Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 230794 dokumen yang sesuai dengan query
cover
Afif Wardana
"Grafit dari biomassa sebagai elektroda alternatif untuk baterai sudah banyak dikembangkan untuk menghasilkan kapasitansi energi yang tinggi dan siklus penggunaan yang lama. Penelitian ini menentukan dan membandingkan jenis grafit NiO dan Non NiO terbaik untuk dijadikan katoda superkapasitor yang bersumber dari biomassa Tempurung Kelapa Sawit, Tempurung Kemiri, dan Tandan Kosong Kelapa Sawit (TKKS). Optimalisasi dilakukan dengan mengkombinasi proses aktivasi kimia (KOH) menggunakan konsentrasi  5 molar pada rasio 1 : 5 dan aktivasi fisika (Ar) menggunakan injeksi 0,2 L/min pada temperatur 950°C selama 45 menit. Modifikasi sampel dilakukan dengan impregnasi prekrusor Ni(NO2)3pada grafit, yang di ubah menjadi NiO melalui penguraian termal pada temperatur 300°C selama 90 menit. Dari hasil karakterisasi XRF ditemukan senyawa NiO dan menunjukan rendahnya persentase kehadiran logam alkali dan alkali tanah pada seluruh sampel grafit kecuali K+ dan Cl-. Hasil XRD menunjukan struktur yang masih didominasi grafit amorfus dengan chemical formula C16.00 (Orthorombik) yang ditemukan pada interval 25-27o . Hasil EIS menunjukan nilai Rp terendah dimiliki oleh superkapasitor AW 3 sebesar 79,62, nilai tersebut sesuai dengan hasil pengujian CV yang memiliki Kapasitansi Spesifik (Cp) tertinggi sebesar 7,39748, tetapi nilai Cp teringgi berbanding terbalik dengan hasil BET yang menunjukan luas permukaan terbesar dimiliki oleh TKKS Non-NiO sebesar 319,298 m2/g. Untuk memperdalam analisis dilakukan karakterisasi FTIR dengan tujuan mengetahui pengaruh kehadiran ikatan OH, C=C, dan C-O dan gugus fungsi lainnya terhadap peforma superkapasitor. Jadi, penggunaan grafit sebagai (katoda) dan LTO sebagai (anoda) sebagai bahan superkapsitor menjadi pilihan yang paling tepat jika penggunaan parameter scan rate (mV/s) optimal.

Graphite from biomass as an alternative electrode for batteries has been widely developed to produce high energy capacitance and long cycle usage. This research determines and compares the best types of NiO and Non-NiO graphite to be used as supercapacitor cathodes sourced from biomass such as Palm Kernel Shell, Candlenut Shell, and Empty Fruit Bunch (EFB). Optimization is done by combining chemical activation processes (KOH) using a 5 molar concentration at a 1:5 ratio and physical activation (Ar) using an injection of 0.2 L/min at a temperature of 950°C for 45 minutes. Sample modification is carried out by impregnating Ni(NO2)3 precursor on graphite, which is converted into NiO through thermal decomposition at a temperatur of 300°C for 90 minutes. From XRF characterization results, NiO compounds were found, indicating a low percentage of alkali and alkaline earth metal presence in all graphite samples except K+ and Cl-. The XRD results show a structure still dominated by amorphous graphite with a chemical formula of C16.00 (Orthorhombic) found in the 25-27o interval. The EIS results show the lowest Rp value is owned by supercapacitor AW 3 at 79.62, and this value corresponds to the CV testing results, which have the highest Specific Capacitance (Cp) at 7.39748. However, the highest Cp value is inversely proportional to the BET results, which show that the largest surface area is owned by Non-NiO EFB at 319.298 m2/g. To deepen the analysis, FTIR characterization is carried out to determine the influence of the presence of OH, C=C, and C-O bonds, and other functional groups on supercapacitor performance. So, the use of graphite as a cathode and LTO as an anode for supercapacitor material becomes the most appropriate choice with optimal scan rate parameters (mV/s)."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Baron Rifky Abdillah
