Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 186502 dokumen yang sesuai dengan query
cover
R. Triyono Budi Prayitno
"Pada pembakaran dengan bahan bakar cair, diperlukan suatu usaha untuk memperbesar permukaan kontak antara udara dengan bahan bakar. Pengaruh perubahan diameter sembur udara dan tekanan bahan bakar cair terhadap panjang dan stabilitas nyala api akan dipelajari pada penelitian ini. Burner yang digunakan dalam penelitian ini adalah burner dengan tipe jet-mixing combustor. Dimana semprotan bahan bakar dari nosel di irnpak dengan semburan udara dengan diameter yang divariasikan dari ф 45 mm, ф 50 mm, ф 55 nun dan ф 60 mm pada sudut 60°. Nasal yang digunakan untuk menyemprotkan bahan bakar adalah nosel dengan tipe hollow-cone. Nyala api hasil dari proses pembakaran dipelajari dari warna dan panjang apinya. Dan hasil penelitian ini diperoleh adanya pengaruh perubahan diameter sembur udara dan AFR terhadap panjang api. Panjang api tertinggi 140 mm pada diameter sembur udara 45 mm. Beban burner maximum yang diterima ruang bakar adalah: 23.862,928 kW/m2 pada diameter sembur udara 60 mm dengan menggunakan bahan bakar minyak tanah dan 23.713,780 kW/m2 pada diameter sembur udara 60 mm dengan menggunakan bahan bakar solar. Space heat release maximum yang diterima ruang bakar adalah: 2,480 kW/m2.Pa pada diameter sembur udara 60 mm dengan menggunakan bahan bakar minyak tanah dan 2,514 kW/m2. Pa pada diameter sembur udara 60 mm dengan menggunakan bahan bakar solar.

In the combustion process using liquid fuel, the contact surface between air and fuel needs to be widen. These experiments study the effect of changes in air spray diameter and the liquid fuel pressure on the length and stability of flame. Burner used in this study is a jet mixing type combustor. Fuel spray from nozzle is impacted with air jet at the diameter of 45 mm, 50 mm, 55 mm and 60 mm with impinging angle of 60°. The nozzle is a hollow-cone one. Flames come from the combustion process are measured for their lengths and colors.
Experiments show that the changes in air spray diameter and the AFR do have effects on the flame length. The longest flame obtained by the experiments is 140 mm at the air spray diameter 45 mm. Maximum burner loading in the combustor is 23.862,928 kW/m2 at air spray diameter of 60 mm using kerosene, and 23.713,780 kW/m2 at air spray diameter of using 60 mm using high fuel oil (FIFO). Maximum space heat release in the combustor is 2.480 kW/m2 Pa at air spray diameter of 60 mm using kerosene, and 2.514 kW/m2 Pa at air spray diameter of 60 mm using HFO.
"
Depok: Fakultas Teknik Universitas Indonesia, 2004
T14969
UI - Tesis Membership  Universitas Indonesia Library
cover
Silaen, Berto
"Penelitian ini mempelajari pengaruh variasi tinggi nosel dan rasio udara-bahan bakar (AFR) terhadap panjang api pada burner jet mixing combustor. Pada burner ini semprotan bahan bakar dari nosel tipe hollow cone 80° ditubruk dengan semburan udara yang memiliki sudut sembur 60°. Nyala api diamati dan dipelajari. Dari penelitian ini akan dibuat suatu persamaan sederhana dimana panjang api merupakan
fungsi dari rasio udara terhadap bahan bakar (AFR (70).
Besar sudut sembur campuran bahan bakar dan udara tidak dipengaruhi oleh tinggi nosel. Tinggi nosel hanya mempengaruhi diameter lingkar campuran (dmix), dan akibatnya juga mempengaruhi tinggi api dan bentuk nyala api.

The Air - Fuel Ratio ejected the flame length at jet mixing combustor burner with special length nozzle is experimentally investigated The burner consists of a liquid fuel injector type hollow cone nozzle with 80° angle of fuel spray. The fuel spray from nozzle was impinging with air spray with angle 60° from baffle plate. The flame characteristic such flame length and flame stability was observed and studied. Simple
equations will be extracted and formulated based on the result of data experimentally from this research.
The large mixture angle of fuel spray and air spray not ajected length nozzle. The length nozzle only ajects to diameter mixture and consequence ajected the flame length and the shape flame.
