Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160171 dokumen yang sesuai dengan query
cover
Muhammad Ilham Randi
"Dalam melakukan klasifikasi, tidak jarang terdapat data dengan jumlah anggota kategori yang tidak seimbang. Khususnya dalam dunia kesehatan dimana kategori yang diamati umumnya lebih jarang terjadi. Jika ketidakseimbangan ini tidak ditangani terlebih dahulu maka dapat memberikan hasil klasifikasi yang bias dan kurang akurat. Terdapat beberapa metode rebalancing konvensional untuk menanganinya seperti random oversampling dan random undersampling, namun keduanya diklaim memiliki beberapa kelemahan sehingga beberapa metode yang lebih kompleks dikembangkan. Namun jumlah metode yang dapat digunakan untuk menangani data kategorik selain metode konvensional tersebut masih minim. Salah satu metode yang dapat menangani data kategorik adalah synthetic minority over sampling-technique nominal continuous atau SMOTE-NC yang merupakan ekstensi dari SMOTE yang dikembangkan untuk menangani dataset dengan variabel campuran. Skripsi ini membahas perbandingan dari metode random oversampling dan SMOTE-NC juga metode gabungannya dengan undersampling yaitu random oversampling + undersampling dan SMOTE-NC + undersampling untuk menangani ketidakseimbangan data. Masing-masing metode tersebut akan diterapkan untuk klasifikasi tingkat keparahan COVID-19 berdasarkan urgensi perawatan rumah sakit dengan menggunakan metode random forest dimana selanjutnya dapat dilihat kombinasi metode yang menghasilkan performa terbaik. Penelitian ini juga bertujuan untuk melihat faktor-faktor manakah yang paling penting dalam memprediksi tingkat keparahan COVID-19 berdasarkan urgensi rumah sakit. Digunakan metode Leave-One-Out Cross-Validation untuk mengukur konsistensi model. Diperoleh hasil bahwa metode SMOTE-NC dengan undersampling memberikan performa terbaik dengan komorbid paru-paru, kadar c-reactive protein dan prokalsitonin merupakan variabel terpenting dalam model. Selain itu diperoleh kesimpulan bahwa pemilihan metode rebalancing yang tepat bergantung pada karakteristik data yang dimiliki.

In conducting classification, it is not uncommon for data with an unbalanced number of category members. Especially in the world of health where the categories we observe are generally less common. If this imbalance is not handled first, it can give biased and less accurate classification results. There are several conventional rebalancing methods to handle it, such as random oversampling and random undersampling, but both are claimed to have several weaknesses so that several more complex methods were developed. However, the number of methods that can be used to handle categorical data other than the conventional methods is still minimal. One method that can handle categorical data is synthetic minority over sampling-technique nominal continuous or SMOTE-NC which is an extension of SMOTE which was developed to handle datasets with mixed variables. This thesis discusses the comparison of random oversampling and SMOTE-NC methods as well as their combined methods with undersampling, namely random oversampling + undersampling and SMOTE-NC + undersampling to handle data imbalances. These methods will be applied to the classification of the severity of COVID-19 based on the urgency of hospital care using the random forest method, wherein the combination of methods that produces the best performance will be seen. This study also aims to see which factors are the most important in predicting the severity of COVID-19 based on hospital urgency. The Leave-One-Out Cross-Validation method is used to measure the consistency of the model. It was found that the SMOTE-NC method with undersampling gave the best performance with lung comorbidities, c-reactive protein and procalcitonin levels were the most important variables in the model. In addition, it can be concluded that the selection of the right rebalancing method depends on the characteristics of the data held.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ihsan Izzuddin
"Uji PCR swab adalah salah satu jenis pemeriksaan untuk seluruh pasien yang terduga COVID-19. Hingga saat ini, tes PCR swab merupakan tes yang paling direkomendasikan oleh WHO untuk mendiagnostik COVID-19. Namun tes ini memiliki kerumitan proses dan harga alat yang lebih tinggi sehingga banyak orang enggan untuk melakukan PCR Swab, walaupun sudah ada gejala terpapar COVID-19 atau lebih memilih jenis tes pemeriksaan yang lain. Penelitian ini merupakan studi kasus yang diambil di FMIPA UI. Tujuan dari penelitian ini adalah menganalisis faktor-faktor apa saja yang signifikan menjelaskan keengganan mahasiswa FMIPA UI melakukan PCR swab seandainya memiliki gejala terpapar COVID-19. Metode analisis yang digunakan untuk mencapai tujuan tersebut yaitu metode analisis regresi logistik. Penelitian ini menggunakan data primer yang didapat menggunakan metode purposive sampling dengan cara menyebar survey online ke grup online departemen di MIPA UI dan responden yang dilibatkan adalah mahasiswa FMIPA UI yang aktif. Hasil yang diperoleh yaitu faktor-faktor yang memengaruhi keengganan melakukan uji PCR Swab pada mahasiswa FMIPA UI adalah tingkat pendidikan orang tua, penghasilan orang tua, dan melakukan protokol kesehatan.