"Pesatnya perkembangan industri membuat jumlah limbah plastik meningkat. Sulitnya limbah plastik untuk terdegradasi membuat penanganannya menjadi penting guna menghindari pencemaran lingkungan. Penelitian ini mengubah limbah plastik menjadi produk karbon bernilai ekonomi dalam upaya meningkatkan penerapan metode daur ulang sekaligus mendorong penggunaan energi terbarukan dengan menjadikan karbon tersebut sebagai bahan anoda baterai membentuk komposit LTO/C. Li4Ti5O12 memiliki keunggulan sebagai baterai litium ion seperti tingkat keamanan dan stabilitas termal yang baik namun konduktivitasnya buruk. Karbon hasil daur ulang tersebut diaktifasi menggunakan NaOH untuk mendapatkan struktur berpori yang dapat meningkatkan konduktifitas komposit tersebut. Penelitian ini ditujukan untuk mempelajari pengaruh penambahan karbon aktif hasil daur ulang terhadap kinerja baterai keseluruhan. Penelitian ini mensintesis LTO/C menggunakan metode ball mill dengan variasi waktu 90 menit, 120 menit, dan 150 menit guna mengetahui waktu sintesis komposit yang optimum untuk baterai. Uji EIS menunjukan penambahan karbon aktif hasil daurulang mampu meningkatkan konduktivitas LTO. Berdasarkan hasil uji EIS, CV dan CD waktu ball mill optimal adalah 90 menit untuk menghasilkan baterai dengan kinerja terbaik dan memiliki hambatan terendah dan kapasitas spesifik sebesar 149,8 Ω.

The rapid development of the industry makes the amount of plastic waste increase. The difficulty of plastic waste to be degraded makes its handling important to avoid environmental pollution. This research converts plastic waste into carbon products with economic value in an effort to increase the application of recycling methods while encouraging the use of renewable energy by making the carbon as an anode material for batteries to form LTO/C composites. Li4Ti5O12 has advantages as a lithium ion battery such as a good level of safety and thermal stability but poor conductivity. The recycled carbon is activated using NaOH to obtain a porous structure that can increase the conductivity of the composite. This study aimed to study the effect of adding recycled activated carbon to the overall battery performance. This study synthesized LTO/C using the ball mill method with variations in time of 90 minutes, 120 minutes, and 150 minutes in order to determine the optimum composite synthesis time for the battery. The EIS test showed that the addition of recycled activated carbon was able to increase the LTO conductivity. Based on the results of EIS, CV and CD the optimal ball mill time is 90 minutes to produce a battery with the best performance and has the lowest resistance and a specific capacity of 149.8 Ω."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Tias Miranti
"Pada penelitian pembuatan karbon aktif dari bambu ini digunakan metode aktivasi kimia dengan menggunakan variasi activating agent, yakni H3PO4 dan KOH dengan rasio massa activating agent/massa karbon 1/1, 2/1, dan 3/1. Aktivasi dilakukan pada temperatur 700oC selama 1 jam. Luas permukaan tertinggi yang direpresentasikan dengan bilangan iodin sebesar 772,08 mg/g diperoleh dengan aktivasi menggunakan H3PO4 dengan rasio massa activating agent/massa karbon 3/1, sedangkan aktivasi menggunakan KOH diperoleh bilangan iodin tertinggi sebesar 744,92 mg/g dengan rasio massa activating agent/massa karbon 3/1. Sebagai pembanding, juga dilakukan pembuatan karbon aktif dengan metode aktivasi fisika dan diperoleh bilangan iodin karbon aktif sebesar 283,38 mg/g.

