Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 155478 dokumen yang sesuai dengan query
cover
Ricco Yhandy Fernando
"Penyakit pada paru-paru merupakan gangguan yang cukup serius dimana dapat menyerang sistem pernapasan manusia dan bisa berakibat fatal jika tidak ditangani dengan serius. Pada saat ini deteksi penyakit pada paru-paru masih dilakukan secara manual oleh para dokter ahli, namun proses secara manual memakan waktu lama. Oleh karena itu, dalam penelitian ini dibuat sistem yang dapat mendeteksi dan mengklasifikasi penyakit paru-paru dengan otomatis. Dalam penelitian ini akan digunakan dua metode yaitu Support Vector Machine dan Ensemble Bagging Gaussian Naïve Bayes . Data yang digunakan dalam penelitian ini adalah data screening yang berjumlah seratus data pasien, data di dapatkan dari salah satu sumber yang memiliki data primer yaitu salah satu rumah sakit di Yogyakarta. Penelitian ini menggunakan dua belas gejala paru-paru dan diklasifikasikan kedalam lima kelas penyakit paru-paru yaitu tuberkulosis, penyakit paru obstruktif kronis, pneumonia, asma bronkial, kanker paru. Sistem klasifikasi akan di implementasikan menggunakan bahasa pemrograman PHP. Pengujian kinerja klasifikasi menggunakan Confusion Matrix dan aplikasi diuji dengan menggunakan System Usability Scale. Penelitian ini menghasilkan sistem klasifikasi penyakit paru-paru dengan menggunakan metode Support Vector Machine dan Ensemble Bagging Gaussian Naïve Bayes, dari hasil pengujian akurasi Confusion Matrix pada algoritma Support Vector Machine mendapatkan hasil akurasi 93,9% , recall 92%, precison 79%, dan f1 score 54%, sedangkan pada Ensemble Bagging Gausian Naïve Bayes mendapatkan hasil akurasi 88,9 % recall 92%, precision 79%, f1 score 54%, serta pengujian sistem menggunakan metode System Usability Scale nilai yang diperolah sebesar 73 atau mendapatkan grade B.

Lung disease is a serious disorder that can attack the human respiratory system and can be fatal if not treated seriously. Currently, lung disease detection is still done manually by expert doctors, but the manual process takes a long time. Therefore, in this research a system was created that can detect and classify lung diseases automatically. In this research, two methods will be used, namely Support Vector Machine and Ensemble Bagging Gaussian Naïve Bayes. The data used in this research is screening data consisting of one hundred patient data, the data was obtained from one source that has primary data, namely one of the hospitals in Yogyakarta. This study used twelve lung symptoms and classified them into five classes of lung disease, namely tuberculosis, chronic obstructive pulmonary disease, pneumonia, bronchial asthma, lung cancer. The classification system will be implemented using the PHP programming language. Classification performance testing uses the Confusion Matrix and the application is tested using the System Usability Scale. This research produces a lung disease classification system using the Support Vector Machine method and Ensemble Bagging Gaussian Naïve Bayes, from the results of Confusion Matrix accuracy testing on the Support Vector Machine algorithm, the results are 93.9% accuracy, 92% recall, 79% precision, and f1 score was 54%, while Ensemble Bagging Gausian Naïve Bayes obtained accuracy results of 88.9%, recall 92%, precision 79%, f1 score 54%, and system testing using the System Usability Scale method obtained a score of 73 or got grade B.  "
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Daffa Jatmiko
"Peranan ibu kota sangatlah vital, saat ini pemerintah kembali memutuskan pemindahan ibu kota karena Jakarta dianggap sudah tidak layak lagi menjadi ibu kota negara Republik Indonesia. Pemindahan ibu kota Indonesia nyatanya mengundang banyaknya opini pro dan kontra di kalangan masyarakat dan respon ini menarik untuk diteliti yaitu bagaimana pandangan masyarakat terhadap kebijakan pemerintah ini yang juga menggambarkan tingkat kepercayaan kepada pemerintah. Oleh karena itu, diperlukan sentiment analysis dengan classifier berbasis machine learning yang akurat dan menentukan algoritma yang terbaik. Data berupa tweets dikumpulkan dengan web scraping dan dilakukan pra-pemrosesan yang menghasilkan label data berupa polaritas dan kategori/aspek yang teridentifikasi. Model Machine Learning dengan algoritma Naive Bayes dan Support Vector Machine kemudian digunakan dalam klasifikasi polaritas kelas biner dengan fitur n-gram (urutan kata) dan optimasi heuristik yaitu Hyperparameter Tuning. Dari kombinasi fitur dan perlakuan optimasi, nilai MCC sebagai metrik evaluasi dibandingkan dan ditemukan bahwa Naive Bayes mengungguli Support Vector Machine dalam mengklasifikasi opini publik di media sosial Twitter khususnya mengenai pemindahan ibu kota.