The PCR swab test is one type of examination for all patients suspected of COVID-19. Until now, the PCR swab test is the most recommended test by WHO to diagnose COVID-19. However, this test has the complexity of the process, and the cost of the equipment is higher, so many people are reluctant to do a COVID-19 swab even though there are already symptoms of being exposed to Covid-19 or prefer other types of examination tests. This research is a case study taken at FMIPA UI. This study aims to analyze the factors that significantly explain the reluctance of FMIPA UI students to carry out PCR swabs if symptoms of being exposed to COVID-19 have appeared. The analytical method used is the method of logistic regression analysis. This study used primary data obtained using the purposive sampling method by distributing online surveys to each department’s online groups at FMIPA UI and the respondents involved were active FMIPA UI students. The results obtained are the factors that influence the reluctance to do the PCR Swab test on FMIPA UI students: the level of education of parents, parents' income, and health protocols.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Besarnya angka statistik pernikahan dini (pengantin di bawah usia 16 tahun) di beberapa daerah di Indonesia secara keseluruhan cukup tinggi. Dalam rangka menanggulangi hal tersebut perlu dilakukan upaya untuk mempersiapkan remaja agar memiliki pengetahuan berkaitan dengan program KB. Untuk itu, peneliti ingin menganalisis keinginan remaja untuk menggunakan alat/cara KB setelah menikah dengan menggunakan metode CART dan QUEST berdasarkan data Survei Kesehatan Reproduksi Remaja Indonesia (SKRRI) 2002-2003. Berdasarkan hasil analisis antara metode CART dan QUEST diperoleh faktor-faktor yang mempengaruhi keinginan remaja untuk menggunakan alat/cara KB setelah menikah, serta karakteristik dari remaja berkaitan dengan hal tersebut. Selain itu diperoleh keakuratan tingkat klasifikasi dari kedua metode, dimana keakuratan tingkat klasifikasi metode CART sedikit lebih tinggi dibandingkan dengan metode QUEST. "
Universitas Indonesia, 2007
S27684
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hunaiva Kintan Dahlan
"Pandemi COVID-19 telah memberikan dampak negatif pada aspek-aspek kehidupan masyarakat, salah satunya kesehatan mental. Dampak negatif pada kesehatan mental secara global ditandai dengan meningkatnya tingkat stres masyarakat selama masa pandemi. Berdasarkan hal tersebut, penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang dapat menjelaskan tingkat stres masyarakat pada masa pandemi COVID-19. Pada penelitian ini, data yang digunakan berasal dari hasil survei global COVIDiSTRESS yang dilakukan untuk menganalisis keadaan individu dan tanggapan psikologis terhadap pandemi beserta kebijakan yang berlaku selama masa pandemi. Tingkat stres pada survei ditinjau dengan pengukuran perceived stress scale (PSS-10). Metode yang digunakan adalah analisis regresi multilevel yang merupakan salah satu bentuk spesifikasi dari linear mixed model. Analisis ini dinilai lebih baik daripada regresi biasa karena dapat mengatasi masalah dependensi pada data hierarki. Besarnya dependensi pada regresi multilevel dapat dinyatakan sebagai intraclass correlation coefficient. Model regresi multilevel terbaik yang didapatkan dari hasil penelitian ini adalah model koefisien acak. Hasil penelitian ini menunjukkan bahwa terdapat beragam faktor yang dapat menjelaskan tingkat stres pada masa pandemi COVID-19. Tingkat kesendirian (loneliness) dan intoleransi terhadap ketidakpastiaan (uncertainty) memiliki dampak yang berbeda dalam menjelaskan tingkat stres di berbagai negara. Selain itu, dukungan sosial juga dapat menjelaskan tingkat stres masyarakat pada tingkat negara selama masa pandemi COVID-19.

