponential smoothing."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dian Nurhayati
"ABSTRAK
Analisis runtun waktu dapat digunakan dalam peramalan nilai tukar mata uang. Model yang biasa digunakan adalah ARIMA (Autoregressive Integrated Moving Average). Namun tidak semua data nilai tukar mata uang dapat dimodelkan dengan ARIMA, karena ARIMA hanya dapat digunakan untuk memodelkan data secara linier sedangkan pola data nilai tukar mata uang biasanya memiliki komponen linier dan nonlinier. Pemodelan nonliner dapat dilakukan antara lain dengan menggunakan model ANN (Artificial Neural Network). Pada skripsi ini dibahas model hybrid ARIMA-ANN dalam peramalan nilai tukar dolar AS terhadap rupiah dimana dilakukan filter Moving Average (MA) terhadap data sebelum proses pemodelan. Penggunaan filter MA bertujuan untuk memisahkan data menjadi dua komponen yaitu komponen linier yang memiliki volatilitas rendah dan komponen nonlinier yang memiliki volatilitas tinggi. Penentuan panjang filter yang sesuai dibutuhkan dalam proses filter Moving Average. Data historis yang digunakan adalah data kurs jual dolar AS terhadap rupiah mulai dari 31 Maret 2015 hingga 17 Maret 2016 yang dapat diunduh dari http://m.kontan.co.id/data/kurs_bi. Terkait dengan data yang digunakan, model hybrid ARIMA (2,2,2) dan ANN (4,1,1) menghasilkan MAPE sebesar 0,2955% dan MAE 39,02916 (dalam rupiah) dalam peramalan nilai tukar dolar AS terhadap rupiah pada 3 hari ke depan.

ABSTRAK
Time series analysis can be used for forecasting since exchange rate. The ARIMA (Autoregressive Integrated Moving Average) is the model usually used. But, all data is not modeling by ARIMA, ARIMA is only modeling for linear data, however the data usually has linear and nonlinear component. The nonlinear modeling can be investigated by ANN (Artificial Neural Network) model. This skripsi discusses the hybrid model of ARIMA-ANN for forecasting exchange rate of USD to Rupiah, where the Moving Average (MA) filter will be applied previously on the data. The MA filter separates the data into two component, that is linear components which has a low volatile and nonlinear component which has a high volatile. The choosen length of MA filter is needed in MA filter processing. The historical data is selling exchange rate of USD to Rupiah, dated from March 31, 2015 to March 17, 2016, which can be downloaded from http://m.kontan.co.id/data/kurs_bi. Based on historical data, the hybrid ARIMA model (2,2,2) and the ANN model (4,1,1) give MAPE 0,2955% and MAE 39,02916 (in Rupiah) for forecasting exchange rate USD to Rupiah for the next 3 days."
2016
S64263
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sebastian Tricahya
"ABSTRAK
Peramalan jumlah pasien pneumonia dapat membantu subjek medis untuk mempersiapkan keperluan obat, pekerja, atau dalam pencegahan dengan melakukan penyuluhan pada orang tua, lansia, dan perokok. Permasalahan ini menyangkut kehidupan banyak orang, maka dari itu akurasi yang baik diperlukan dalam proses peramalan. Fuzzy Time Series (FTS) merupakan salah satu metode alternative dalam melakukan peramalan. Dengan metode yang umum digunakan seperti ARIMA dan Exponential Smoothing, terdapat kesulitan dalam mendapatkan model terbaik. FTS pada penelitian ini, memodifikasi algoritma yang digunakan Cheng (2008), dengan menggunakan OrdeTinggi (dua atau lebih data historis) untuk meningkatkan akurasi peramalan dan dilihat dari nilai Mean Absolute Percentage Error (MAPE). Data diambil dari jumlah pasien pneumonia di Jakarta tahun 2008 hingga 2018. Penelitian ini menggunakan bantuan aplikasi R dan Microsoft Excel untuk perhitungan sederhana. Akurasi peramalan akan semakin berkurang apabila dilakukan untuk meramalkan periode yang jauh. Maka, penelitian ini hanya akan meramalkan 5 periode kedepan. Hasil yang diperoleh FTS dengan membandingkan 2 metode yang pada umumnya digunakan (ARIMA dan Exponential Smoothing) adalah nilai MAPE secara terurut, 9.70%, 16.85%, dan 18.55%.