This research aims to produce activated carbon from bamboo as the raw materials. In this research controlled by the activation method using variation of activating agent, H3PO4 and KOH with a mass ratio of activating agent/carbon mass are 1/1, 2/1, and 3/1. It also performed at 700°C activation temperature for 1 hour. The highest iodine number of 772.08 mg/g obtained by activation using H3PO4 with a mass ratio of activating agent/carbon mass 3/1, whereas activation with KOH obtained the highest iodine number of 744.92 mg/g with a mass ratio of activating agent/carbon mass 3/1. For comparison, the study was also carried out the manufacture of activated carbon by physical activation method and the iodine number of activated carbon obtained at 283.38 mg/g."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43804
UI - Skripsi Open  Universitas Indonesia Library
cover
Deny Eva Tri Pambudi
"ABSTRAK
Salah satu potensi kekayaan alam Indonesia tersebut adalah batu bara. Berdasarkan data dari Pusat Daya Geologi pada table 1.1 kita bisa lihat kualitas sumber daya dan cadangan batu bara Indonesia pada tiap propinsinya memiliki nilai guna yang cukup rendah. Batu bara juga merupakan suatu bahan yang penting dalam pembuatan produk-produk tertentu. Karbon aktif, atau sering juga disebut sebagai arang aktif, adalah suatu jenis karbon yang memiliki luas permukaan yang sangat besar. Hal ini bisa dicapai dengan mengaktifkan karbon atau arang tersebut. Hanya dengan satu gram dari karbon aktif, akan didapatkan suatu material yang memiliki luas permukaan lebih dari 2000 m2/g (didapat dari pengukuran adsorpsi gas nitrogen), tergantung dalam proses pembuatannya. Biasanya pengaktifan hanya bertujuan untuk memperbesar luas permukaannya saja, namun beberapa usaha juga berkaitan dengan meningkatkan kemampuan adsorpsi karbon aktif itu sendiri. Selain itu karakterisasi menggunakan iodin number juga menjadi salah satu metode untuk menunjukkan kulaitas dari karbon aktif yang dihasilkan. Pada penelitian ini dilakukan aktivasi secara kimia dengan menggunakan KOH sebagai activating agent dengan memvariasikan kadar KOH sebagai campuran dari batu bara dan lama aktivasi yang dilakukan. Sementara hasil terbaik dari penelitian yang dilakukan adalah percobaan dengan kadar KOH disbanding batu bara 0.9 : 1 dengan nilai 998.36 g/kg.

ABSTRACT
One of Indonesia's natural richness is coal. Based on data from the Center for Geological Resources in the table below we can see the quality of coal resources and reserves in each province usefulness Indonesian coal is low enough. Coal is also an important ingredient in the manufacture of certain products. Activated carbon, or often also called activated charcoal, is a type of carbon that has a very large surface area. This can be achieved by activating the carbon or charcoal. Just one gram of activated carbon, will be found a material that has a surface area of over 2000 m2 / g (obtained from nitrogen gas adsorption measurements), depending on the manufacturing process. Activation usually just aim to enlarge the surface area only, but some businesses are also associated with increased adsorption capacity of activated carbon itself. Additionally characterization using iodine number is also one method to show kulaitas of activated carbon produced. In this study conducted by the chemical activation using KOH as an activating agent with varying levels of KOH as a mixture of old coal and activation is done. While the best results of the research done is experiment with KOH concentration of coal compared to 0.9: 1 with a value of 998.36 g / kg."
