Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 156610 dokumen yang sesuai dengan query
cover
Ahmad Ihsan Farhani
"Indonesia menempati posisi kedua sebagai negara penghasil karet alami di dunia. Karet alami memiliki nama lain yaitu lateks. Belakangan ini produksi lateks di Indonesia menurun. Salah satu faktor penyebab menurunnya produksi lateks Indonesia adalah penyakit gugur daun. Jamur Pestalotiopsis sp. adalah salah satu jamur yang dapat menyebabkan penyakit gugur daun. Penyakit gugur daun yang disebabkan oleh jamur ini pertama kali terjadi di Indonesia pada tahun 2016 di Sumatera Utara. Penyakit tersebut menyebabkan tanaman karet menggugurkan daun sebelum waktunya sehingga menyebabkan produksi lateks berkurang. Cadangan makanan pohon karet lebih banyak dialokasikan untuk menumbuhkan kembali daun yang telah gugur dibanding untuk memproduksi lateks. Luas lahan pohon karet di Indonesia yang terinfeksi penyakit gugur daun Pestalotiopsis sp. sudah mencapai 30.328,84 hektar pada tahun 2021 menyebabkan penurunan produksi lateks hingga 30%. Pendeteksian penyakit gugur daun dapat dilakukan secara morfologi yaitu dengan pegamatan pada daun. Gejala penyakit gugur daun yang disebabkan oleh Pestalotiopsis sp. adalah munculnya bintik cokelat pada tulang daun yang lama kelamaan berkembang menjadi bintik cokelat gelap. Bintik tersebut kemudian membesar, menyebabkan daerah di sekitar daun mengalami nekrosis kemudian gugur. Kekurangan dari pendeteksian secara morfologi adalah memerlukan waktu dan tenaga yang cukup besar, serta keahlian khusus di bidang tanaman karet. Dalam penelitian ini, akan dilakukan pendeteksian penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp. dengan bantuan machine learning untuk mengurangi tenaga dan waktu yang diperlukan dalam mendeteksi penyakit gugur daun. Model machine learning akan menerima input data citra daun tanaman karet. Model yang digunakan dalam pendeteksian adalah k-means clustering untuk mensegmentasi data citra daun karet, convolutional autoencoder untuk melakukan fitur ekstraksi pada data citra hasil segmentasi dan suppport vector machine sebagai classifier. Dari hasil eksperimen dengan 5 kali percobaan didapat accuracy testing sebesar 62,91%, accuracy training sebesar 78,50%. Accuracy testing dan accuracy training memiliki perbedaan yang cukup signifikan menandakan model mengalami overfitting. Overfitting terjadi ketika dataset yang tersedia hanya sedikit, pada penelitian ini yaitu 257 data citra namun, model yang dilatih kompleks. Sehingga diperlukan penambahan data citra untuk menghindari overfitting dan meningkatkan accuracy dari model.