The COVID-19 pandemic has had a negative impact on aspects of people's lives, one of which is mental health problem. The negative impact on mental health globally is marked by the increasing level of stress in society during the pandemic. Based on this, this study aims to identify factors that can explain the level of community stress during the COVID- 19 pandemic. This study used the result data of the COVIDiSTRESS global survey which was conducted to analyze individual circumstances and psychological responses to the pandemic and the policies that were in effect during the pandemic. The stress level in the survey was reviewed by measuring the perceived stress scale (PSS-10). The method used is multilevel regression analysis which is a specification form of the linear mixed model. This analysis is considered better than ordinary regression because it can overcome the problem of dependency on hierarchical data. The dependency on multilevel regression can be expressed as the intraclass correlation coefficient. The best multilevel regression model obtained from the results of this study is the random coefficient model. The results of this study indicate that there are various factors that can explain stress levels during the COVID-19 pandemic. The level of loneliness and intolerance to uncertainty have different effects on explaining stress levels in different countries. In addition, social support can also explain the stress level at the country level during the COVID-19 pandemic.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Dalam pengujian hipotesis prinsip metode statistika parametrik adalah mencocokkan data di bawah asumsi distribusi dari populasinya. Namun pada kenyataannya, banyak permasalahan yang tidak memenuhi asumsi ini. Permasalahan seperti itu dapat diselesaikan dengan dua pendekatan. Pendekatan pertama adalah menggunakan prosedur bebas distribusi. Pendekatan kedua adalah mentransformasi data ke dalam bentuk yang bisa mendekati distribusi normal, seperti transformasi log, transformasi akar kuadrat dan lainnya. Transformasi rank (TR) merupakan prosedur yang mengkombinasikan kedua pendekatan tersebut. Prosedur ini mentransformasi data yang bebas distribusi ke dalam bentuk rank kemudian mengaplikasikan metode parametrik pada data yang telah ditransformasi. Dalam skripsi ini dibahas mengenai aplikasi dari transformasi rank pada data rating televisi. Nilai yang diperoleh dengan prosedur transformasi rank dapat disetarakan dengan nilai yang diperoleh dengan metode parametrik maupun nonparametrik. "
Universitas Indonesia, 2006
S27628
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zalfa Nurfadhilah Haris
"Kemiskinan merupakan salah satu masalah sosial yang masih menjadi perhatian pemerintah. Hampir seluruh negara berkembang memiliki standar hidup yang masih rendah. Salah satu cara untuk mengurangi kemiskinan adalah dengan menganalisis faktor-faktor yang memengaruhi Salah satu metode yang cocok dalam menganalisis tingkat kemiskinan adalah dengan menggunakan Geographically Weighted Regression (GWR). Hal ini dikarenakan dalam model GWR dipertimbangkan aspek spasial yang berbeda-beda untuk masing-masing lokasi pengamatan. Dalam model GWR dilakukan pendekatan analisis regresi yang digunakan untuk memahami hubungan spasial antara variabel-variabel dalam konteks geografi. Hal ini dikarenakan model GWR mempertimbangkan jarak lokasi pengamatan dengan lokasi sekitarnya, model GWR juga mempertimbangkan pembobot pada masing-masing lokasi pengamatan. Daerah yang dekat dengan lokasi pengamatakan mendapatkan pembobot yang lebih besar daripada daerah yang jauh dengan lokasi pengamatan, dalam hal ini penentuan pembobot dalam model GWR bergantung pada bandwidth. Dalam penelitian ini dilakukan analisis dengan mempertimbangkan empat pembobot spasial yaitu fixed gaussian kernel, fixed bisquare kernel, fixed tricube kernel, dan fixed exponential kernel yang diterapkan pada dua bandwidth yaitu bandwidth CV dan