Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 21405 dokumen yang sesuai dengan query
cover
Nelson Saksono
"Hydrogen is one of chemical industry feedstock and automobile fuel, which is commonly produced by electrolysis. Electrolysis, however, has several constraints that are primarily due to its large energy requirement. Plasma electrolysis is a breakthrough method that not only improves hydrogen production but also suppresses energy consumption. This research has been conducted to investigate the effectiveness of plasma electrolysis on hydrogen product quantity and energy consumption by varying the voltage and glycerol concentration. The results of this research showed that an increase in voltage led to increased hydrogen production and energy consumption; the addition of glycerol caused a decrease in hydrogen production but still resulted in an increase in energy consumption. The process effectiveness of plasma electrolysis at 300V and 0.1M KOH was 8.1 times higher than Faraday electrolysis."
Depok: Faculty of Engineering, Universitas Indonesia, 2012
UI-IJTECH 3:1 (2012)
Artikel Jurnal  Universitas Indonesia Library
cover
Mardiansyah
"ABSTRAK
Gas hidrogen banyak diperoleh dari proses elektrolisis yang memerlukan energi listrik
yang besar. Elektrolisis plasma adalah teknologi baru dalam meningkatkan produktifitas
hidrogen sekaligus menekan kebutuhan listrik. Penelitian ini dilakukan untuk menguji
efektivitas proses elektrolisis plasma dengan penambahan aditif (larutan metanol dan
etanol) yang dinyatakan sebagai jumlah produk hidrogen per satuan energi listrik yang
dikonsumsi dengan memvariasikan temperatur, tegangan listrik dan konsentrasi larutan
KOH. Efektivitas proses ini dibandingkan dengan efektivitas elektrolisis Faraday dan
elektrolisis plasma tanpa penambahan aditif. Hasil percobaan menunjukkan kenaikan
konsentrasi KOH dan tegangan listrik menyebabkan kenaikan jumlah produk hidrogen.
Proses elektrolisis plasma pada penelitian ini dapat meningkatkan efektivitas proses
hingga 5 kali lipat lebih tinggi dibandingkan dengan elektrolisis plasma tanpa
penambahan aditif.

ABSTRACT
Hydrogen is commonly produced by electrolysis which consumes a great deal of energy.
Plasma electrolysis is a new technology that can increases hydrogen productivity while
lowering electrical energy needs. This research aimed to test the effectiveness of the
plasma electrolysis process with methanol and ethanol addition which is expressed as the
number of products of hydrogen per unit of electrical energy consumed by investigated
temperature, electrical voltage and the concentration of KOH solution. Then, the
effectiveness of this process compared with the effectiveness of electrolysis Faraday.
Results showed an increase of KOH concentration and the voltage causes an increase in
the hydrogen product. Plasma electrolysis process in this research can improve the
effectiveness of processes to 5 fold higher compared plasma electrolysis without
methanol and ethanol addition."
Fakultas Teknik Universitas Indonesia, 2011
S1156
UI - Skripsi Open  Universitas Indonesia Library
cover
Bondan Ariawan
"Hidrogen merupakan salah satu bahan baku pada industri kimia dan juga sebagai bahan bakar kendaraan. Gas hidrogen banyak diperoleh dari proses elektrolisis yang memerlukan energi listrik yang besar. Elektrolisis plasma adalah metode baru yang dapat meningkatan produktivitas hidrogen sekaligus menekan kebutuhan energi listrik. Penelitian ini menguji keefektifan proses elektrolisis plasma yang dinyatakan sebagai jumlah produk hidrogen per energi listrik yang dikonsumsi dengan memvariasikan tegangan listrik dan konsentrasi larutan KOH-Gliserol. Selanjutnya, keefektifan proses ini dibandingkan dengan keefektifan elektrolisis Faraday. Hasil percobaan menunjukkkan kenaikan konsentrasi dan tegangan menyebabkan kenaikan jumlah produk hidrogen. Proses elektrolisis plasma pada penelitian ini dapat meningkatkan keefektifan proses hingga 13,74 kali lipat lebih tinggi dibandingkan dengan elektrolisis Faraday.

