Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 169036 dokumen yang sesuai dengan query
cover
Rehan Hawari
"Jatuh merupakan penyebab utama kedua cedera dan kematian yang tidak disengaja di seluruh dunia. Kejadian ini sering terjadi pada lansia dan frekuensinya meningkat setiap tahun. Sistem pendeteksi aktivitas jatuh yang reliabel dapat mengurangi risiko cedera yang dialami. Mengingat jatuh adalah kejadian yang tidak dikehendaki atau terjadi secara tiba-tiba, sulit untuk mengumpulkan data jatuh yang sebenarnya. Deteksi jatuh juga sulit karena kemiripannya dengan beberapa aktivitas seperti jongkok, dan mengambil objek dari lantai. Selain itu, beberapa tahun belakangan dataset mengenai aktivitas jatuh yang tersedia secara publik juga terbatas. Oleh karena itu, di tahun 2019, beberapa peneliti mencoba membuat dataset jatuh yang komprehensif yang mensimulasikan kejadian yang sebenarnya dengan menggunakan perangkat kamera dan sensor. Dataset yang dihasilkan dataset multimodal bernama UP-Fall. Menggunakan dataset tersebut, penelitian ini mencoba mendeteksi aktivitas jatuh dengan pendekatan Convolutional Neural Network (CNN) dan Long Short Term Memory (LSTM). CNN digunakan untuk mendeteksi informasi spasial dari data citra, sedangakan LSTM digunakan untuk mengeksploitasi informasi temporal dari data sinyal. Kemudian, hasil dari kedua model digabungkan dengan strategi majority voting. Berdasarkan hasil evaluasi, CNN memperoleh akurasi sebesar 98,49% dan LSTM 98,88%. Kedua model berkontribusi kepada performa strategi majority voting sehingga mendapatkan akurasi (98,31%) yang melebihi akurasi baseline (96,4%). Metrik evaluasi lain juga meningkat seperti precision naik 11%, recall 14%, dan F1-score 12% jika dibandingan dengan baseline

.Fall is the second leading cause of accidental injury and death worldwide. This event often occurs in the elderly and the frequency is increasing every year. Reliable fall activity detection system can reduce the risk of injuries suffered. Since falls are unwanted events or occur suddenly, it is difficult to collect actual fall data. It is also difficult because of the similarity to some activities such as squatting, and picking up objects from the floor. In addition, in recent years the fall dataset that is publicly available is limited. Therefore, in 2019, some researchers tried to create a comprehensive fall dataset that simulates the actual events using camera and sensor devices. The experiment produced a multimodal dataset UP-Fall. Using this dataset, this study tries to detect falling activity using Convolutional Neural Network and Long Short Term Memory approaches. CNN is used to detect spatial information from image data, while LSTM is used to exploit temporal information from signal data. Then, the results of the two models are combined with the majority voting strategy. Based on the evaluation results, CNN obtained an accuracy of 98.49% and LSTM 98.88%. Both models contribute to the performance of the majority voting strategy with the result that the accuracy (98.31%) exceeds baseline accuracy (96.4%). Other evaluation metrics also improved such as precision goes up to 11%, recall 14%, and F1-score 12% in comparison with baseline."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhatun Nurhaniifah