Indonesia occupy the second position as a natural rubber producing country in the world. Natural rubber has another name, namely latex. Recently, latex production in Indonesia has declined. One of the factors causing the decline in Indonesian latex production is leaf fall disease. The fungus Pestalotiopsis sp. is one of the fungi that can cause leaf fall disease. Leaf fall disease caused by this fungus first occurred in Indonesia in 2016 in North Sumatra. The disease causes rubber plants to drop their leaves prematurely, causing reduced latex production. Rubber tree food reserves are allocated more to regrow fallen leaves than to produce latex. The area of rubber trees in Indonesia infected with the Pestalotiopsis sp. leaf fall disease. has reached 30,328.84 hectares in 2021 causing a decline in latex production by up to 30%. Disease detection can be done morphologically by observing the leaves. Symptoms of leaf fall disease caused by Pestalotiopsis sp. is the appearance of brown spots on the veins of the leaves which over time develop into dark brown spots. These spots then enlarge, causing the area around the leaves to experience necrosis and then fall. The drawback of morphological detection is that it requires a lot of time and effort, as well as special expertise in the field of rubber plantations. In this research, we will detect leaf fall disease caused by the fungus Pestalotiopsis sp. with the help of machine learning to reduce the effort and time needed to detect leaf fall disease. The machine learning model will be using image of rubber plant leaves as input data. The model used in the detection is k-means clustering to segment rubber leaf image data, convolutional autoencoder to perform feature extraction on segmented image data and support vector machine as a classifier. From the experimental results with 5 trials obtained testing accuracy of 62.91%, training accuracy of 78.50%. Accuracy testing and accuracy training have significant differences indicating that the model is overfitting. Overfitting occurs when the available dataset is only a few, namely 257 image data but the model being trained is complex. So it is necessary to add image data to avoid overfitting and increase the accuracy of the model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sitorus, Yusuf Beltsazar
"Tanaman karet merupakan salah satu komoditas utama ekspor Indonesia. Namun, dalam beberapa tahun terakhir, produksi karet di Indonesia mengalami penurunan. Hal tersebut disebabkan karena adanya penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp.. Berkembangnya teknologi artificial intelligence dengan pendekatan deep learning mampu melakukan pendeteksian pada penyakit ini dengan menggunakan data citra. Convolutional Neural Network (CNN) merupakan algoritma deep learning yang diterapkan pada data berbentuk visual atau citra. Pada penelitian ini, peneliti menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur Residual Network 50 (ResNet-50). Pada penelitian ini juga digunakan Transfer Learning yang merupakan sebuah model yang dapat diajarkan dan disempurnakan untuk suatu kegiatan dan kemudian bisa diterapkan pada kegiatan lain. Dataset yang digunakan pada penelitian ini adalah data daun karet yang berjumlah 1629 data yang dibagi dalam 5 kelas yaitu level 0 atau sehat merupakan daun yang sehat, level 1 merupakan daun yang telah terbentuk bercak coklat yang merupakan gejala dari penyakit namun belum memiliki tanda-tanda perubahan warna, level 2 merupakan daun yang telah terbentuk banyak bercak cokelat disertai dengan adanya perubahan warna pada daun, level 3 merupakan daun yang mengalami kerusakan jaringan, perubahan warna menjadi cokelat atau kuning namun masih memiliki sedikit bagian daun yang berwarna hijau, level 4 merupakan daun yang mengalami kerusakan jaringan cukup parah, dipenuhi bercak cokelat dan telah berwarna cokelat menyeluruh. Dari hasil simulasi yang dilakukan, diperoleh hasil terbaik dengan rata-rata accuracy 96,01%, recall 95,888%, dan precision 96,184% dengan running time rata-rata running time 69,759 detik.

Rubber plants are one of Indonesia's main export commodities. However, in recent years, rubber production in Indonesia has experienced a decline. This is due to the presence of the leaf fall disease caused by the Pestalotiopsis sp. fungus. The advancement of artificial intelligence technology using deep learning approaches enables the detection of this disease using image data. The Convolutional Neural Network (CNN) is a deep learning algorithm applied to visual or image data. In this study, researchers utilized the Convolutional Neural Network (CNN) method with the Residual Network 50 (ResNet50) architecture. Transfer Learning was also employed in this research, which involves training and refining a model for one task and then applying it to another task. The dataset