bandwidth AIC. Variabel dependen yang digunakan adalah tingkat kemiskinan dan variabel independen yang digunakan adalah rata-rata lama sekolah, upah minimum, tingkat pengangguran, indeks pembangunan manusia, angka harapan hidup dan jumlah penduduk. Hasil dari penelitian ini menunjukkan bahwa pada 118 Kabupaten/Kota di Pulau Jawa memiliki model GWR yang berbeda-beda. Untuk model GWR menggunakan bandwidth CV diperoleh model terbaik dengan menggunakan fixed exponential kernel dengan sembilan kelompok variabel yang signifikan, untuk model GWR menggunakan bandwidth AIC diperoleh model terbaik dengan menggunakan fixed bisquare kernel dengan enam kelompok variabel yang signifikan.

Poverty is one of the social issues that continues to be a concern for the government. Almost all developing countries have low living standards. One way to reduce poverty is by analyzing the factors that influence it. One suitable method for analyzing poverty levels is by using Geographically Weighted Regression (GWR). This is because the GWR model considers different spatial aspects for each observation location. In the GWR model, a regression analysis approach is used to understand the spatial relationship between variables in a geographical context. This is because the GWR model considers the distance between the observation location and its surrounding locations. The GWR model also considers weighting for each observation location. Areas close to the observation location are given a higher weight than areas far from the observation location. In this case, the determination of the weight in the GWR model depends on the bandwidth. This research analyzes four spatial weights, namely fixed Gaussian kernel, fixed bisquare kernel, fixed tricube kernel, and fixed exponential kernel, applied to two bandwidths: CV bandwidth and AIC bandwidth. The dependent variable used is the poverty rate, and the independent variables used are average length of schooling, minimum wage, unemployment rate, human development index, life expectancy, and population. The results of this study show that the 118 districts in Java Island have different GWR models. For the GWR model using the CV bandwidth, the best model is obtained using the fixed exponential kernel with nine significant variable groups. For the GWR model using the AIC bandwidth, the best model is obtained using the fixed bisquare kernel with six significant variable groups.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risfania Nurdinda Sari
"COVID-19 adalah penyakit yang disebabkan oleh virus SARS-CoV-2 dan menyerang sistem pernapasan manusia. Selain menganggu kesehatan fisik, pandemi COVID-19 juga memberikan dampak psikologis, salah satunya adalah tingkat stres yang meningkat pada masyarakat. Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang berasosiasi dengan tingkat stres pada pandemi COVID-19. Dalam mencapai tujuan tersebut, penelitian ini menggunakan metode classification tree dan regresi logistik multinomial. Sebelum melakukan proses identifikasi faktor menggunakan classification tree, dilakukan penanganan masalah imbalance data menggunakan metode SMOTE. Selanjutnya, dilakukan kuantifikasi risiko faktor-faktor yang teridentifikasi pada classification tree menggunakan analisis regresi logistik multinomial. Kinerja model diukur menggunakan nilai precision, recall, F1-Score, dan AUC. Hasil yang diperoleh adalah model classification tree dengan penanganan imbalance data menggunakan SMOTE dapat meningkatkan kinerja model dengan nilai precision 0,5980, nilai recall 0,8653, nilai F1-Score 0,7072, dan AUC 0,702. Dengan model tersebut, didapatkan faktor-faktor yang teridentifikasi berasosiasi dengan tingkat stres pada pandemi COVID-19 adalah Total_OECDInsititutions, Total_CoronaConcerns, dan Age. Peningkatan nilai Corona Concerns cenderung memberikan risiko peningkatan tingkat stres, sedangkan peningkatan nilai OECDInsititutions dan Age cenderung memberikan risiko penurunan tingkat stres.