"Analisis sentimen dilakukan untuk menganalisis pendapat atau pandangan seseorang terhadap suatu masalah tertentu. Analisis sentimen dapat dilakukan secara manual, tetapi jika menggunakan data berskala besar akan lebih mudah dilakukan secara otomatis yaitu dengan menggunakan machine learning. Namun, machine learning hanya efektif digunakan pada satu domain saja sehingga dikembangkanlah lifelong learning. Lifelong learning merupakan machine learning yang dapat melakukan pembelajaran secara berkelanjutan. Pada penelitian ini, model yang digunakan adalah model CNN-LSTM dan LSTM-CNN. Pada kinerja transfer of knowledge, model CNN-LSTM dan LSTM-CNN menunjukkan hasil lebih baik dibanding model LSTM, tetapi kedua model gabungan tersebut kinerjanya lebih buruk dibanding model CNN. Sedangkan, pada kinerja loss of knowledge, model model CNN-LSTM dan LSTM-CNN menunjukkan hasil lebih baik dibanding model CNN, tetapi lebih buruk dibanding model LSTM. Pada penelitian ini, diimplementasikan juga lifelong learning dengan pembaruan vocabulary. Penambahan pembaruan vocabulary pada lifelong learning meningkatkan kinerja model CNN, LSTM, CNN-LSTM, dan LSTM-CNN pada transfer of knowledge dan loss of knowledge

Sentiment analysis is done to analyze a person's opinion or views on a particular problem. Sentiment analysis can be done manually, but if you use large-scale data it will be easier to do it automatically by using machine learning. However, machine learning is only effective in one domain, so lifelong learning is developed. Lifelong learning is machine learning that can carry out continuous learning. In this study, the models used are the CNN-LSTM and LSTM-CNN models. In the transfer of knowledge performance, the CNN-LSTM and LSTM-CNN models showed better results than the LSTM model, but the two combined models performed worse than the CNN model. Meanwhile, for the loss of knowledge performance, the CNN-LSTM and LSTM-CNN models showed better results than the CNN model, but worse than the LSTM model. In this study, lifelong learning with vocabulary updates was also implemented. The addition of vocabulary updates to lifelong learning improves the performance of the CNN, LSTM, CNN-LSTM, and LSTM-CNN models on transfer of knowledge and loss of knowledge"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sandyka Gunnisyah Putra
"Machine Learning (ML) dan Deep Learning merupakan bidang yang populer pada masa kini. Salah satu ranah tersebut yang menantang untuk diteliti adalah tentang mendeteksi emosi pada teks. Interaksi antara komputer dan manusia dapat menjadi lebih baik apabila komputer dapat mendeteksi emosi, menginterpretasikan emosi tersebut, dan memberikan umpan balik yang sesuai dengan apa yang manusia inginkan. Oleh karena itu, penelitian ini bertujuan untuk membuat sistem pendeteksi emosi pada teks Bahasa Indonesia. Pada penelitian ini, terdapat 2 macam algoritma Deep Learning yang digunakan, yaitu Convolutional Neural Network (CNN) dan Long Short-Term Memory (LSTM). Convolutional Neural Network merupakan salah satu algoritma Deep Learning dimana karakteristik utamanya menggunakan operasi matriks konvolusi. Long ShortTerm Memory merupakan salah satu algoritma Deep Learning dimana merupakan perkembangan dari algoritma Recurrent Neural Network (RNN). Kedua algoritma tersebut akan didukung dengan Word Embedding Bahasa Indonesia dari fastText dan Polyglot. Package text2emotion akan digunakan sebagai data tambahan untuk evaluasi. Input dataset yang digunakan untuk Deep Learning adalah dataset cerita dongeng yang memiliki emosi "Senang", "Sedih", "Marah", "Takut", "Terkejut", dan "Jijik". Input dataset tersebut akan melalui tahap preprocessing berupa Case Normalization, Stopword Removal, Stemming, Tokenizer, dan Padding. Setelah itu, proses training dijalankan dengan menggunakan RandomizedSearchCV sebagai hyperparameter tuning. Hasil akan dibandingkan dan dianalisis berdasarkan nilai Evaluation Metrics Accuracy, Precision, Recall, dan F1-Score. Sistem berhasil dirancang dengan mencapai hasil Accuracy sebesar 91,60%, Precision sebesar 92,48%, Recall sebesar 91,60%, dan F1- Score sebesar 91,68%.