used in this study consists of 1629 rubber leaf samples divided into 5 classes: level 0, representing the healthy leaves; level 1, indicating leaves with brown spots, a symptom of the disease, but without major visible color changes; level 2, comprising of leaves with numerous brown spots accompanied by slight color changes; level 3, representing leaves with tissue damage, a color change from green to brown or yellow, but still retaining some green parts; and level 4, depicting leaves with severe tissue damage, extensively covered in brown spots and having turned completely brown. The simulation results showed the best outcome with an average accuracy of 96.01%, recall of 95.888%, and precision of 96.184%, with an average running time of 69.759 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardanareswari Chaerani
"Glaukoma adalah salah satu penyebab kebutaan terbanyak kedua di dunia yang disebabkan oleh tekanan yang meninggi pada bola mata. Dalam proses mendiagnosa glaukoma, dibutuhkan waktu yang lama dikarenakan tidak ada perubahan secara signifikan pada citra fundus. Pada penelitian ini, penulis menggunakan Convolutional Neural Network (CNN) untuk mengekstraksi fitur dan metode klasifikasi Deep Belief Network (DBN) dalam mengklasifikasi glaukoma pada data citra fundus. Hasil pada model CNN-DBN dibandingkan dengan metode ekstraksi fitur CNN dan klasifikasi Support Vector Machine (SVM) yang dinamakan model CNN-SVM. Arsitektur CNN yang digunakan pada penelitian ini adalah ResNet-50. Dataset yang digunakan dalam penelitian ini diperoleh dari 2 online database, yaitu cvblab dan kroy1809. Pada proses ekstraksi fitur, model dilatih dari fully connected layer pada ResNet-50. Kemudian, vektor fitur dari fully connected layer diklasifikasi menggunakan metode klasifikasi DBN dan SVM. Berdasarkan hasil simulasi, CNN-DBN memiliki hasil akurasi, precision, dan recall terbaik dibandingkan dengan metode CNN-SVM dan CNN dengan akurasi 96.46%, precision 95.86%, dan recall 98.05% pada pembagian dataset training dan testing 70:30.

Glaucoma is the second most common factor of blindness in the world caused by the increasing pressure on the eyeball. It takes a long time to diagnose glaucoma due no significant change in the fundus image. In this study, the author used the Convolutional Neural Network (CNN) to extract the features and the Deep Belief Network (DBN) classification method to classify glaucoma in fundus images. The results on the CNN-DBN model will be compared with to the CNN feature extaction method and the Support Vector Machine (SVM) classification method, named the CNN-SVM model. The CNN architecture used in this study is ResNet-50. The dataset used in this study are from 2 online database, cvblab and kroy1809. In the feature extraction process, the model is trained using the CNN method with the ResNet-50 architecture. Afterward, the feature vectors of the fully connected layer are classified using the DBN and SVM classification methods. Based on the simulation results, CNN-DBN has the best results than CNN-SVM and CNN method with the accuracy of 90%, precision of 95%, and recall of 92% with splitting data training and testing of 70:30."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ghazy
"Indonesia merupakan salah satu negara dengan produksi tanaman padi terbesar di dunia dengan total lebih dari 150 juta ton padi dihasilkan pada 3 tahun terakhir. Meskipun sudah menjadi makanan pokok selama bertahun-tahun, tanaman padi tidak luput dari serangan penyakit yang dapat menghambat produksi beras padi. Berbagai macam penyakit dapat menghambat produksi beras padi di Indonesia. Daun tanaman padi yang terkena serangan penyakit dapat digunakan sebagai indikator jenis penyakit dikarenakan setiap penyakit tanaman padi memiliki corak yang unik pada daun tanaman padi. Dari citra daun tanaman padi yang didapat, dilakukan transformasi format citra ke dalam format grayscale untuk dibentuk Gray Level Co-occurence Matrix (GLCM) untuk beberapa sudut. Fitur Haralick kemudian diekstraksi dari GLCM yang sudah didapatkan untuk mendapatkan fitur-fitur yang dapat menjelaskan citra daun tanaman padi tersebut. Metode ini dapat digunakan dikarenakan fitur Haralick dalam GLCM mampu menangani citra yang memiliki perbedaan tekstur dengan baik dan citra daun penyakit tanaman padi memiliki perbedaan pada tekstur daun yang cukup jelas dilihat. Sehingga dapat dikatakan bahwa metode ini cocok untuk digunakan pada kasus ini. Dengan jumlah fitur Haralick yang cukup banyak, Linear Discriminant Analyis (LDA) kemudian diaplikasikan kepada fitur-fitur Haralick sebagai metode reduksi dimensi sedemikian sehingga fitur baru yang didapatkan memiliki separasi yang lebih baik. Kemudian, Support Vector Machine (SVM) digunakan sebagai classifier dalam mengklasifikasi penyakit tanaman padi menggunakan fitur LDA yang sudah didapatkan.