"
Depok: Fakultas Teknik Universitas Indonesia, 2006
T16916
UI - Tesis Membership  Universitas Indonesia Library
cover
Rudi Cahyo Nugroho
"Ignition delay merupakan salah satu parameter panting dalam operasi mesin diesel, ignition delay didefinisikan sebagai selang waktu antara mulai injeksi bahan bakar sampai dengan mulainya terjadi penyalaan bahan bakar, pembakaran akan optimum bila penyalaan terjadi sebelum titik mati atas. Secara ukuran derajat putaran poros engkol, semakin tinggi putaran mesin semakin panjang ignition delaynya, sehingga perlu adanya perubahan waktu injeksi. Ignition delay semakin pendek bila bilangan cetana bahan bakar bertambah, bilangan cetana solar dapat dinaikkan dengan menambah metil ester yang mempunyai bilangan cetana lebih tinggi.
Penelitian bertujuan untuk mengetahui pengaruh penggunaan bahan bakar campuran metil ester kelapa sawit (ME) dan solar terhadap unjuk kerja mesin dan ignition delay. Pengujian dilakukan dengan menggunakan mesin diesel satu silinder injeksi langsung. dengan memperbandingkan beberapa komposisi campuran bahan bakar yaitu solar murni, 20% massa metil ester (20% ME), 30% ME dan 40% ME. Pengujian dilakukan berdasarkan kurva daya yang dihasilkan bahan bakar solar. Ignition delay didapat dari grafik tekanan gas dalam silinder terhadap posisi poros engkol, untuk itu dalam pengujian dilakukan pengukuran tekanan gas dalam silinder.
Dari pengujian didapatkan bahwa torsi dan daya yang dihasilkan bahan bakar campuran ME dan solar 1.5 s/d 4% lebih rendah dibanding solar. Sedangkan tingkat emisi asap lebih rendah 5 ski 25%. Ignition delay semakin pendek bila putaran mesin dan bilangan cetana bertambah, dengan suatu persamaan linier pengaruh putaran mesin dan bilangan cetana terhadap ignition delay adalah : ignition delay = 0.0033 putaran mesin-0.375 bilangan cetana 4-38.321.

Ignition delay is important parameter for diesel engine operation. Ignition delay is the time between start of injection and start of combustion, combustion will be optimum if started before TDC. Injection liming advancing is needed, because ignition delay (in crank angle degree) increase as engine speed increase. Ignition delay decrease as cetane number increase, cetane number of petroleum diesel can be increased with addition of methyl ester.
The research conduct in a single cylinder direct injection diesel engine, the engine was fueled with several different composition fuel blend ( petroleum diesel and ME). The fuel blend are petroleum diesel (D), 20% mass ME (20 % ME), 30% and 40% ME. Effect of different fuel blend to engine performance and ignition delay is studied. Engine setting to get power curve for petroleum diesel used as the basic. engine test Ignition delay was determined from cylinder pressure vs. crank position diagram. Cylinder pressure measurement is needed to get cylinder pressure vs. crank position diagram.
Engine power for ME & petroleum diesel blend are 1.5 - 4 % lower than petroleum diesel, and smoke are 5 - 25 % lower. Engine speed, cetane number and ignition delay correlation is : ignition delay = 0.0033 engine speed -0.375 cetane number + 38.321 .
"
Depok: Fakultas Teknik Universitas Indonesia, 2002
T5197
UI - Tesis Membership  Universitas Indonesia Library
cover
Djukarna
Depok: Fakultas Teknik Universitas Indonesia, 2003
T37544
UI - Tesis Membership  Universitas Indonesia Library
cover
Sihombing, Ombun
"Sistem pembakaran yang umum digunakan di industri-industri adalah sistem pembakaran difusi dengan pertimbangan keamanan dan keandalan, namun penelitian nyala api difusi kurang mendapat perhatian dibandingkan nyala api premix. Energi hasil pembakaran nyala api difusi Brat kaitannya dengan panjang nyala api difusi yang dihasilkan. Panjang nyala api difusi dipengaruhi oleh jumlah dan arah semburan udara. Jika jumlah suplai udara lebih besar dari kebutuhan stokiometri, nyala api difusi akan overventilated yang mengakibatkan sejumlah bahan bakar terlepas bersama gas hasil pembakaran. Disisi lain, jika lebih kecil dari kebutuhan pembakaran sempuma, nyala api difusi akan underventilated yang mengakibatkan sejumlah energi panas terlepas bersama udara. Pada proses pembakaran difusi, terjadi phenomena lifted flame, hal ini mempengaruhi keandalan dan effisiensi sistem pembakaran. Jika jarak lifted flame terlalu jauh dari ujung nozel maka panjang nyala api difusi berkurang mengakibatkan kecepatan pemanasan semburan bahan bakar berkurang, bila terlalu dekatlmenempel pada ujung nozel akan mengakibatkan kerusakan nozel karena beban temperatur tinggi dari nyala api difusi.