Machine Learning (ML) and Deep Learning is a popular region to be used right now. One of the scopes that challenging to research is about emotion recognition on text. Interaction between computer and human can be better if the computer can recognize the emotion, interpret it, and giving a suitable feedback with the human’s need. Therefore, this research has goal to make an emotion recognition on Indonesian text language. On this research, there’s 2 kind of Deep Learning algorithm that used, that is Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). Convolutional Neural Network is one of Deep Learning algorithm that its main characteristic is using convolution matrix operation. Long Short-Term Memory is one of Deep Learning algorithm which is an improvement from Recurrent Neural Network (RNN) algorithm. Both algorithms will be supported with Indonesian Word Embedding from fastText and Polyglot. Text2emotion package is used for additional data for evaluation. The input dataset that will be used on this Deep Learning is a fairy tale dataset which have “Happy”, “Sad”, “Anger”, “Fear”, “Surprised”, and “Disgust” emotion. That input dataset will be passed to preprocessing stage that consist of Case Normalization, Stop-word Removal, Stemming, Tokenizer, and Padding. After that, training process started with using RandomizedSearchCV as hyperparameter tuning. The result will be compared and analyzed based on Accuracy, Precision, Recall, and F1- Score Evaluation Metrics. System is made with reaching 91.60% Accuracy, 92,48% Precision, 91,60% Recall, and 91,68% F1-Score."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizka Amalia
"Retinopati diabetik adalah kelainan vaskular retina yang disebabkan oleh diabetes jangka panjang. Deteksi dini retinopati diabetik pada pasien diabetes diperlukan karena tidak ada gejala yang terlihat selama tahap awal penyakit. Para peneliti mengembangkan metode berbasis komputer untuk membantu dokter dalam proses deteksi dini. Dokter dapat menggunakan output dari metode tersebut sebagai pertimbangan dalam mediagnosis tipe retinopati diabetik yang diderita pasien. Salah satu metode yang populer adalah deep learning. Pada penelitian ini, dibangun gabungan dua algoritma deep learning, yaitu Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) untuk deteksi retinopati diabetik dengan output berupa caption yang menjelaskan kondisi yang ada pada citra fundus pasien. CNN digunakan untuk mengekstraksi fitur lesi retinopati diabetik pada citra fundus, dan LSTM digunakan untuk membuat caption berdasarkan fitur lesi tersebut. Penelitian ini menggunakan empat model CNN, yakni AlexNet, pre-trained AlexNet, GoogleNet, dan pre-trained GoogleNet. Simulasi gabungan algoritma CNN-LSTM dilakukan dengan proporsi data yang berbeda menggunakan data set dari Rumah Sakit Cipto Mangunkusumo. Hasil simulasi menunjukkan bahwa gabungan algortima CNN-LSTM dapat mendeteksi fitur lesi dan membuat caption dengan rata-rata kinerja akurasi tertinggi sebesar 91.69% untuk model pre-trained GoogleNet-LSTM dan proporsi data 80% data training dan 20% data testing.

Diabetic retinopathy is a retinal vascular disorder caused by long-term diabetes. Early diabetic retinopathy detection in diabetes patients is needed because no symptoms can be seen during the early stage of disease. The researchers developed a computer-based method to assist ophthalmologists in the early detection process. Ophthalmologists can use the output of the method as a consideration in diagnosing the type of diabetic retinopathy. One of the popular methods is deep learning. In this study, a combination of two deep learning algorithms, namely Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM), was constructed for diabetic retinopathy detection with the output in the form of a caption that explains the condition present in the patient’s fundus images. CNN is used to extract features of diabetic retinopathy lesions on fundus images, and LSTM is used to generate a caption based on those lesion features. This study used four CNN models that are AlexNet, pre-trained AlexNet, GoogleNet, and pre-trained GoogleNet. Simulation of a combined CNN-LSTM algorithm has been done with the different proportions of data using a data set from Cipto Mangunkusumo National General Hospital. The simulation results show that a combined CNN-LSTM algorithm can detect lesion features and generate caption with the highest average performance accuracy of 91.69% for pre-trained GoogleNet-LSTM and the proportion 80% training data and 20% testing data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sarah Suwarno
"Indonesia terletak di wilayah dengan tingkat aktivitas gempa yang tinggi. Meskipun gempa bumi tidak dapat dihindari, melalui kemajuan teknologi, sistem peringatan dini gempa telah berhasil menyelamatkan nyawa di banyak negara rawan gempa. Sistem peringatan dini gempa bekerja berdasarkan sifat dari gelombang P dan S pada gempa, yang dimana gelombang P merambat lebih cepat dibandingkan gelombang S. Selisih waktu kedatangan gelombang P dan S ini dapat digunakan untuk memberikan peringatan dini. Oleh karena itu, penentuan waktu tiba fase P di gelombang gempa sangatlah penting. Tujuan dari penelitian ini adalah untuk mengembangkan dua variasi model yang dapat mendeteksi fase P dari data sinyal seismik. Mula-mula, model akan mendeteksi gelombang P di sinyal seismik, lalu fase P nya akan ditentukan di saat gelombang P pertama kali terdeteksi. Dua variasi model tersebut yaitu 1D CNN-LSTM dan LSTM yang akan dilatih menggunakan dua variasi input, yaitu frekuensi dominan dan modified energy ratio MER. Hasil prediksi model kemudian dibandingkan dengan hasil prediksi metode STA/LTA. Berdasarkan hasil evaluasi, model 1D CNN-LSTM variasi pertama memberikan performa terbaik dalam mendeteksi fase P. Pada sinyal normal dengan input frekuensi dominan dari STFT 200 Frame, model ini menghasilkan MAE sebesar 0,856 detik dan RMSE sebesar 1,763 detik. Sementara itu, pada sinyal dengan SNR rendah menggunakan STFT 100 Frame, diperoleh MAE sebesar 1,353 detik dan RMSE sebesar 2,395. Model yang menggunakan variasi input MER memberikan hasil prediksi yang buruk. STA/LTA memberikan nilai MAE dan RSME terbesar dibandingkan prediksi model.