Indonesia is one of the world’s leading rice producers with a total of more than 150 million tons of rice produced in the last three years . Rice plants, despite being a staple crop for many years, are susceptible to diseases that can hamper rice production.  Because each diseases of rice plants has a distinctive pattern on the leaves of rice plants, the leaves of diseased rice plants can be used as indicators of the type of disease. The picture format of the rice leaf is converted to grayscale in order to create a Gray Level Co-occurence Matrix (GLCM) at multiple angles. The Haralick feature is extracted from the GLCM to obtain features that can describe the image of the rice plant leaf. Because the Haralick feature in GLCM can handle images with diverse textures and the image of leaves of rice plant diseases has differences in leaf texture that are clearly apparent, this method can be used. With a large number of Haralick features, the Linear Discriminant Analysis (LDA) is used as a dimension reduction technique for the Haralick features, resulting in better separation of the new features. The Support Vector Machine (SVM) is used as a classifier to classify rice plant diseases based on the obtained LDA features."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifah
"Diabetes Melitus (DM) merupakan gangguan sistem metabolik akibat pankreas tidak memproduksi cukup insulin atau tubuh tidak mampu menggunakan insulin yang ada secara efektif. Menderita diabetes dalam jangka waktu panjang dapat mengakibatkan berbagai macam komplikasi salah satu di antaranya adalah Retinopati diabetik. Retinopati diabetik  adalah kelainan pada bagian mata yang disebabkan oleh adanya kerusakan dan penyumbatan pada pembuluh darah di bagian belakang mata (retina). Pada penelitian kali ini akan di gunakan data retinopati diabetik dengan menggunakan metode seleksi fitur Recursive Feature Elimination (RFE) dan Chi-Square dan akan di klasifikasi menggunakan Support Vector Machine.

Diabetic retinopathy is one of the complication of diabetes, which is an eye disease that can cause blindness. Its happen because of damage of retina as a result of the long illness of diabetic melitus. People usually do research using image data in diabetic patients. This paper present about diabetic retinopathy will extracting with feature selection. In this study, we use data diabetic patients who will be extracted with a feature selection method. Feature selection used in this study is Recursive Feature Elimination (RFE) and Chi-Square. For classification of diabetic retinopathy has been done by Support Vector Machine (SVM). From the experimental result with various tunning hyperparameters, the classification model can obtain the accuracy between 97%-100% for both methods."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhry Arief Fabian
"Tanaman karet berperan sebagai komoditas penting di Indonesia karena menghasilkan karet alami yang memiliki banyak manfaat dan mampu bersaing di pasar internasional. Namun, sejak tahun 2017, produksi karet mengalami hambatan karena timbul serangan penyakit gugur daun baru yang berbeda dari penyakit terdahulu. Penyakit tersebut dapat menyebabkan gugur daun hingga 90% dan penurunan produksi lateks hingga 45%. Setelah ditelusuri, penyakit gugur daun baru ini disebabkan oleh patogen Pestalotiopsis sp. dan diberi nama penyakit gugur daun Pestalotiopsis. Sebagai penyakit baru, perlu dilakukan penelitian lebih lanjut untuk memonitor laju pertumbuhan penyakit ini. Salah satu penelitian ini adalah melakukan klasifikasi indeks atau level keparahan penyakit gugur daun Pestalotiopsis. Keparahan penyakit ini dapat dikelompokkan berdasarkan perubahan warna daun dan lesi khas yang timbul pada permukaan daun tanaman karet. Pada penelitian sebelumnya, pengukuran intensitas keparahan dilakukan dengan observasi secara langsung bercak gejala yang muncul pada daun atau pohon dalam jangka waktu tertentu. Pengamatan secara konvensional ini memerlukan tenaga yang banyak dan waktu yang cukup lama. Diperlukan suatu metode yang mampu melakukan klasifikasi level keparahan ini secara tepat dan cepat terhadap sampel daun yang berjumlah banyak. Saat ini, implementasi Artificial Intelligence (AI) melalui algoritma machine learning dapat menjadi solusi untuk menyelesaikan suatu permasalahan seperti klasifikasi