The role of the capital city is very vital, at this time the government has again decided to move the capital city because Jakarta is considered no longer suitable as the capital city of the Republic of Indonesia. The relocation of Indonesia's capital city in fact invites many pro and contra opinions among the public and this response is interesting to study, namely how the public views this government policy which also describes the level of trust in the government. Therefore, sentiment analysis is needed with a machine learning-based classifier that is accurate and determines the best algorithm. Data in the form of tweets is collected by web scraping and pre-processed which produces data labels in the form of polarity and identified categories/aspects. Machine Learning model with Naive Bayes algorithm and Support Vector Machine is then used in the classification of binary class polarity with n-gram features (word order) and heuristic optimization, namely Hyperparameter Tuning. From the combination of features and optimization treatment, the MCC value as an evaluation metric was compared and it was found that Naive Bayes outperformed the Support Vector Machine in classifying public opinion on Twitter social media, especially regarding the relocation of the capital city."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahri Alamsyah
"Dunia digital khususnya image processing berkembang seiring waktu berjalan dikarenakan kebutuhan masyarakat dan pentingnya keamanan sistem berbasis digital. Salah satu teknologi yang sangat mengalami kemajuan pesat adalah pengenalan wajah (face recognition) menggunakan artificial intelligence. Wajah seseorang yang sudah terdaftar di dalam database akan dikenali oleh sistem untuk keperluan validasi atau verifikasi. Di dalam penelitian ini dirancang sistem pengenalan wajah (face recognition) menggunakan algoritma machine learning dan Principal Component Analysis (PCA) sebagai pereduksi dimensi. Pengujian dilakukan dengan menggunakan beberapa metode, yakni: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K- NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) dan Convolutional Neural network (CNN). CNN berfokus pada layer dan tidak memerlukan reduksi dimensi, sehingga hasilnya lebih akurat. Model machine learning yang digunakan untuk classifier selain CNN adalah standar/default, sedangkan CNN menggunakan arsitektur LeNet-5, dengan dropout rate sebesar 0.25. Training dilakukan selama 60 epoch dengan loss function crosscategorical entropy, optimizer Adam, dan batch size sebesar 20. Data masukan adalah citra wajah berukuran 64 × 64 × 1 yang diperoleh dari dataset olivetti faces. Akurasi tertinggi metode PCA, SVM, maupun LR sebesar 91.25%, sementara akurasi terbaik CNN mencapai 98.75%. Selain akurasi, pemakaian confusion matrix dan classification report digunakan untuk menguji performa metode yang ada melalui evaluasi model klasifikasi.