Indonesia is located in a region with high seismic activity. Although earthquakes are unavoidable, technological advancements have enabled earthquake early warning systems to save lives in many earthquake-prone countries. These early warning systems operate based on the characteristics of P and S waves, where P-waves travel faster than S-waves. The time difference between the arrival of P and S waves can be used to provide early warnings. Therefore, accurately determining the arrival time of the P-wave phase is crucial. The aim of this study is to develop two model variations capable of detecting the P-wave phase from seismic signal data. First, the model detects the P-wave in the seismic signal, then the P-phase is determined at the point where the P-wave is first detected. The two model variations are 1D CNN-LSTM and LSTM, which are trained using two types of input features: dominant frequency and Modified Energy Ratio (MER). The model predictions are then compared to predictions made using the STA/LTA method. Based on the evaluation results, the first variation of the 1D CNN-LSTM model demonstrated the best performance in detecting the P-phase. On regular signals with dominant frequency input from a 200-frame STFT, this model achieved a MAE of 0,856 seconds and an RMSE of 1,763 seconds. On low SNR signals using a 100-frame STFT, the model achieved a MAE of 1,353 seconds and an RMSE of 2,395 seconds. In contrast, models using MER input yielded poor prediction results. The STA/LTA method produced the highest MAE and RMSE values compared to the model predictions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elyaser Ben Guno
"Automatic Modulation Classification (AMC) secara otomatis mengidentifikasi jenis modulasi apa yang digunakan pada pemancar berdasarkan pengamatan terhadap sinyal yang diterima. Seiring dengan perkembangan pada topik ini, Deep Learning (DL) dapat diterapkan pada AMC dan memiliki kinerja yang menjanjikan. Namun, sebagian besar model DL yang dibuat hanya berfokus pada akurasi, mengabaikan ukuran model dan kompleksitas komputasi yang dapat menjadi masalah bagi perangkat dengan ukuran memori dan daya komputasi yang terbatas. Dalam penelitian ini, model Convolutional Long short-term memory Deep Neural Network (CLDNN) ringan diusulkan untuk mengklasifikasi modulasi. Model yang diusulkan dilatih dan diuji dengan dataset RML2016.10b. Model yang diusulkan memiliki ukuran model dan jumlah parameter yang lebih kecil, serta waktu pelatihan dan klasifikasi yang lebih cepat, relatif terhadap model pembanding, dengan tetap menjaga kualitas akurasinya.

Automatic Modulation Classification (AMC) automatically identifies what type of modulation is used on the transmitter based on observations of the received signal. Along with the development on this topic, Deep Learning (DL) can be applied to AMC and has promising performance. However, most of the DL models created only focus on accuracy, ignoring the model size and computational complexity which can be a problem for devices with limited memory size and computing power. In this study, a lightweight Convolutional Long short-term memory Deep Neural Network (CLDNN) model was proposed to classify modulation. The proposed model was trained and tested with the RML2016.10b dataset. The proposed model has a small model size and parameters, as well as fast training and classification time, relative to the comparison models, while maintaining the quality of its accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferdiansyah Zhultriza
"Turbin gas di Pembangkit Listrik Tenaga Gas dan Uap (PLTGU) harus dijaga keandalannya dengan melakukan prediksi anomali untuk menghindari kerusakan turbin gas. Untuk melakukan prediksi anomali turbin gas, perlu menggunakan metode yang tepat dengan memperhatikan beberapa hal. Prediksi anomali pada real-performance turbin gas di pembangkit listrik sulit dilakukan dengan simulasi model fisik karena kondisinya yang dinamis dan banyaknya parameter operasi yang saling memiliki korelasi, sehingga, dibutuhkan metode yang memiliki kemampuan ekstrasi informasi input dengan baik. Selain itu, parameter operasi turbin gas juga memiliki sifat sekuensi waktu, dimana hubungan parameter sebelum dan sesudah waktu tertentu memiliki hubungan yang berkorelasi. Beberapa penelitian belum dapat mengatasi kedua permasalahan tersebut untuk pemodelan real-performance turbin gas. Metode Convolutinal Neural Network dapat digunakan untuk menjawab permasalahan pertama dan metode Recurrent Neural Network dapat menjawab permasalahan kedua. Oleh karena itu, penelitian ini mengajukan metode hybrid Convolutional Neural Network (CNN) dengan tipe dari Recurrent Neural Network (RNN), yakni Long Short-term Memory (LSTM) dan Gate Recurrent Unit (GRU), untuk dapat mengekstrasi korelasi hubungan antar-parameter yang tepat dengan kemampuan komputasi time variant yang baik. Prediksi anomali yang didapatkan menggunakan model CNN sebesar 81,33%, metode hybrid CNN-LSTM sebesar 91,79%, dan hybrid CNN-GRU sebesar 91,46%. Sehingga, hybrid CNN-LSTM memberikan peningkatan akurasi prediksi anomali turbin gas dengan kemampuan ekstrasi fitur parameter dan komputasi time-variant yang lebih baik.