multikelas secara otomatis dan efisien. Penelitian ini memanfaatkan salah satu teknik machine learning, yaitu artificial neural network berupa deep learning dengan arsitektur convolutional neural network (CNN). Dengan mempertimbangkan penelitian sebelumnya, maka penelitian ini mengajukan sebuah pengembangan dari CNN, yaitu arsitektur DenseNet121 sebagai metode untuk melakukan klasifikasi level keparahan penyakit gugur daun Pestalotiopsis menggunakan data citra daun karet. Klasifikasi level keparahan dibagi menjadi lima kelas, yaitu Level 0 (daun sehat atau tidak terinfeksi penyakit gugur daun Pestalotiopsis) dan Level 1-4 (menunjukkan tingkat keparahan penyakit gugur daun Pestalotiopsis). Pada Penelitian ini, digunakan 257 data citra daun karet yang dikumpulkan mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia ketika berkunjung ke Pusat Penelitian Karet Sembawa, Palembang pada tahun 2022. Data citra tersebut melalui preprocessing berupa crop dan resize agar dapat menjadi input yang diterima arsitektur.  Data dipisahkan menjadi data latih dan data uji dengan rasio 80:20. Model dilatih dengan pendekatan 5-fold cross validation sehingga pengujian dilakukan terhadap lima model berbeda. Berdasarkan simulasi, diperoleh rata-rata lima model berupa ccuracy sebesar 56,16% , precision sebesar 54,2% , recall sebesar 55,6%, skor F1 sebesar 51% , dan running time 3,110 detik.

Rubber plant is an essential commodity in Indonesia since natural rubbers from this plant are very beneficial and have high international market potential. Unfortunately, since 2017, a new leaf fall disease has caused massive decline of the rubber production. This disease leads to at most 90% leaf fall percentage and production decline as high as 45%. Subsequently, researchers found that this new leaf fall disease is caused by Pestalotiopsis sp., thus, the name of this disease is Pestalotiopsis leaf fall disease. Studies must be conducted to further investigate the growth and pattern of this new leaf fall disesase. One of these studies is to classify the intensity of the Pestalotiopsis leaf fall disease.The intensity can be measure by observing distinct symptoms and lesion frequency that would appear on the rubber plant’s leave surface. In earlier works, intensity are measured by conventionally taking notes of the symptomps that appear on the leaves or trees and these methods was done on timely basis. These traditional approaches takes a lot of time and requires a handful of people. Hence, there must be new methods to classify this disease’s intensity with less time and resource when the amount of leaf samples increase. Recent studies implement Artificial Intelligence (AI) by using machine learning to solve classification problems efficiently. This study takes a technique of machine learning, that is, deep learning convolutional neural network (CNN) architectures. By comparing previous researches, we propose the architecture DenseNet121 to implement CNN in multiclass classification problem by using leaf image data. The classification consists of five classes, which are the intensity of the Pestalotiopsis leaf fall disease from level 0 to level 4. Level 0 corresponds to healthy leaves or leaves with other diseases whereas Level 1-4 refer to leaves with the intensity of lesion and discoloration caused by Pestalotiopsis leaf fall disease. This study uses 257 image data that was taken by students of the Math and Science Faculty from Universitas Indonesia when they visited Rubber Research Center, Sembawa in 2022. The data is split into train and test data with 80:20 ratio. Models are trained with 5-fold cross validation approach so the that each model will be trained and tested towards 5 folds of data. Then, five different models are tested by evaluating their predictions to the test data. The result of this simulation shows the average performance from five models, they are an accuracy of 56,16%, a precision of 54,2%, a recall of 55,6%, an F1-score of 51% , and an average running time of 3,110 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nur Ichsan