2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Riyani Tri Yulianti
"Tesis ini membahas tentang karbon aktif berpori yang berasal dari tandan kosong kelapa sawit (TKKS) sebagai bahan elektroda untuk superkapasitor, dengan tujuan untuk mendapatkan parameter proses yang tepat melalui metode sederhana (karbonisasi dan aktivasi) agar menghasilkan karbon aktif berpori dengan kapasitansi spesifik yang tinggi. Pada penelitian ini, kami berhasil mengubah biomassa TKKS menjadi karbon aktif berpori dengan kinerja tinggi, dengan nilai kapasitansi spesifik sebesar 452,71 ± 6.5 F/g pada 0,5 A/g, serta luas permukaan spesifik (SSA) yang moderat, sebesar 1215,38 m2/g. Selain itu, superkapasitor yang dirakit dari sampel AC700 menunjukkan kepadatan energi yang sangat baik, mencapai 15,39 Wh/kg pada kepadatan daya 50 W/kg. Selain itu, superkapasitor AC700 juga menunjukkan kestabilan siklus yang tinggi, dengan retensi kapasitansi sebesar 93% setelah 10.000 siklus. Pada penelitian ini, KOH digunakan sebagai agen aktivasi dengan variasi suhu aktivasi 600 °C, 700 °C, dan 800 °C selama 2 jam di bawah atmosfer N2. Kinerja kapasitif superior dari sampel AC700 dikaitkan dengan efek gabungan dari SSA yang tinggi, gugus fungsional pada permukaan karbon, dan distribusi ukuran pori yang optimal. Selain itu, sampel AC700 menunjukkan kandungan SiO2 tertinggi, yaitu sebesar 34,33%, dimana SiO2 dalam kerangka karbon mempromosikan pembentukan situs aktif yang lebih hidrofilik, sehingga meningkatkan kinerja pseudokapasitansi.

This thesis discusses porous activated carbon derived from oil palm empty fruit bunches (EFB) as an electrode material for supercapacitors, with the aim of obtaining the proper process parameters using a simple method (carbonization and activation) to produce porous activated carbon with high specific capacitance. In this research, we successfully transformed EFB biomass into porous activated carbon with outstanding performance, achieving a very high specific capacitance of 452.71 ± 6.5 F/g at 0.5 A/g, and a moderate specific surface area (SSA) of 1215.38 m2/g. Furthermore, the supercapacitor assembled from the AC700 sample exhibited excellent energy density, reaching 15.39 Wh/kg at a power density of 50 W/kg. Additionally, the AC700 supercapacitor also demonstrated remarkable cycle stability, with a capacitance retention of 93% after 10,000 cycles. In this study, KOH was used as the activation agent with activation temperature variations of 600°C, 700°C, and 800°C for 2 hours under N2 atmosphere. The superior capacitive performance of the AC700 sample was attributed to the combined effect of its high SSA, functional groups on the carbon surface, and optimal pore size distribution. Moreover, the AC700 sample showed the highest SiO2 content, amounting to 34.33%, where SiO2 in the carbon framework promoted the formation of more hydrophilic active sites, thereby enhancing pseudocapacitance performance."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Panjaitan, Abyan Abdillah Saoloan
"Konsistensi kenaikan produksi plastik diyakini meningkatkan jumlah limbah plastik yang terbuat. Diperkirakan sampah plastik yang dianggap salah dikelola di Indonesia per 2020 mencapai 4.8 juta ton/tahun, dengan kriteria 48% sampah dibakar, 13% dibuang di darat atau tempat pembuangan sampah tidak resmi, serta 9% ke saluran air laut. Oleh karena itu, diperlukan cara pengelolaan sampah yang tepat yaitu dengan cara mendaur ulang sampah plastik. Salah satu daur ulang sampah yang canggih adalah pemanfaatkan sampah plastik menjadi energi terbarukan seperti baterai. Dalam penelitian ini, LTO disintesis dengan karbon aktif (AC) yang dasar dari sampah pelastik (PET), dengan komposisi karbon aktif yang berbeda sebesar 3 wt%, 5 wt%, dan 7 wt%. Karbon aktif tersebut terbuat dari campuran sampah pelastik dan bentonit (9:1) yang dikarbonisasi melalui tungku pembakaran pada suhu 400 °C dalam atmosfer inert nitrogen menjadi karbon amorf hitam. Setelah karbonisasi, karbon tersebut diaktivasi melalui proses empat utama: pencampuran dengan NaOH, sintering dalam atmosfir nitrogen, pencucian, dan pengeringan. LTO/AC yang sudah disintesis lalu diubah menjadi anoda baterai lithium-ion setengah sel. Kemudian anoda tersebut dikarakterisasi melalui Uji Voltametri Siklus, Uji Pengisian Daya Muatan (CD) dan Spektroskopi Impedansi Listrik (EIS). Hasil akhir dari pengujian ini menunjukkan bahwa penambahan karbon aktif dapat meningkatkan konduktifitas dari baterai lithium-setengah sel. Sesuai dengan hasil pengujian CV, penambahan karbon sebesar 7% wt% meningkatkan kapasitas spesifik sebesar 143.4 (mAh/g). Hasil pengujian pada penelitian ini menunjukkan bahwa penambahan karbon aktif optimal adalah sebesar 7 wt%.