Dalam penelitian ini, dilakukan pengamatan pengaruh variasi sudut ring pengarah udara injeksi terhadap panjang nyala api difusi bahan bakar propana meliputi jarak lifted flame, tinggi nyala api dan temperatur ujung nozel. Variasi sudut ring pengarah udara injeksi yang digunakan 0°, 15°, 30°, 45°, 60° dan 75°. Aliran propana diperbesar secara bertahap hingga nyala api mencapai kondisi liftoff. Pada kondisi liftoff, udara di-injeksikan secara bertahap. Setiap perubahan laju aliran propane atau udara injeksi, nyala api difusi diamati dan di-capture menggunakan kamera video.
Pada nyala api difusi kondisi liftoff diperoleh Reynolds number propane 8.619, jarak lifted flame 105,4 mm, panjang nyala api difusi 344,6 mm dan burning velocity 239,2 mm/dtk. Dengan menggunakan ring pengarah injeksi udara sudut 45° dan Reynolds number campuran udara-propana 6.482 std 6.513 diperoleh jarak lifted flame menjadi sebesar 65,4 mm, panjang nyala api difusi menjadi 410,3 mm, kecepatan pcmbakaran menjadi 290,64 mm/dtk dan temperatur ujung nozel dari 52,4°C menjadi 54.6°C.

Generally, the combustion system is applied at industries is diffusion combustion system with safety and reliability reasons, eventhough the researh of diffusion flame get attention is less than premix flame. Energy that is produced by diffusion flame related to the diffusion flame length. The diffusion flame length is affected by amount and jets direction of air. If air supply is more than sthoiciometric needed, diffusion flame will be overventilated that cause an amount of fuel releases with exhaust gas. On the other side if air supply is insufficient for sthoiciometric, diffusion flame will be underventilated that cause an amount of heat realese with air. At diffusion combustion process occur lifted flame phenomena. This thing influences efficiency and reliability of combustion system. If lifted flame too far from nozzle lip so that diffusion flame length decrease which give effect of heating velocity decreasing of fuel jet, when too near from nozzle tip will cause damage to nozzle due to high temperature load of diffusion flame.
At this research was observased influence of angles variation of injection air director rings to propane diffusion flame length consist of lifted flame, diffusion flame high and nozzle tip temperature. The angel variations of air director rings were used 0°, 15°, 30°, 45°, 60° and 75°. Flow rate of propane increase in step by step to achieve liftoff condition. At condition liftoff, air is injected regularly. Every flow rate change of propane and air injection, diffusion flame is observed and it is captured by camera-video.
At diffusion flame of liftoff condition is reached Reynolds number of propane is 8,619, lifted flame distance is 105.4 mm, diffusion flame length is 344.6 cm and burning velocity is 239.2 cm/s. Using air director ring of angle 45° and at Reynolds number of air-propane mixture 6,482 to 6,5I3 obtained lifted flame distance reduce to 65.4 mm, diffusion flame length becomes 410.3 mm, burning velocity becomes 290.64 cm/s and nozzle tip temperature from 52.4°C to be 54.6°C."
Depok: Fakultas Teknik Universitas Indonesia, 2008
T24397
UI - Tesis Open  Universitas Indonesia Library
cover
Nadapdap, Huala
"Emisi gas buang kendaraan bermotor khususnya yang berbahan bakar bensin berpotensi meningkatkan kandungan CO di perparkiran bawah tanah dua kali lebih besar dalam empat bulan. Korelasi konsentrasi CO, HC dan Opasitas dari emisi gas buang dengan perparkiran sangat erat dengan nilai r untuk rata-rata kandungan CO mencapai 0.9845. Kandungan CO dan HC dapat terakumulasi di perparkiran tertutup dengan terbatasnya ventilasi, sirkulasi udara dan exhaust. Perancangan sistem perparkiran yang memadai dan memenuhi kaidah Kesehatan dan Keselamatan Kerja menentukan seberapa besar akumulasi CO.