"Saat ini, Indonesia menempati peringkat kedua sebagai produsen karet terbesar di dunia, menyumbang sekitar 29,8% dari kebutuhan global. Namun, produksi karet di Indonesia mengalami penurunan dari tahun ke tahun, salah satu faktornya adalah serangan penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp. Pada tahun 2021, luas perkebunan karet yang terkena penyakit mencapai 30.328,84 hektar dan tanaman yang terinfeksi oleh penyakit tersebut mengalami penurunan produksi lateks hingga 30%. Penyakit ini menyerang daun dengan gejala pembentukan bercak berukuran 0,5-2 cm yang menyebabkan nekrosis dan gugur. Penklasifikasian tingkat keparahan penyakit Pestalotiopsis sp. secara morfologi melalui pengamatan jumlah bintik dan warna pada daun karet membutuhkan waktu dan tenaga besar, terutama karena luasnya perkebunan yang terinfeksi. Oleh karena itu, penggunaan metode machine learning diusulkan untuk mengurangi waktu dan usaha yang dibutuhkan dalam menklasifikasi penyakit gugur daun akibat jamur Pestalotiopsis sp. Pada penelitian ini, model machine learning digunakan untuk mengklasifikasi 5 kelas tingkat keparahan penyakit Pestalotiopsis sp. yaitu tingkat 0 (sehat), tingkat 1 (terinfeksi ringan), tingkat 2 (terinfeksi sedang), tingkat 3 (terinfeksi parah), dan tingkat 4 (terinfeksi sangat parah). Dataset yang digunakan adalah citra daun tanaman karet yang diperoleh dari Pusat Penelitian Karet Sembawa. Model machine learning menerima input data citra daun tanaman karet, lalu citra disegmentasi menggunakan k-mean clustering. Data yang telah tersegmentasi kemudian diekstraksi dengan fitur warna hue, saturation, dan value (HSV) dan fitur jumlah bintik dengan metode contour detection menggunakan Suzuki’s contour algorithm. Selanjutnya, fitur-fitur ini diklasifikasikan menggunakan Support Vector Machine (SVM) tipe one vs rest multiclass classification dan Grid Search Cross Validation dengan 5 fold untuk menemukan hyperparameter terbaik untuk SVM. Hyperparameter terbaik adalah kernel radial basis function dengan C=100. Berdasarkan hasil percobaan sebanyak 5 kali, diperoleh kesimpulan bahwa model dengan akurasi tertinggi adalah model yang menggunakan fitur warna dan jumlah bintik dengan nilai rata-rata akurasi sebesar 81,86% dan nilai rata-rata Cohen’s kappa statistic sebesar 0,77 yang artinya model mampu mengklasifikasi data citra daun tanaman karet dengan cukup baik.

Currently, Indonesia ranks as the second largest rubber producer in the world, contributing about 29.8% of global demand. However, rubber production in Indonesia has decreased from year to year, one of the factors is the attack of leaf fall disease caused by the fungus Pestalotiopsi sp. In 2021, the area of rubber plantations affected by the disease reached 30,328.84 hectares with infected plants have a 30% decrease in latex production. The disease attacks the leaves with symptoms of spot formation measuring 0.5-2 cm which causes necrosis and fall. Detecting the severity of Pestalotiopsis sp. morphologically through the observation of the number of spots and colors on rubber leaves requires a lot of time and energy, especially due to the large area of infected plantations. Therefore, the use of machine learning methods is proposed to reduce the time and effort required in classifying leaf fall disease caused by the fungus Pestalotiopsis sp. In this study, a machine learning model is used to classify 5 classes of Pestalotiopsis sp. disease severity, namely level 0 (healthy), level 1 (mild infected), level 2 (moderate infected), level 3 (severe infected), and level 4 (very severe infected).  The dataset used is an image of rubber plant leaves obtained from the Sembawa Rubber Research Center. The machine learning model received input data of rubber plant leaf images, then the image is segmented using k-mean clustering. The segmented data will then be extracted with hue, saturation, and value (HSV) color features and the number of spots feature with the contour detection method using Suzuki’s contour algorithm.  In this study, the performance evaluation used is accuracy and Cohen's kappa statistic. Furthermore, these features are classified using Support Vector Machine (SVM) type one vs rest multiclass classification and Grid Search Cross Validation with 5 folds to find the best hyperparameter for SVM. The best hyperparameter is the radial basis function kernel with C=100. Based on the results of 5 experiments, it is concluded that the model with the highest accuracy is a model that uses color and the number of spots features with an average accuracy value of 81.86% and an average Cohen's kappa statistic value of 0.77, which means that the model is able to classify rubber plant leaf image data quite well."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Brahmana, Jane Eva Aurelia Sembiring