The consistent increase in plastic production is believed to increase the amount of plastic waste made. It is estimated that plastic waste that is considered to be mismanaged in Indonesia as of 2020 will reach 4.8 million tons/year, with the criteria that 48% of waste is burned, 13% is disposed of on land or unofficial landfills, and 9% into seawater. Therefore, proper waste management is needed, namely by recycling plastic waste. One of the sophisticated waste recycling is the utilization of plastic waste into renewable energy such as batteries. In this research, LTO/AC was synthesized with activated carbon made of plastic waste, the different composition of 3 wt%, 5 wt%, and 7 wt% has been carried out. The activated carbon was made using the mixture of plastic waste and bentonite nano clay (9:1) that will go through the slow pyrolysis carbonization process, which is performed under 400°C in an inert atmosphere of N2 with the help of a furnace into black amorphous carbon. After the carbonization, the carbon is activated through four main stages: mixing with NaOH, sintering under a nitrogen atmosphere, washing, and drying. The synthesized LTO/AC materials are then formed into a half-cell lithium-ion battery anode. The half cell lithium-ion battery anodes are then examined using the Cycle Voltammetry Test, Charge Discharge (CD) Test, and Electrical Impedance Spectroscopy (EIS). The final result of this research shows that activated carbon can increase the conductivity of the half-cell lithium battery. According to the results of the CV test, the addition of 7% wt% carbon resulted in a specific capacity of
143.4 (mAh/g). The test results in this research indicate that the optimal addition of activated carbon is 7 wt%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sihombing, Dian Sepala
"ABSTRAK
Optimasi Anoda LTO-Sn dengan Penambahan Karbon Aktif pada Baterai Litium-ion Penelitian ini membahas mengenai optimasi anoda LTO-Sn dengan penambahan karbon aktif. Persen Sn yang ditambahkan adalah 5, 7.5, dan 12.5 berat. Sementara pada LTO dengan kadar karbon 5, 15 dan 25 berat, ditambahkan Sn 7.5 berat. Analisi sintesis material dilakukan dengan menguji XRD, BET dan SEM. Analisis performa baterai dilakukan dengan uji EIS, CV, dan CD. Didapatkan luas permukaan yang lebih besar dengan penambahan karbon. Pengamatan SEM juga menunjukkan morfologi yang lebih halus, ditunjukkan dengan ukuran partikel yang lebih kecil, walaupun masih terdapat aglomerat beras dan kecil. Hasil EIS menunjukkan penambahan Sn memberikan nilai konduktivitas yang lebih baik, sementara penambahan karbon menurunkan konduktivitas. Hasil CD menunjukkan penambahan Sn menurunkan kapasitas pada 12C sementara penambahan karbon menaikkan kapasitas yang bisa tercapai. Hasil XRD dan CV menunjukkan terdapat senyawa LTO, TiO2 rutile, TiO2 anatase, dan Sn. LTO dengan penambahan Sn 7.5 dan karbon 5 menjadi parameter optimum untuk mencapai kapasitas sebesar 270.2 mAh/g pada saat discharge dan LTO dengan penambahan Sn 12.5 menjadi sampel dengan kapasitas charge terbesar yaitu 191.1 mAh/g