Hydrogen is one of chemical industry feedstock and also automobile fuel. Hydrogen is commonly produced by electrolysis. Electrolysis however has several constarints especially to its large energy requirement. Plasma electrolysis is a breakthrough method not only to improve hydrogen productivity but also suppress the energy consumption. This research has been conducted to investigate the effectiveness of plasma electrolysis which is stated as hydrogen product quantity per energy consumption by varying the voltage and KOH-Glycerol concentration. Afterwards, the process effectiveness was then compared to which of Faraday electrolysis. The result of this research shows that the hydrogen quantity produced escalated up to 13 times higher."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51686
UI - Skripsi Open  Universitas Indonesia Library
cover
Johannes Leonardo Sofresid Sasiang
"Produksi hidrogen menggunakan proses elektrolisis plasma sangat potensial untuk dikembangkan karena dapat menjadi alternatif yang praktis demi memenuhi kebutuhan sumber energi. Elektrolisis plasma dapat meningkatkan laju produksi dan efisiensi energi elektrolisis Faraday. Modifikasi reaktor kompartemen ganda dilakukan untuk mencapai kondisi proses pada tegangan listrik yang tinggi namun menekan arus yang mengalir pada sistem sehingga konsumsi energi menjadi rendah. Penelitian ini dilakukan untuk melihat pengaruh tegangan, konsentrasi KOH, penambahan aditif etanol, kedalaman katoda, dan suhu operasi terhadap laju produksi, konsumsi energi, dan efisiensi proses. Produksi hidrogen terbaik diperoleh sebesar 26,50 mmol/menit dengan konsumsi energi sebesar 1,71 kJ/mmol H2. Peningkatan efisiensi terhadap proses elektrolisis mencapai 90 kali lebih besar.

Hydrogen production by plasma electrolysis is potential to be developed for fulfilling alternative energy needs. Plasma Electrolysis can increase the rate of production and energy efficiency of electrolysis. Double compartment modification reactor is designed to achieve the high electrical voltage and reduce the energy consumption. This research was carried for determining the effect of voltage, KOH concentration, addition of ethanol and temperature in hydrogen production, energy consumption, and process efficiency.The highest hydrogen production obtained is 26,50 mmol / min with 1,71 kJ / mmol H2. This experiment can reach up 90 times hydrogen production compared to electrolysis process."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54814
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
"Objectives of this research are mainly to study impacts of acidity strength (by varying amount of precipitant and loading Al-Si) and the effect of nickel particle size (by varying calcinations temperature) on decomposition reaction performances. In this research, high-nickel-loaded catalyst is prepared with two methods. Ni-Cu/Al catalysts were prepared with co-precipitation method. While the Ni-Cu/Al-Si catalyst were prepared by combined co-precipitation and sol-gel method. The direct cracking of methane was performed in 8mm quartz fixed bed reactor at atmospheric pressure and 500-700°C. The main results showed that the Al content of catalyst increases with the increasing amount of precipitant. The activity of catalyst increases with the increasing of catalyst?s acidity to the best possible point, and then increasing of acidity will reduce the activity of catalyst. Ni-Cu/4Al and Ni-Cu/11Al deactivated in a very short time hence produced fewer amount of nanocarbon, while Ni-Cu/15Al was active in a very long period. The most effective catalyst is Ni-Cu/22Al, which produced the biggest amount of nanocarbon (4.15 g C/g catalyst). Ni catalyst diameter has significant effect on reaction performances mainly methane conversion and product yield. A small Ni crystal size gave a high methane conversion, a fast deactivation and a low carbon yield. Large Ni particle diameter yielded a slow decomposition and low methane conversion. The highest methane conversion was produced by catalyst diameter of 4 nm and maximum yield of carbon of 4.08 g C/ g catalyst was achieved by 15.5 nm diameter of Ni catalyst."
Depok: Lembaga Penelitian Universitas Indonesia, 2005
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Dian Indriani
"Upaya untuk memproduksi hidrogen masih sedikit dari sumber yang terbarukan. TiO2 dalam bentuk nanotube arrays dengan dopan Boron yang disintesis dengan metode anodisasi untuk produksi hidrogen telah diinvestigasi. Perlakuan termal katalis B-TiO2 nanotube arrays (B-TNTAs) dilakukan dengan kalsinasi reduksi dengan gas hidrogen pada suhu 500oC selama 2 jam. Analisis SEM menunjukkan morfologi nanotube arrays tiap konsentrasi boron seragam. Analisis UV-Vis DRS menunjukkan B-TNTAs memiliki absorbansi yang besar pada jangkauan panjang gelombang sinar tampak dengan band gap energy yang relatif rendah yaitu menjadi 2,9 eV. Analisis XRD menunjukkan hasil 100% kristal anatase murni. Melalui proses fotokatalisis, hidrogen mampu dihasilkan hingga 48959 μmol/m2 setelah 4 jam pengujian dengan katalis 7,5 mM B-TNTAs.