"Di dunia kesehatan, tenaga medis dituntut untuk mengatasi berbagai jenis penyakit dengan gejala yang beragam. Oleh karena itu, diperlukan suatu teknologi untuk membantu mereka menyelesaikannya dengan baik. Penelitian ini mendukung mereka dengan menggunakan machine learning sebagai pemecah masalah. Penelitian ini membahas kanker payudara yang merupakan salah satu penyakit dengan angka kematian tertinggi di dunia, khususnya bagi wanita. Berdasarkan patologisnya, ada beberapa jenis kanker payudara yang dikelompokkan menjadi dua kategori utama, yaitu invasif dan non-invasif. Penelitian ini menggunakan dataset MRI payudara penderita kanker payudara dari Rumah Sakit Cipto Mangunkusumo, Jakarta, Indonesia. Dataset berupa citra MRI akan diimplementasikan pada algoritma yang telah dikonstruksikan. Pada tahap awal, metode Convolutional Neural Network akan digunakan untuk bagian konvolusi. Berikutnya, pada bagian klasifikasi, metode yang akan diterapkan sebagai metode klasifikasi adalah Support Vector Machine. Dengan mengevaluasi hasil kinerja metode pembaharuan yang digunakan (Convolutional Neural Network–Support Vector Machine) dari dataset yang dimiliki, kita akan mengetahui apakah metode Convolutional Neural Network–Support Vector Machine lebih akurat dibandingkan dengan metode Convolutional Neural Network dalam membantu klasifikasi dataset MRI penderita kanker payudara yang dimiliki. 

In the world of health, medical personnel are required to deal with various types of diseases with various symptoms. Therefore, a technology is needed to help them solve it well. This research supports them by using machine learning as a problem solver. This research discusses breast cancer, which is one of the diseases with the highest mortality rate in the world, especially for women. Based on the pathology, there are several types of breast cancer which are grouped into two main categories, namely invasive and non-invasive. This study used the breast MRI dataset of breast cancer patients from Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The dataset in the form of an MRI image will be implemented in the algorithm that has been constructed. In the early stages, the Convolutional Neural Network method will be used for the convolution section. Next, in the classification section, the method that will be applied as a classification method is the Support Vector Machine. By evaluating the performance results of the renewal method used (Convolutional Neural Network–Support Vector Machine) from our dataset, we will find out whether the Convolutional Neural Network–Support Vector Machine method is more accurate than the Convolutional Neural Network method in helping to classify the MRI dataset for breast cancer patients which are owned."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christofer Kevin
"Segregasi adalah sebuah fenomena pemisahan fraksi berukuran kecil dan besar didalam suatu campuran sehingga timbul keberadaan agregat kasar dan agregrat halus pada suatu campuran yang tidak merata. Akibat distribusi yang tidak seragam tersebut, kemungkinan timbulnya lubang, pengelupasan, dan retak pada aspal jalan raya sangat mungkin terjadi. Maka dari itu penting untuk kita bisa melakukan tindakan pencegahan sebagai bentuk meminimalisir kemungkinan terjadinya fenomena tersebut. Segregasi pada aspal umumnya biasa dideteksi lewat inspeksi visual secara manual. Namun, dalam menggunakan metode tersebut dinilai penilaian yang didapatkan akan cenderung subjektif dan diperlukan waktu yang lama. Dengan demikian, penelitian kali ini dilakukan untuk memberikan solusi terbaru untuk mendeteksi daerah segregasi dengan cara yang lebih kredibel, waktu yang lebih cepat, dan ekonomis. Solusi tersebut dengan memanfaatkan metode pengolahan citra digital yang masih jarang penggunaanya. Dalam prosesnya, metode ini akan dicoba diimplementasikan bersama dengan metode Support Vector Machine. Kemudian, variabel yang akan digunakan sebagai fokus utama adalah standar deviasi. Pada penelitian kali ini akan dilakukan pengujian klasifikasi daerah segregasi dan non segregasi pada lingkungan aspal jalan di Universitas Indonesia.