Kandungan CO dalam darah dan Phenol dalam air kemih merupakan indikasi paparan CO emisi gas buang kendaraan dengan udara ruang parlor P2 BEJ. Kandungan CO berdampak negatif langsung terhadap kesehatan manusia. CO dengan cepat dapat menggeser 02 dari dalam darah karena CO dengan Hb membentuk COHb dengan cepat 200 - 300 kali lebih kuat dari oksigen dalam mengikat Hb darah. Dampak CO terhadap pekerja parkir tergantung lamanya pemajanan dan konsentrasi CO nya. Perokok lebih berisiko terhadap pajanan CO di P2. Kondisi pekerja yang terpajan CO di P2 sudah relatif terganggu, potensi hipoksia sudah megganggu sistem kardiovaskuler terlihat dari keluhan-keluhan pekerja seperti nyeri kepala, pusing, mual dan vertigo.
Pengendalian dampak emisi gas buang dapat dilakukan oleh pekerja secara proaktif. Tindakan preventif dengan menekan emisi gas buang melalui penyuluhan pemeliharaan mesin secara teratur, pemiiihan jenis dan tahun produksi kendaraan. Pengelola gedung sebaiknya melakukan tindakan perbaikan yang terpadu mencakup perencanaan system perparkiran, ventilasi, sirkulasi udara dan sistem pengaturan kerja.

Within four month periods the gas emissions from burning gasoline vehicles has the potential to doubling increase of the carbon monoxide (CO) concentration in the underground parking area. The correlation of HC, CO and Opacity of gas emission is very close to the parking indoor air quality, it shows by the r-value of CO about 0.9845. CO and HC content can be accumulated in the indoor parking area due to the poor ventilation, air circulation, number and capacity of exhaust fans. The adequate parking system designs that meet with Health and Safety requirement will effect the CO content accumulation.
The CO content in the blood and phenol in the urine are indicating the employee exposure to CO vehicles gas emission and P2 BET parking indoor air quality. The CO concentration at P2 has direct impact to the parking employee health. Carbon monoxide quickly reduce the oxygen intake from blood stream and by binding carbon monoxide with hemoglobin (Hb) to become a carboxyhemoglobin (COHb) compounds that toxic to human. CO bound Hb rapidly 200 - 300 times stronger than oxygen in the blood. The effect of carbon monoxide to the employee depends on the duration of exposure and CO concentration. Moreover smokers have a higher risk to the CO exposure in the P2. The condition of employee who expose to the CO at P2 has relatively been affected of the gas emission and will suffering from hypoxia with aggravated cardiovascular problem such as head pain, headache, fatigue and vertigo.
The employee can proactively participate in controlling of vehicles gas emission. Preventive action by minimizes the gas emission through awareness program, regular engine maintenance, choosing type of vehicles and year of product are parts of better control_ The building management should concern a continuous improvement through corrective action such as redesign the parking system, ticketing system, ventilation system, and shift work system of the employee.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2003
T12742
UI - Tesis Membership  Universitas Indonesia Library
cover
"Proses pembakaran dalam kondisi miskin bahan bakar merupakan metode untuk
mendapatkan pembakaran yang lebih bersih. Namun, metode ini akan menyebabkan
ketidakstabilan nyala api. Ring stabilizer dapat digunakan untuk meningkatkan
stabilitas nyala api. Penelitian ini rnenggunakan 3 buah ring stabilizer dengan
diameter dalam 3, 5, dan 7 mm, yang ditempatkan pada variasi 5 ketinggian berbeda
di atas mulut barrel. Penelitian yang rnenggunakan ring slabilizer ini memunculkan
fenomena baru yang dinamakan nyala Lift Up (nyala terangkat seluruhnya dari atas
mulut barrel dan ‘duduk’ di atas ring stabilizer). Data yang diarnbil pada penelitian
ini adalah laju aliran udara saat terjadi fenomena LW Up dan Blow Off yang
kemudian akan di gambarkan ke dalam grafk Air Fuel Ratio (AFR) - Burning Load
(BL) dan Kecepatan Carnpuran (vm) - Laju Aliran Gas (Vg). Hasilnya semakin
tinggi BL, maka AFR akan semakin kecil dan semakin tinggi Vg, maka vm juga
akan meningkat. Selain itu, hasil data percobaan dengan menggunakan ring ini juga
dibandingkan dengan data percobaan tanpa menggunakan ring. Hasil data
percobaan menunjukkan terjadi peningkatan stabilitas nyala api, yang ditandai
dengan peningkatan luas daerah stabilitas nyala, jika ditambahkan ring di atas mulut
barrel, kecuali untuk ketinggian 5 mm. Secara umum penelitian menunjukkan
bahwa penggunaan ring stabilizer dengan ketinggian yang tepat dapat
meningkatkan stabilitas nyala api."