Attempts to produce hydrogen is still slightly from renewable sources. TiO2 nanotube arrays in the form of boron dopants synthesized by anodizing method for hydrogen production has been investigated. Catalyst-thermal treatment of TiO2 nanotube arrays B (B-TNTAs) performed by calcination reduction with hydrogen gas at a temperature of 500oC for 2 hours. SEM analysis showed the morphology of nanotube arrays by uniform boron concentration. UV-Vis DRS analysis showed B-TNTAs has a large absorbance in the visible wavelength range with a band gap energy is relatively low, to 2.9 eV. XRD analysis produces 100% anatase crystals. Through a photocatalytic process, hydrogen is able to produce up to 48959 μmol/m2 after 4 hours of testing with catalyst 7.5 mM B-TNTAs.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47784
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hana Julia
"ABSTRAK
Asam klorida dapat dimanfaatkan sebagai larutan yang dapat menghasilkan hidrogen dan klor. Sektor industri yang menghasilkan gas klor adalah industri klor-alkali sedangkan industri menghasilkan gas hidrogen adalah steam reforming dan elektrolisis air. Industri klor dan hidrogen mengonsumsi energi dalam jumlah tinggi. Metode elektrolisis plasma dengan asam klorida dapat meningkatkan produksi gas klor dan hidrogen dengan konsumsi energi yang lebih sedikit. Adanya perbedaan tegangan yang sangat tinggi akan menghasilkan spesi radikal pada kedua elektroda. Tegangan, konsentrasi dan kedalaman sangat mempengaruhi produksi gas yang dihasilkan. Selain itu penambahan gas oksigen dapat meningkatkan produksi gas hidrogen 17 kali, sedangkan untuk gas klor dapat meningkat 6 kali lebih banyak dibandingkan elektrolisis Faraday. Sedangkan tanpa injeksi gelembung udara produksi gas hidrogen meningkat 5 kali sedangkan untuk gas klor tidak dapat terdeteksi. Fenomena pembentukan plasma secara simultan dapat dilakukan dengan kondisi kedalaman elektroda dibuat sama dan minimum. Produksi gas yang dihasilkan pada keadaan simultan tidak lebih banyak dibandingkan gas yang dihasilkan secara parsial pada jumlah energi yang sama.

ABSTRACT
Hydrochloric acid can be used as a solution that can produce hydrogen and chlorine. The industrial sector that produces chlorine gas is the chlor-alkali industry, while industry generates hydrogen gas is the steam reforming and electrolysis of water. Industrial chlorine and hydrogen consumed energy in high amounts. Plasma electrolysis with hydrochloric acid can increase the production hydrogen and chlor with less energy consumption. The existence of a very high voltage difference will generate radical species at both electrodes. Applied voltage, concentration of electrolye and depth of anode have important influences on the amount of gas resulted. Addition of oxygen can increase hydrogen gas 17 times much more, and can increase chlor 6 times much more than Faraday electrolysis. While without oxygen, hydrogen gas only 5 times much more, and chlor could not detected. Phenomenon of plasma simultaneously could occur if the depth of anode and cathode alike and minimum. In the equal energy total, the amount of gas in simultan method less than the amount of gas in partial methode.
"
2016
S63390
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tiara Yuniawati
"Pembentukan hidrogen pada proses elektrolisis plasma di sekitar katoda dipengaruhi oleh besarnya energi penguapan. Penggunaan selubung, meminimalkan pendinginan di fasa liquid dan memaksimalkan pendinginan di fasa gas menjadi parameter penting guna meningkatkan efisiensi proses produksi hidrogen. Memaksimalkan pendinginan pada fasa gas akan mengoptimalkan terbentuknya plasma pada katoda sehingga dapat menekan konsumsi energi hingga 50%. Energi yang digunakan akan lebih banyak untuk konversi dibandingkan evaporasi. Penggunaan selubung digunakan untuk melokalisasi panas yang dihasilkan oleh katoda dalam pembentukan plasma. Untuk itu, diperlukan modifikasi reaktor untuk meningkatkan efisiensi proses produksi hidrogen agar dapat menekan jumlah energi yang digunakan dan meningkatkan jumlah produk gas hidrogen. Pada karakterisasi arus dan tegangan, semakin tinggi konsentrasi larutan maka tegangan yang dibutuhkan untuk membentuk plasma akan semakin rendah. Semakin bertambahnya konsentrasi dan tegangan, maka laju produksi, komposisi, dan G (H2) juga meningkat dan dapat menekan konsumsi energi (Wr). Kondisi optimum yang diperoleh dari variasi penggunaan selubung adalah dengan menggunakan panjang selubung 5 cm pada kedalaman katoda 1 cm dibawah permukaan larutan. Untuk mencapai efisiensi proses produksi hidrogen, dapat dilakukan dengan penambahan aditif metanol. Hasil terbaik dari berbagai variasi yang dilakukan, dicapai saat menggunakan aditif metanol 15% volume pada 0,01 M NaOH dengan rasio gas hidrogen tertinggi hasil proses elektrolisis plasma dibandingkan Faraday dengan nilai G (H2) sebesar 151,88 mol/mol, konsumsi energi terendah yaitu 0,89 kJ/mmol, laju produksi hidrogen tertinggi yaitu 31,45 mmol/menit, dan komposisi hidrogen terbesar yaitu 78,6%.