ABSTRACT
Optimization of LTO Sn Anode with Activated Carbon Addition on Lithium ion Batteries This study discusses the LTO Sn anode optimization with the addition of activated carbon. Percent Sn added was 5, 7.5, and 12.5 wt. While the LTO with a carbon content of 5, 15 and 25 added 7.5 wt Sn. Analysis done by testing the material synthesis XRD, BET and SEM. Analysis of the performance of the battery is done by using EIS, CV, and CD. Obtained a larger surface area with the addition of carbon. SEM observations also show finer morphology, shown with a smaller particle size, although there are small and big agglomerates. EIS results showed the addition of Sn provides better conductivity value, while the addition of carbon to lower the conductivity. The CD results showed the addition of Sn lowering capacity at 12C while adding carbon to raise capacity that could be achieved at same C rates. The results of XRD and CV shows there are LTO compound, TiO2 rutile, TiO2 anatase, and Sn. LTO with the addition of Sn 7.5 and 5 carbon given optimum parameters to achieve a capacity of 270.2 mAh g at discharge. LTO with the addition of Sn 12.5 to the sample achieve a charge capacity 191.1 mAh g"
2017
T46920
UI - Tesis Membership  Universitas Indonesia Library
cover
Yoga Tamala
"Dalam penelitian ini dilakukan pembuatan karbon aktif yang berbahan baku dari cangkang sawit dan melihat pengaruh aktivasi kimia dan fisika terhadap sifat karbon aktif yang dihasilkan. Karbonisasi dilakukan pada suhu 400oC. Pada aktivasi kimia digunakan aktivator H3PO4 4M , sedangkan pada aktivasi fisika digunakan aliran gas N2 dan gas CO2 yang laju alirnya divariasikan ( 100 mL/menit, 200 mL/menit, 300 mL/menit dan 400 mL/menit). Karakterisasi karbon aktif yang dipelajari dalam penelitian ini adalah rendemen, kadar air, kadar zat mudah menguap, kadar abu dan bilangan iodin.
Hasil penelitian menunjukkan bahwa karbon aktif terbaik berdasarkan daya jerap iodinnya adalah karbon yang mengalami aktivasi kimia (perendaman H3PO4) dan aktivasi fisika dengan menggunakan gas N2 dengan laju alir sebesar 100 mL/menit dilanjutkan gas CO2 dengan laju alir sebesar 200 mL/menit. Karbon ini memiliki bilangan iodin sebesar 678,15 mg/g dengan rendemen sebesar 63,02%, kadar air 14,11%, kadar zat mudah menguap 28,57%, dan kadar abu 4,17%.

In this research be held the making of activated carbon by using palm empty bunches (PEB) as the primery ingredients and to see the effect of chemical and physical activation towards the condition of activated carbon produced. Carbonization is done in the temperature of 400oC. In the chemical activation H3PO4 4M is used as activator, meanwhile, in physical activation N2 and CO2 gases is used while varying the speed of flow (100 mL/min, 200 mL/min, 300 mL/min and 400 mL/min). The characteristic of activated carbon that will be studied in this research is yield, humidity, volatile matter, percentage of ash and iodin number.