COVID-19 is a disease caused by the SARS-CoV-2 virus that attacks the human respiratory system. In addition to disrupting physical health, the COVID-19 pandemic also has psychological impacts, one of which is an increased level of stress. This study aims to identify factors associated with the level of stress during the COVID-19 pandemic. The study employs the classification tree method and multinomial logistic regression. Prior to the factor identification process using the classification tree, the issue of imbalanced data is addressed using the SMOTE method. Subsequently, the quantification of risk factors identified in the classification tree is conducted using multinomial logistic regression analysis. The model's performance is measured using precision, recall, F1-score, and AUC values. The results obtained indicate that the classification tree model with the handling of imbalanced data using SMOTE can improve model performance, with a precision value of 0,5980, recall value of 0,8653, F1-score value of 0,7072, and AUC value of 0,702. With this model, the identified factors associated with the level of stress during the COVID-19 pandemic are Total_OECDInstitutions, Total_CoronaConcerns, and Age. An increase in Corona Concerns tends to pose a risk of increased stress levels, while an increase in OECD Institutions and Age tends to pose a risk of decreased stress levels."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadhira Rafik
"Subscription Video on Demand (SVoD) merupakan layanan video streaming dengan metode subscription yang dibayarkan pengguna pada periode tertentu untuk dapat mengakses seluruh konten yang disediakan SVoD. Banyaknya judul program baik film, series, tv show, dan konten video lainnya yang ada pada SVoD memberikan penggunanya semakin banyak pilihan untuk menentukan program mana yang ingin ditonton. Untuk menghindari kebingungan dan kesulitan yang dirasakan pengguna dari banyaknya pilihan program, SVoD menyediakan rekomendasi yang disesuaikan dengan personalisasi pengguna dengan harapan dapat mempermudah pengguna dalam menentukan tontonan program yang mungkin disukai. Dalam rangka mengidentifikasi faktor-faktor yang dapat memengaruhi niat keberlanjutan penggunaan SVoD, penelitian ini menyertakan kualitas rekomendasi untuk menganalisis pengaruhnya terhadap kepuasan, manfaat yang dirasakan, dan experience pengguna dalam menggunakan SVoD. Flow theory digunakan dalam penelitian ini untuk mengukur pengalaman holistik pengguna ketika dalam keterlibatan dan merasakan kenikmatan dari menggunakan SVoD. Metode analisis yang digunakan pada penelitian ini yaitu mixed-method dengan melakukan analisis kuantitatif terlebih dahulu, lalu dilanjutkan dengan analisis kualitatif. Analisis data kuantitatif dilakukan dengan metode PLS-SEM dengan data yang berhasil terkumpul melalui penyebaran kuesioner online sebanyak 394 pengguna SVoD. Hasil dari pengolahan analisis data didapatkan bahwa recommendation accuracy, recommendation novelty, dan recommendation diversity memengaruhi perceived usefulness dan flow. Selain itu, kualitas rekomendasi yang memengaruhi satisfaction hanya recommendation novelty dan satisfaction juga dipengaruhi oleh perceived usefulness dan flow. Selanjutnya, satisfaction, perceived usefulness, dan flow terbukti memengaruhi continuance intention. Hasil yang didapatkan dari penelitian ini diharapkan dapat memberikan saran praktis bagi penyedia layanan SVoD untuk meningkatkan pengembangan kualitas rekomendasi yang dapat memengaruhi niat keberlanjutan penggunaan SVoD.