The reliability of the gas turbine in Combined Cycle Power Plant (CCPP) should be maintained by predicting anomalies to avoid damage failure. To predict the gas turbine anomaly, it is necessary to use the right method by paying attention to several things. The operating parameters of the gas turbine system are a form of inter-parameter correlation with a high dynamic change correlation, so it requires a method that can extract the feature input between parameters correctly. In addition, the gas turbine operating parameters also have time sequence properties, where the correlation between parameters before and after a certain time has a correlated variant. Several studies have not been able to overcome these two problems for modeling real-performance gas turbines. The Convolutional Neural Network method can be used to answer the first problem and the Recurrent Neural Network method can answer the second problem. Therefore, this research proposes a hybrid Convolutional Neural Network (CNN) method with a type of Recurrent Neural Network, called Long Short-term Memory (LSTM) and Gate Recurrent Unit (GRU), in order to extract the right correlation between parameters with better time variant computation. The anomaly prediction obtained using the CNN model is 81.33%, the CNN-LSTM hybrid method is 91.79%, and the CNN-GRU hybrid is 91.46%. Thus, the CNN-LSTM hybrids provide increased accuracy of gas turbine anomaly predictions with better parameter extraction and time-variant analysis capabilities."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Gita Kartika Suriah
"Analisis sentimen merupakan suatu proses untuk menentukan sikap atau sentimen dari penulis mengenai hal tertentu. Proses pengelompokan sentimen secara manual membutuhkan waktu cukup lama, sehingga diusulkan untuk menggunakan machine learning. Pada penelitian ini, model machine learning yang digunakan merupakan model CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term Memory) dan BiLSTM-CNN (Bidirectional Long Short-Term Memory - Convolutional Neural Network) yang menghasilkan kinerja yang lebih baik dibandingkan model CNN dan BiLSTM pada permasalahan analisis sentimen. Supaya model dapat belajar secara berkelanjutan dari beberapa domain data, model tersebut juga diimplementasikan lifelong learning. Hasilnya, model CNN-BiLSTM menunjukkan kinerja transfer of knowledge yang lebih baik dibandingkan oleh model BiLSTM-CNN maupun model dasarnya. Di sisi lain, model BiLSTM-CNN menunjukkan kinerja yang lebih buruk dibandingkan model dasarnya. Sedangkan, hasil loss of knowledge menunjukkan bahwa kinerja model CNN- BiLSTM lebih buruk dari BiLSTM-CNN. Selain itu, kedua model gabungan tersebut menunjukkan kinerja yang lebih baik dibandingkan model CNN, tetapi lebih buruk dibandingkan model BiLSTM. Untuk pengembangan lebih lanjut, diimplementasikan pula lifelong learning dengan pembaruan vocabulary. Dengan implementasi tersebut, model mampu mempelajari vocabulary dari domain data 2, 3, 4, dan 5. Pembaruan vocabulary ternyata meningkatkan kinerja model pada transfer of knowledge dan loss of knowledge.