ABSTRACT
Forecasting the amount of Pneumonia patients could help medical practitioners to prepare the required medicines, aid-workers, or even prevent it by sharing knowledge to parents, elders, and smokers. This problem poses great concerns on the lives of many people, therefore, adequate accuracy is required in forecasting. Fuzzy Time Series (FTS) is an alternative way to forecast data. By using ARIMA and Holts Exponential Smoothing, there are some problems that are difficult to obtain the best model. Using our FTS method, we modified the Cheng algorithm by using higher order (using two or more historical data) to make the accuracy better by seeing the Mean Absolute Percentage Error (MAPE). Data was selected from the amount of Pneumonia Patients in Jakarta from 2008 to 2018. We use R to carryout ARIMA and Holts Exponential Smoothing. Forecastings accuracy will decrease if theti meframe between these occurrences is lengthy. As a result of this, we made use of 5 periods which are January until May 2019. The result obtained was compared against ARIMA and Holts Exponential Smoothing, as well as the MAPE are 9.70%, 16.85%, and 18.55% respectively. "
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arman Haqqi Anna Zili
"Jika informasi mengenai tingkat mortalitas untuk beberapa periode ke depan bisa didapatkan di masa sekarang maka perencanaan keuangan dan kebijakan yang akan diambil diharapkan dapat lebih baik dan terarah. Dalam penelitian ini, model yang digunakan untuk menghitung tingkat mortalitas adalah model Lee-Carter. Kemudian tingkat mortalitas pada masa mendatang akan diramalkan menggunakan bantuan metode ARIMA Auto Regressive Integrated Moving Average . Proses peramalan akan diimplementasikan menggunakan perangkat lunak R. Hasil akhir peramalan akan disajikan dalam bentuk tabel dan grafik.

If information about the mortality rate for some future periods can be obtained in the present then the financial planning and policy to be taken are expected to be better and directed. The model used to calculate the mortality rate in this paper is the Lee Carter model. Then future mortality rates will be forecast with the use of the ARIMA Auto Regressive Integrated Moving Average method. Meanwhile, the forecasting process will be implemented using software R. The final result of forecasting will be presented in tabular and graphical form."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49536
UI - Tesis Membership  Universitas Indonesia Library
cover
Fitri Yulianti
"Gas merupakan sumber energi yang sangat besar potensinya di Indonesia. Penelitian ini memodelkan tingkat produksi gas dari tiga perusahaan besar dan juga tingkat produksi Indonesia secara keseluruhan kemudian memprediksi tingkat produksi gas pada periode yang akan datang. Dalam hal ini digunakan analisis deret waktu ARIMA dan data dari periode Januari 2005 ? Desember 2011. Hasilnya model ARIMA yang sesuai untuk meramalkan tingkat produksi Total E&P Indonesia adalah ARIMA (4,2,1) dengan MAPE 4.854 %, Pertamina adalah ARIMA (2,2,2) dengan MAPE 5.864%, dan Conoco Phillips Grissik sesuai dengan ARIMA (4,2,1) dengan MAPE 6.207%. Sedangkan model ARIMA peramalan tingkat produksi gas di Indonesia adalah ARIMA (4,2,1) dengan MAPE 3.607 %.

Gas is an enormous sourceenergy potential in Indonesia. This study is to model gas production rate of three major companies and the production of Indonesia as a whole and then predict the gas production rate in the next period. For the purpose, the data used are from the period January 2005 - December 2011. The result is the appropriate ARIMA models to forecast the gas production rate of Total E & P Indonesia is ARIMA (4,2,1) with MAPE 4.854%, Pertamina is ARIMA (2,2,2) with MAPE 5.864%, and Conoco Phillips Grissik according to ARIMA (4,2,1) with MAPE 6.207%. While ARIMA model forecasting gas production rate in Indonesia is appropriate ARIMA (4,2,1) with MAPE 3.607%."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S45708
UI - Skripsi Open  Universitas Indonesia Library
cover
Benny Rushadi
Yogyakarta: Pusat Penelitian dan Pengabdian Pada Masyarakat (P3M) STTA, 2020
620 JIA XII:1 (2020)
Artikel Jurnal  Universitas Indonesia Library
cover
Samsul Hilal
"Peramalan konsumsi energi memainkan peranan penting dalam pengambilan kebijakan. Peramalan konsumsi energi yang terlalu rendah berpotensi mengganggu aktifitas ekonomi, sedangkan peramalan konsumsi energi yang terlalu tinggi akan mengakibatkan suplai energi yang berlebihan. Tesis ini meramalkan konsumsi energi primer di Indonesia dengan menggunakan metode ARIMA. Tujuannya adalah untuk meramalkan konsumsi energi primer di Indonesia pada tahun 2025 dan melakukan kajian analisis komparatif tentang bauran energi tahun 2025 antara hasil peramalan dengan menggunakan ARIMA dan target pemerintah. Hasil peramalan menunjukkan konsumsi energi primer di Indonesia pada tahun 2025 sebesar 1802 juta SBM dengan komposisi bauran energi terdiri dari minyak bumi sebesar 39 persen, gas sebesar 17 persen, batubara sebesar 41 persen, energi air dan energi baru dan terbarukan (EBT) sebesar 3 persen.