Subscription Video on Demand (SVoD) is one of the video streaming service kind with a subscription method that the user pays within a certain period of time to get full access to watch all content provided by SVoD. The increasing number of program titles, including movies, series, tv shows, and other video content provided by SVoD gives users more choices to determine which programs they want to watch. SVoD provides recommendations that are customized to the user’s personalization in the hope that it can make it easier for users to determine which programs they might like to watch. In order to identify factors that may affect the continuance intention of using SVoD, this research included the quality of recommendation to analyze its influence on user’s satisfaction, perceived usefulness, and experience in using SVoD. Flow theory is used in this research to measure the user’s holistic experience when engaging and feel the enjoyment of using SVoD. Mixed-method is used in this research as an analysis method by conducting the quantitative method first, then continued with the qualitative method. Quantitative data analysis was carried out using the PLS-SEM method with data collected through the distribution of online questionnaires with a total of 394 SVoD users as respondents in this research. The result of processing data analysisi found that recommendation accuracy, recommendation novelty, and recommendation diversity affects perceived usefulness and flow. In addition, the quality of recommendations that affect satisfaction is only recommendation novelty, and satisfaction is also influenced by perceived usefulness and flow. Lastly, satisfaction, perceived usefulness, and flow are proven to affect continuance intention. The results obtained from this research are expected to provide practical advice for SVoD service providers to improve the development of the recommendation quality that can affect the continuance intention on using SVoD.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifanti Putri Tallisha
"Subscription Video on Demand (SVoD) merupakan layanan video streaming dengan metode subscription yang dibayarkan pengguna pada periode tertentu untuk dapat mengakses seluruh konten yang disediakan SVoD. Banyaknya judul program baik film, series, tv show, dan konten video lainnya yang ada pada SVoD memberikan penggunanya semakin banyak pilihan untuk menentukan program mana yang ingin ditonton. Untuk menghindari kebingungan dan kesulitan yang dirasakan pengguna dari banyaknya pilihan program, SVoD menyediakan rekomendasi yang disesuaikan dengan personalisasi pengguna dengan harapan dapat mempermudah pengguna dalam menentukan tontonan program yang mungkin disukai. Dalam rangka mengidentifikasi faktor-faktor yang dapat memengaruhi niat keberlanjutan penggunaan SVoD, penelitian ini menyertakan kualitas rekomendasi untuk menganalisis pengaruhnya terhadap kepuasan, manfaat yang dirasakan, dan experience pengguna dalam menggunakan SVoD. Flow theory digunakan dalam penelitian ini untuk mengukur pengalaman holistik pengguna ketika dalam keterlibatan dan merasakan kenikmatan dari menggunakan SVoD. Metode analisis yang digunakan pada penelitian ini yaitu mixed-method dengan melakukan analisis kuantitatif terlebih dahulu, lalu dilanjutkan dengan analisis kualitatif. Analisis data kuantitatif dilakukan dengan metode PLS-SEM dengan data yang berhasil terkumpul melalui penyebaran kuesioner online sebanyak 394 pengguna SVoD. Hasil dari pengolahan analisis data didapatkan bahwa recommendation accuracy, recommendation novelty, dan recommendation diversity memengaruhi perceived usefulness dan flow. Selain itu, kualitas rekomendasi yang memengaruhi satisfaction hanya recommendation novelty dan satisfaction juga dipengaruhi oleh perceived usefulness dan flow. Selanjutnya, satisfaction, perceived usefulness, dan flow terbukti memengaruhi continuance intention. Hasil yang didapatkan dari penelitian ini diharapkan dapat memberikan saran praktis bagi penyedia layanan SVoD untuk meningkatkan pengembangan kualitas rekomendasi yang dapat memengaruhi niat keberlanjutan penggunaan SVoD.