Sentiment analysis is a process to determine the attitude or sentiment of the author regarding certain matters. The process of classifying sentiments manually takes a long time, so it is proposed to use machine learning. In this study, the machine learning model used is the CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term Memory) and BiLSTM-CNN (Bidirectional Long Short-Term Memory - Convolutional Neural Network) models which produce better performance than the CNN and BiLSTM models on the problem of sentiment analysis. In order for the model to learn continuously from several data domains, the model is also implemented lifelong learning. As a result, the CNN-BiLSTM model shows better transfer of knowledge performance compared to the BiLSTM-CNN model and its base model. On the other hand, the BiLSTM-CNN model shows a worse performance than its base model. Meanwhile, the results of loss of knowledge show that the performance of the CNN-BiLSTM model is worse than the BiLSTM-CNN model. In addition, the two combined models show better performance than the CNN model, but worse than the BiLSTM model. For further development, lifelong learning is also implemented with an update to vocabulary. With this implementation, the model is able to learn vocabulary from data domain 2, 3, 4, and 5. In fact, the vocabulary update has an effect in increasing the performances of transfer of knowledge and loss of knowledge.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Toby Rufeo
"Skripsi ini membahas penggunaan arsitektur Long Short-Term Memory (LSTM) dalam merancang sebuah model identifikasi. Riset ini membahas pengaruh hyperparameter seperti jumlah hidden layer, jenis fungsi aktivasi, tipe optimizer, dan hyperparameter lainnya terhadap kinerja arsitektur neural network. Selebihnya, Skripsi ini juga membandingkan model Long Short Term Memory (LSTM) dengan arsitektur Convolutional Neural Network (CNN) dan Artificial Neural Network (ANN). Hasil dari penelitian skripsi ini menunjukkan bahwa arsitektur Long Short Term Memory menunjukkan hasil yang optimal pada sistem yang time dependent dan dinamis.

This paper discusses the application of Long Short-Term Memory Networks in designing a identification model. Firstly, this paper discusses the effect of different hyperparameters such as but not limited to: number of hidden layers, type of activation function, type of optimizer used on the performance of the neural network. Furthermore, this paper also compares the performance and effectiveness of different neural networks such as Convolutional Neural Network (CNN) and Artificial Neural Network (ANN) to a LSTM model. The result of this research shows that a Long Short-Term Memory (LSTM) network performs optimally in systems that are time-dependent and dynamic.>i/>
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Noer Fitria Putra Setyono
"SIBI merupakan bahasa isyarat resmi yang digunakan di Indonesia. Penggunaan SIBI seringkali ditemukan permasalahan karena banyaknya gerakan isyarat yang harus diingat. Penelitian ini bertujuan untuk mengenali gerakan isyarat SIBI dengan cara mengekstraksi fitur tangan dan wajah yang kemudian diklasifikasikan menggunakan Bidirectional Long ShortTerm Memory (BiLSTM). Ekstraksi fitur yang digunakan dalam penelitian ini adalah Deep Convolutional Neural Network (DeepCNN) seperti ResNet50 dan MobileNetV2, di mana kedua model tersebut digunakan sebagai pembanding. Penelitian ini juga membandingkan performa dan waktu komputasi antara kedua model tersebut yang diharapkan dapat diterapkan pada smartphone nantinya, dimana model tersebut akan diimplementasikan. Hasil penelitian menunjukkan bahwa penggunaan model ResNet50-BiLSTM memiliki kinerja yang lebih baik dibandingkan dengan MobileNetV2-BiLSTM yaitu 99,89%. Namun jika akan diaplikasikan pada arsitektur mobile, MobileNetV2-BiLSTM lebih unggul karena memiliki waktu komputasi yang lebih cepat dengan performa yang tidak jauh berbeda jika dibandingkan dengan ResNet50-BiLSTM.

SIBI is a sign language that is officially used in Indonesia. The use of SIBI is often found to be a problem because of the many gestures that have to be remembered. This study aims to recognize SIBI gestures by extracting hand and facial features which are then classified using Bidirectional Long ShortTerm Memory (BiLSTM). The feature extraction used in this research is Deep Convolutional Neural Network (DeepCNN) such as ResNet50 and MobileNetV2, where both models are used as a comparison. This study also compares the performance and computational time between the two models which is expected to be applied to smartphones later, where both models can now be implemented on smartphones. The results showed that the use of ResNet50-BiLSTM model have better performance than MobileNetV2-BiLSTM which is 99.89\%. However, if it will be applied to mobile architecture, MobileNetV2-BiLSTM is superior because it has a faster computational time with a performance that is not significantly different when compared to ResNet50-BiLSTM."
Depok: Fakultas Komputer Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>