Fakultas Teknik, 2005
S37775
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irvan Nurtanio
"Gasifikasi adalah suatu proses termokimia yang mengubah bahan bakar padat menjadi gas mampu bakar yang dikenal dengan istilah teknik Producer Gas atau Syntetic Gas (Syngas) dengan proses pembakaran menggunakan oksigen terbatas.Updraft Gasifier merupakan jenis gasifier yang dapat menghasilkan daya yang lebih besar dibandingkan downdraft gasifier tetapi menghasilkan tar yang lebih banyak. Adapun tujuan dari penelitian ini adalah mengetahui kandungan tar pada updraft gasifier dengan pengeluaran gas produk melalui daerah reduksi. Dengan penggunaan metode seperti ini diharapkan kandungan tar dapat berkurang dikarenakan gas produk bergerak kembali ke daerah temperatur tinggi dan tar yang terkandung di dalamnya mengalami cracking baik karena termal atau bereaksi dengan uap, H2O atau CO2 yang terkandung dalam gas produk sebelum meninggalkan gasifier. Pengujian dilakukan menggunakan bahan bakar kayu karet dengan primary air blower sebesar 108 lpm dan penarikan tar sebesar 2 lpm.

Gasification is a thermochemical process that converts solid fuel into a combustible gas known as "Producer Gas or Synthetic Gas (Syngas)"using a limited supply of air for combustion. Updraft gasifier is a type of gasifier that can generate more power than the downdraft gasifier but produces more tar. The purpose of this study was to determine the tar content in the updraft gasifier with syngas outlet through the reduction zone. With the use of such methods is expected to decrease due to the tar content of product gas to move back into areas of high temperature and tar contained in it have either cracking due to thermal or react with steam, H2O or CO2 contained in the product gas before leaving the gasifier. Tests carried out using rubber wood fuel with the primary air blower at 108 lpm and tar extracted at 2 lpm."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42264
UI - Skripsi Open  Universitas Indonesia Library
cover
Achmad Zaki Rahman
Depok: Fakultas Teknik Universitas Indonesia, 2006
S37539
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Hernawan
"ABSTRAK
Baja tahan karat tuangan hasil peleburan RUT 1 merupakan bahan rekayasa
yang diharapkan dapat memenuhi kebutuhan material sebagai komponen turbin.
Baja tahan karat tuangan ini diupayakan untuk memiliki komposisi kimia dan
spesifikasi sesuai material Gx-5CrNi13.4 yang mengacu pada standar 17445
dengan nomor material 1.4313.
Siklus termal hardening yang dilakukan pada baja tahan karat tuangan hasil
peleburan RUT I meliputi tahap quencbingyang menggunakan media celup oli dan
leburan garam (Salt-bath ) dan tempering yang melibatkan variabel temperatur-
550, 600, dan 650 °C dengan tujuan untuk meningkatkan kekerasan dan
memperbaiki ketangguhan atau keuletannya Pendinginan cepat ( Quenching )
pada baja tahan karat RUT 1 tidak menghasilkan struktur martensit sehingga
kekerasannya tetap rendah.
Proses temper (Tempering) pada temperatur 600 °C, selain menghasilkan
kekerasan yang Iebih tinggi, juga diperoleh elongasi dan reduksi penampang gang
optimum. Nilai kekerasan 143,57 I-IV diperoleh melalui mekanisme secondary-
hardening sedangkan nilai optimum elongasi dan reduksi penampang masing-
masing 23,77% dan 22,31% .
Baja tahan karat tuangan hasil peleburan RUT I tidak dapat dikeraskan
melalui siklus temial hardening atau proses laku-panas termal.

"
1996
S41173
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>