Subscription Video on Demand (SVoD) is one of the video streaming service kind with a subscription method that the user pays within a certain period of time to get full access to watch all content provided by SVoD. The increasing number of program titles, including movies, series, tv shows, and other video content provided by SVoD gives users more choices to determine which programs they want to watch. SVoD provides recommendations that are customized to the user’s personalization in the hope that it can make it easier for users to determine which programs they might like to watch. In order to identify factors that may affect the continuance intention of using SVoD, this research included the quality of recommendation to analyze its influence on user’s satisfaction, perceived usefulness, and experience in using SVoD. Flow theory is used in this research to measure the user’s holistic experience when engaging and feel the enjoyment of using SVoD. Mixed-method is used in this research as an analysis method by conducting the quantitative method first, then continued with the qualitative method. Quantitative data analysis was carried out using the PLS-SEM method with data collected through the distribution of online questionnaires with a total of 394 SVoD users as respondents in this research. The result of processing data analysisi found that recommendation accuracy, recommendation novelty, and recommendation diversity affects perceived usefulness and flow. In addition, the quality of recommendations that affect satisfaction is only recommendation novelty, and satisfaction is also influenced by perceived usefulness and flow. Lastly, satisfaction, perceived usefulness, and flow are proven to affect continuance intention. The results obtained from this research are expected to provide practical advice for SVoD service providers to improve the development of the recommendation quality that can affect the continuance intention on using SVoD.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chika Tsabita Aurellia
"Sistem bonus malus yang biasanya digunakan pada perusahaan asuransi adalah sistem bonus malus klasik, yang perhitungannya hanya didasarkan pada riwayat banyaknya klaim pemegang polis. Namun, hal ini akan menimbulkan ketidakadilan karena besar kerugian pemegang polis bervariasi, sehingga pada penelitian ini dibangunlah modifikasi sistem bonus malus yang juga mempertimbangkan severitas klaim pemegang polis di masa lalu dengan kredibilitas bivariat yang menggunakan metode Bayesian. Dikarenakan klaim yang diajukan masing-masing pemegang polis dapat bernilai sangat besar ataupun sangat kecil, maka ditentukanlah suatu nilai batas untuk memisahkan kedua jenis klaim tersebut. Distribusi yang digunakan untuk banyaknya klaim adalah distribusi Poisson Gamma. Sedangkan, total banyaknya klaim yang berukuran lebih besar dari nilai batas mengikuti distribusi Binomial Beta. Premi bonus malus akan didapatkan dengan menghitung rasio antara premi Bayes dan premi prior, yang masing-masing didapatkan dari hasil ekspektasi distribusi posterior dan distribusi prior secara berurutan. Aplikasi pada data asuransi kendaraan bermotor asal Swedia menunjukkan bahwa besar premi yang dibayarkan pemegang polis berbanding lurus dengan severitas klaim dan banyaknya klaim atau dengan kata lain model yang dihasilkan memberikan biaya premi yang lebih rendah untuk pemegang polis yang memiliki riwayat klaim bernilai lebih kecil dari nilai batas, begitupun sebaliknya.

The bonus-malus system that is commonly used by insurance companies is the traditional bonus-malus system, which is based solely on the policyholder's claims frequency history. However, this approach can lead to unfairness due to variations in the severity of the policyholder's losses. Therefore, this thesis will focus on modifying the bonus-malus premium determination system to consider both the frequency and severity of the policyholder's past claims using bivariate credibility with Bayesian methods. Since claims made by policyholders can have significantly different values, can be very large or very small, a threshold is established to distinguish between these two types of claims. The claim frequency will follow a Poisson Gamma distribution. On the other hand, total claims exceeding the threshold value will follow a Binomial Beta distribution. The bonus-malus premium will be obtained by calculation the ratio between the Bayesian premium and the prior premium, which respectively will be derived from the expected value of the posterior distribution and the prior distribution. By applying this model to the automobile insurance data from Swedia, it demonstrates that the premium amount paid by the policyholder is directly proportional to the severity and frequency of claims. In other words, the resulting model offers lower premium costs for policyholders with a claims history below the threshold value and higher costs for those above it.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>