Segregation is a phenomenon of separating small and large fractions in a mixture, resulting in the presence of coarse aggregate and fine aggregate in an uneven mixture. As a result of the non-uniform distribution, the possibility of potholes, raveling, and cracks in the asphalt of the highway is very likely to occur. Therefore, it is important for us to be able to take preventive measures as a form of minimizing the possibility of this phenomenon occurring. Segregation in asphalt is generally detected through manual visual inspection. However, in using the assessment method obtained will tend to choose and take a long time. Thus, this research was conducted to provide a new solution to detect segregation areas in a more credible, faster and economical way. This solution utilizes digital image processing methods that are still rarely used. In the process, this method will be implemented together with the Support Vector Machine method. Then, the variable that will be used as the main focus is the standard deviation. In this study, we will test the classification of segregated and non-segregated areas on the asphalt road environment at the University of Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahri Alamsyah
"Dunia digital khususnya image processing berkembang seiring waktu berjalan dikarenakan kebutuhan masyarakat dan pentingnya keamanan sistem berbasis digital. Salah satu teknologi yang sangat mengalami kemajuan pesat adalah pengenalan wajah (face recognition) menggunakan artificial intelligence. Wajah seseorang yang sudah terdaftar di dalam database akan dikenali oleh sistem untuk keperluan validasi atau verifikasi. Di dalam penelitian ini dirancang sistem pengenalan wajah (face recognition) menggunakan algoritma machine learning dan Principal Component Analysis (PCA) sebagai pereduksi dimensi. Pengujian dilakukan dengan menggunakan beberapa metode, yakni: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K- NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) dan Convolutional Neural network (CNN). CNN berfokus pada layer dan tidak memerlukan reduksi dimensi, sehingga hasilnya lebih akurat. Model machine learning yang digunakan untuk classifier selain CNN adalah standar/default, sedangkan CNN menggunakan arsitektur LeNet-5, dengan dropout rate sebesar 0.25. Training dilakukan selama 60 epoch dengan loss function crosscategorical entropy, optimizer Adam, dan batch size sebesar 20. Data masukan adalah citra wajah berukuran 64 × 64 × 1 yang diperoleh dari dataset olivetti faces. Akurasi tertinggi metode PCA, SVM, maupun LR sebesar 91.25%, sementara akurasi terbaik CNN mencapai 98.75%. Selain akurasi, pemakaian confusion matrix dan classification report digunakan untuk menguji performa metode yang ada melalui evaluasi model klasifikasi.

The digital world, especially image processing, is evolving due to the needs of society and the importance of digital-based system security. One of the technologies that are rapidly progressing is face recognition using artificial intelligence. The system will recognize a person's face already registered in the database for validation or verification purposes. A face recognition system was designed using machine learning algorithms and Principal Component Analysis (PCA) as dimension reduction in this study. Testing is conducted using several methods: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K-NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) and Convolutional Neural network (CNN). CNN focuses on layers and does not require dimensional reduction to increase the accuracy of the result. The machine learning model used for classifiers other than CNN is standard/default settings, while CNN uses the LeNet-5 architecture, with a dropout rate of 0.25. The training was conducted for 60 epochs with loss function cross-categorical entropy, optimizer Adam, and batch size of 20. Input data is a 64 × 64 × 1 facial image obtained from the Olivetti faces database. The highest accuracy of PCA, SVM and LR methods was 91.25%, while CNN's best accuracy reached 98.75%. In addition to accuracy, the use of confusion matrix and classification report is used to test the performance of existing methods through the evaluation of classification models."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>