Forecasting of energy consumption plays an important role in policy making. Underestimation of the energy consumption would lead to potential disrupt economic activity, whereas overestimation of the energy consumption would lead to excessive energy supply. This thesis forecasts the Indonesia's primary energy consumption using ARIMA method. The goal is forecasting the Indonesia?s primary energy consumption in 2025 and conducting a comparative analysis of the energy mix in 2025 between the forecasting results using ARIMA method and government targets. Forecasting results demonstrate Indonesia's primary energy consumption in 2025 amounted to 1802 million BOE with the composition of the energy mix consists of oil by 39 percent, gas by 17 percent, coal by 41 percent, hydropower and renewable energy (RE) by 3 percent."
Depok: Universitas Indonesia, 2013
T42168
UI - Tesis Membership  Universitas Indonesia Library
cover
Sri Iwaningsih
"Biaya makan pasien merupakan biaya langsung dari kegiatan penyediaan makanan di rumah sakit. Terdapat perbedaan cara perhitungan kebutuhan biaya makan pasien di RSUP Dr Hasan Sadikin, karena yang diusulkan berdasarkan kelas rawat inap sedangkan yang diterima berdasarkan harga rata-rata, sehingga kurang dari yang dibutuhkan. Hal ini menyebabkan terjadinya perubahan dalam standar gizi , macam bahan makanan dan variasi makanan.
Penelitian dilakukan untuk memperoleh gambaran besarnya kebutuhan biaya makan pasien melalui peramalan terhadap jumlah hari makan pasien serta biaya makan per pasien per hari per kelas rawat.
Rancangan penelitian adalah analisa kuantitatif. Data yang diramalkan merupakan data sekunder mengenai jumlah hari makan pasien dan biaya makan pasien per hari per kelas rawat periode April 1997 hingga Maret 2000.
Peramalan dilakukan dengan metode Time Series atau deret waktu pada program Quantitative System Business plus (QSB+) , melalui tahap input data, tampilan data, perbaikan data, pemecahan masalah dan penampilan hasil peramalan. Dari 10 metode peramalan pada program tersebut, dengan parameter Mean Error atau Bias, telah terpilih Winter's Model sebagai metode yang sesuai untuk meramal jumlah hari makan pasien dan biaya makan per pasien per hari per kelas rawat.
Hasil perhitungan menunjukkan kebutuhan biaya makan pasien sebesar Rp 2197.219.533,00 atau selisih 15,68 % dengan biaya tersedia. Dari sudut rata-rata harga makanan pasien, hasil peramalan adalah Rp. 6.077,50 sedangkan indek harga yang ditetapkan adalah Rp 5.250,00.
Beberapa alternatif yang dapat disarankan untuk mengatasi masalah tersebut yaitu: (1) Seluruh kekurangan ditanggung oleh rumah sakit, sambil mencari dana tambahan dari sumber lainnya , (2) Prioritas biaya makan untuk makanan pasien kelas III, (3) Prioritas biaya makanan untuk makanan pasien seluruhnya, sedangkan makanan dokter, ko-asisten dan pegawai rumah sakit lainnya disediakan dari dana lain.
Perlu juga dikembangkan analisa biaya makan pasien secara tepat agar dapat dihitung besarnya kebutuhan biaya yang sebenarnya serta pembebanannya pada pola tarif yang ada.

The patient food expense is a direct cost of hospital food services. There are different methods from food patient budgeting at the Dr Hasan Sadikin General Hospital, which is usually less than required. Hospital has to adapt the budget into nutritional value, food materials and variety of food. This study described how much was the costs of the food services through forecast number of patient food costs and number of patient day for each day per every class.
Design of the study was a Quantitative Analysis with data processing from the number of patient day and number of patient food costs per day per class on April, 1997 until March, 2000. These study used Time Series Forecasting (TSFC) in Quantitative System for Business plus (QSB+) program, which some of steps following data input, data display, data checking, problem solving and display of the forecasting result.
From the 10 methods on TSFC, Winter's Model had been chosen by using Mean Error parameter as the significant method for forecasting number of patient day and number of patient food costs per each patient per day per class.
The result from the forecasting showed that the expense of food patient is Rp. 2.197.219.533, 00. It was different almost 15, 68 % from the actual expenses. From the average costs point of forecast was Rp. 6.077,50, while the actual index was Rp.5.250, 00.
Therefore some alternatives were suggested to solve the problem. Those were: (1) Hospital absorbing all the costs while trying to get additional budget from other source, (2) Priorities the budget to 3rd class patient, (3) Priorities the budget for all patient, while food for doctor, co-assistant and hospital employees have to be paid from other fund. This requires the improvement costs analysis, in order to calculate the actual costs and tariff from the ward.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2000
T3120
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>