Hydrogen generation of plasma electrolysis process around the cathode is affected by the amount of evaporation energy. Utilization of veil, minimizing cooling in liquid phase, and maximizing cooling in gas phase become important parameters to improve process efficiency of hydrogen production. Maximizing cooling on gas phase can optimize the plasma formed around the cathode that will decrease energy consumption until 50%. Conversion takes more energy than evaporation process. The utilization of veil is used to localize the heat produced by cathode of plasma generation. Therefore, an improvement of electrolysis plasma reactor modification is needed to improve process efficiency of hydrogen production, suppress the amount of energy consumption and improve the amount of hydrogen production. On the characterization of current and voltage, as the concentration gets higher, the voltage needed to form the plasma will be lower. As the concentration and voltage get increasing; the rate of production, composition, and G (H2) also gets increasing while the energy consumption (Wr) is reduced. The optimum conditions obtained from variations of veil is 5 cm of length, when the depth of cathode is 1 cm below the surface of solution. Achieving efficiency process of hydrogen production can be done by adding methanol. The best result is achieved using 15% volumes of methanol additive in 0.01 M NaOH with the highest hydrogen ratio plasma electrolysis process results compared with the Faraday electrolysis, G (H2) is 151,88 mol/mol, the lowest energy consumption is 0,89 kJ/mmol, the highest hydrogen production rate is 31,45 mmol/minute and the highest hydrogen composition is 78,6%."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64978
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zulaicha Dwi Hastuti
"Flex matala biofilter dengan luas permukaan 365 m2/m3 (M365) dan 190 m2/m3 (M190) digunakan sebagai carrier bkteri dalam produksi biohidrogen menggunakan reaktor CSTR. Reaktor CSTR yang dilengkapi dengan biofilter (CSTR-PBF) didesain dan dioperasikan untuk memproduksi gas biohidrogen dengan bahan baku limbah pabrik minuman sebagai substrat pada konsentrasi 10 ? 30 g total glukosa/L dan waktu tinggal 8 jam ? 0,5 jam. Carrier atau biofilter dipasang pada bagian tengah fermentor (60 mm dari dasar fermentor) yang berfungsi untuk menghindari washout. Hasil menunjukkan bahwa konsentrasi substrat 15 ? 20 g/L memberikan yield dan Laju produksi gas biohidrogen (LPH) yang tinggi. Biofilter M365 memberikan kinerja produksi hidrogen yang lebih baik dibanding dengan biofilter M190. HRT 0,5 jam memberikan LPH yang paling tinggi, yakni 124,87 L H2/L/hari, namun yieldnya 1,17 mol H2/mol glukosa. Di sisi lain, kondisi yang memberikan yield tertinggi dicapai pada waktu tinggal 4 jam dengan LPH sebesar 13,74 L H2/L/hari dan yield sebesar 1,82 mol H2/mol glukosa. Kondisi operasi yang direkomendasikan adalah waktu tinggal 1 jam dan konsentrasi substrat 20 g glukosa/L dengan LPH 88,69 L H2/L/hari, konversi substrat, 91,85 % dan yield 1,42 mol H2/mol glukosa. Pada waktu tinggal yang rendah, yakni 1 jam dan 0,5 jam terdapat perbedaan distribusi konsentrasi biomassa pada bagian atas, tengah dan bawah reaktor. Produk cair terbesar adalah asam butirat dan asam asetat dengan rasio 1,41 mol asam butirat/mol asam asetat sampai dengan 5,66 mol asam butirat/mol asam asetat.