The result shows that the best activated carbon is based on the iodin number is the carbon that have been through the chemical activation ( H3PO4 soaking) and physical activation by using N2 gas with the speed of flow 200 ml/min. This carbon has the iodin number for 678.15 mg/g with yield 63.02%, water content 14.11%, volatile matter 28.57%, and ash content 4.17%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47731
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eka Budiarti
"Penelitian ini bertujuan untuk mengetahui pengaruh metode aktivasi terhadap luas permukaan dan kualitas karbon aktif yang dihasilkan dari tongkol jagung. Metode aktivasi yang digunakan adalah metode aktivasi kimia menggunakan KOH dan aktivasi fisika menggunakan gas alir N2 dan CO2. Aktivasi dilakukan pada laju alir 100, 200 dan 300 mL/menit. Sebagai pembanding dilakukan aktivasi fisika saja dan aktivasi kimia saja. Karbon aktif terbaik diperoleh melalui metode aktivasi kimia-fisika menggunakan gas N2 dengan laju alir 100mL/menit. Melalui proses tersebut diperoleh karbon aktif dengan bilangan iod sebesar 1065,15 mg/g, rendemen 55,65%, kadar air 20,62%, kadar abu 1,96%, dan kadar zat volatile 22,18%.

This research aims to determine the effect of activation methods on surface area and quality of activated carbon produced from corn cobs. In this research controlled by chemical activation method using KOH and physical activation method using N2 and CO2 gasification at a flow rate of 100, 200 and 300 mL/min. For comparison, the study was also carried out the manufacture of activated carbon by physical activation method and chemical activation method. The best activated carbon obtained by chemical-physical activation method using N2 gasification with a flow rate of 100mL/min. This method produced activated carbon with iodine number of 1065,15 mg/g, yield (55,65%), moisture content (20,62%), ash content (1,96%), and volatile matter (22,18%)."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47379
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahadhian Adhitya Gangga
"Pada penelitian ini, ingin dilihat pengaruh akivasi kimia dan fisika pada pembuatan karbon aktif berbahan baku sekam padi. Aktivasi kimia dilakukan dengan mengimpregnasi arang sekam dengan KOH dengan rasio massa arang sekam dan KOH 1:4 (berat kering). Dan aktivasi fisika dilakukan dengan mengalirkan gas N2 100 mL/ min dan gas CO2 yang divariasikan 100, 200, 300, dan 400 mL/min pada suhu 800°C selama 1 jam. Bilangan iod tertinggi didapatkan dari karbon yang diaktivasi kimia fisika dengan laju N2 100 mL/min dan CO2 100 mL/min yaitu sebesar 793,04 mg/g, sedangkan bilangan iod terendah didapatkan pada karbon ayang diaktivasi kimia fisika yang dialirkan N2 100 mL/min saja 583,26 mg/g. Sebagai pembanding, juga dilakukan pembuatan karbon aktif dengan metode aktivasi fisika saja dan kimia saja. Untuk karbon yang diaktivasi fisika saja dan kimia saja diperoleh bilangan iodin karbon aktif sebesar 421,09 mg/g dan 496,09 mg/g. Karbon aktif yang memiliki bilangan iod tertinggi memiliki kadar air 13,062 %, kadar abu 8,588 %, dan bagian yang hilang pada pemanasan 950°C 23,123 %.

The main purpose of this study is want to see the influence of chemical and physical activation in producing activated carbon made from rice husk. The chemical activation was done by KOH impregnation on rice husk that had been carbonized with a mass ratio of rice husk charcoal and KOH 1:4 (dry weight). And physical activation was done by flewing N2 gas 100 mL / min and CO2 with flow rate varied 100, 200, 300, and 400 mL / min at a temperature of 800°C for 1 h. The highest iodine number of activated carbon obtained from chemical physics at a rate of N2 100 mL / min and CO2 100 mL / min, that is 793,04 mg / g, while the lowest iodine number obtained on activated carbon yang physical chemistry N2 flow 100 mL / min only 583.26 mg / g. For comparison, also made the activated carbon made by physical activation only method and chemistry only. For activated carbon that made by physical and chemical activation only just acquired iodine number at 421,09 mg / g and 496,09 mg / g. Activated carbon that has the highest iodine number has 13,062% moisture content, ash content 8,588%, and the missing parts on heating 950°C 23,123%."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52432
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>