A flex-matala packed biofilter with specific surface area M365 m2/m3 (M365) and 190 m2/m3 (M190) were used as a bacteria carrier in a Continuous Stirred Tank Reactor (CSTR) in this study. The continuous stirred tank reactor with packed biofilter (CSTR-PBF) was designed and operated under sugary wastewater substrate at concentration of 10 g total sugar/L ? 30 g total glukosa/L and hydraulic retention time (HRT) 8 h - 0.5 h to assess the biohydrogen producing ability. Biofilter was installed at 60 mm height from the bottom of bioreactor (middle of the bioreactor). The biofilter played a role in avoiding biomass washout. It was found that substrat concentration of 15 ? 20 g glucose/L lead the hydrogen production performa. Biofilter M365 produced the higher hydrogen production rate and yield. The condition producing the higher hydrogen production rate was at HRT 0.5 h with hydrogen production rate (HPR) of 124.87L H2/L/d, and yield of 1.17 mol H2/mol glucose. On the other hand, the condition producing the higher yield obtained when the fermentor operated at HRT 4 h, which hydrogen production rate and yield were 13.74 H2/L/d, and yield of 1.42 mol H2/mol glucose. Operation condition suggested for hydrogen production was HRT 1 h and 20 g total glucose/L which HPR, susbtrate conversion and yield were 88.69 H2/L/d; 91.85 % and 1.42 mol H2/mol glucose. There was difference distribution of biomassa on top, middle and bottom part of the bioreactor observed at HRT 1 h to 0,5 h. Butyric acid and acetic acid were the main liquid product that the ratio was 5.66 mol butyric/mol acetic. A flex packed biofilter used in CSTR system is a better approach to accumulate biomass concentration in bioreactor for enhancing biohydrogen production rate comparison with other kinds of bioreactor."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T43240
UI - Tesis Membership  Universitas Indonesia Library
cover
Darrell Sanjaya
"Hidrogen merupakan salah satu bahan bakar yang diusulkan sebagai energi karena memiliki sifat ramah lingkungan serta memiliki kapasitas penyimpanan energi tinggi (143 MJ/kg). Hidrogen dapat diproduksi melalui proses elektrolisis sehingga lebih ramah lingkungan dibandingkan proses steam methane reforming (SMR). Pada dasarnya, elektrolisis larutan NaCl memiliki prinsip mengubah energi listrik menjadi energi kimia. Beberapa faktor yang mempengaruhi efisiensi energi dalam konversi ini adalah bahan dan geometri elektroda, konsentrasi larutan, pola alir larutan, serta elektron transfer pada permukaan. Untuk memastikan transfer elektron maksimal, tipe aliran yang digunakan adalah elektrolisis kontinyu. Dalam hal ini, larutan yang digunakan adalah larutan NaCl pada konsentrasi 1M dan 2M. Selain itu, terdapat variasi ukuran mesh, yakni 30; 40; 60; 80; dan 100, dengan variasi arus listrik pada 3A dan 5A. Bahan elektroda yang digunakan adalah lembaran Stainless Steel (SS316) yang digulung sehingga membentuk elektroda sirkular. Didapatkan hasil laju produksi gas hidrogen tertinggi pada 2 gulung mesh untuk konsentrasi 2M hingga 40mL/s dibandingkan dengan 1 gulung mesh yang hanya 35mL/s. Efisiensi energi tertinggi didapat pada mesh 60 (35,7%), disusul dengan mesh 80 (29,8%). Pada mesh 100 terdapat penurunan efisiensi (27,9%). Hal ini diakibatkan karena pembentukkan senyawa Fe yang mengendap pada permukaan aktif elektroda.

Hydrogen is proposed as a fuel source due to its high energy storage capacity (143 MJ/kg).Although commonly produced through steam methane reforming, production through electrolysis is more evironmentally friendly. The electrolysis of NaCl solution has a principle of turning electrical into chemical energy in the form of hydrogen gas. Several factors that influence the efficiency energy of this conversion is the raw material, electrode geometry, solution concentration, solution flow pattern, and electron transfer on the surface. To ensure maximum surface reaction, the type of flow used is continuous electrolysis. Several variations made in this research include concentration of 1M and 2M, mesh sizes of 30; 40; 60; 80; and 100, and electric current variations at 3A and 5A. The electrodes utilized are made of Stainless Steel (SS316) wrapped to form a circular electrode. The results indicates that the flow rate of hydrogen is highest at 2 layers of mesh reaching up to 40mL/s compared to 1 layer of mesh at only 35mL/s. The highest energy efficiency is obtained at 60 mesh (35,7%), followed by mesh 80 (29,8%). At 100 mesh, there is a decline of energy efficiency (27,9%). This is due to the formation of Fe which deposits at the active surface of the electrode."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>