The digital world, especially image processing, is evolving due to the needs of society and the importance of digital-based system security. One of the technologies that are rapidly progressing is face recognition using artificial intelligence. The system will recognize a person's face already registered in the database for validation or verification purposes. A face recognition system was designed using machine learning algorithms and Principal Component Analysis (PCA) as dimension reduction in this study. Testing is conducted using several methods: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (K-NN), Logistic Regression (LR), Multi-Layer Perceptron (MLP) and Convolutional Neural network (CNN). CNN focuses on layers and does not require dimensional reduction to increase the accuracy of the result. The machine learning model used for classifiers other than CNN is standard/default settings, while CNN uses the LeNet-5 architecture, with a dropout rate of 0.25. The training was conducted for 60 epochs with loss function cross-categorical entropy, optimizer Adam, and batch size of 20. Input data is a 64 × 64 × 1 facial image obtained from the Olivetti faces database. The highest accuracy of PCA, SVM and LR methods was 91.25%, while CNN's best accuracy reached 98.75%. In addition to accuracy, the use of confusion matrix and classification report is used to test the performance of existing methods through the evaluation of classification models."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fikri Afif Musyaffa
"Spam email merupakan salah satu masalah yang sangat sering dialami dalam komunikasi digital. Penelitian ini bertujuan untuk membandingkan efektifitas dua algoritma klasifikasi Naïve Bayes dan Support Vector Machine (SVM) dalam mendeteksi email spam. Tahapan penelitian dimulai dari pengumpulan data, pemrosesan teks seperti penghapusan angka, tanda baca, dan huruf kapital, penghapusan kata-kata umum, stemming, dan transformasi teks menggunakan metode Term Frequency-Inverse Document Frequency (TF-IDF). Dataset dibagi menjadi dua bagian yaitu data latih dan data uji dengan perbandingan 80% data latih dan 20% data uji. Hyperparameter yang digunakan pada metode Naive Bayes adalah nilai alpha, sedangkan pada SVM adalah nilai C, gamma dan kernel Radial Basis Function (RBF). Evaluasi menggunakan parameter metrik akurasi, presisi, recall, dan F1 score. Hasil penelitian menunjukkan metode SVM dengan hyperparameter tuning dan teks preprocessing mendapatkan nilai akurasi 98,74% sedangkan metode naïve bayes hanya 98,35%. Sehingga dapat disimpulkan bahwa metode Support Vector Machine lebih efektif dibandingkan metode Naïve Bayes dalam mendeteksi email spam.

Spam email is one of the most frequently encountered issues in digital communication. This study aims to compare the effectiveness of two classification algorithms, Naïve Bayes and Support Vector Machine (SVM), in detecting spam emails. The research stages begin with data collection, followed by text processing such as removing numbers, punctuation, and capital letters, removing common words, stemming, and text transformation using the Term Frequency-Inverse Document Frequency (TF-IDF) method. The dataset is divided into two parts: training data and testing data, with a ratio of 80% training data and 20% testing data. The hyperparameter used for the Naïve Bayes method is the alpha value, while for SVM, the hyperparameters are the values of C, gamma, and the Radial Basis Function (RBF) kernel. Evaluation is conducted using accuracy, precision, recall, and F1 score metrics. The results show that the SVM method, with hyperparameter tuning and text processing, achieved an accuracy of 98.74%, whereas the Naïve Bayes method only achieved 98.35%. Therefore, it can be concluded that the Support Vector Machine method is more effective than the Naïve Bayes method in detecting spam emails."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faisa Maulidina
"Kanker merupakan pertumbuhan sel abnormal di dalam tubuh yang tidak terkendali. Ketika kanker dimulai di paru-paru, hal ini dinamakan sebagai kanker paru-paru. Terdapat faktor-faktor tertentu yang meningkatkan risiko seseorang yang mengidap penyakit ini, yaitu dengan merokok (termasuk perokok pasif), riwayat kanker paru-paru dalam keluarga, terpapar radiasi, dan infeksi HIV. Penyakit ini dapat didiagnosis melalui image tests, diantaranya yaitu chest x-ray, CT scan, MRI scan, PET scan, dan bone scan. Meskipun diagnosa telah dilakukan dengan banyak cara, namun masih terdapat banyak kesalahan dalam mendiagnosa penyakit tersebut. Untuk mengatasi dan membantu hal tersebut, klasifikasi penyakit kanker paru-paru dapat dilakukan dengan menggunakan metode machine learning. Dataset yang akan digunakan untuk mengklasifikasikan penyakit ini berupa CT Scan yang didapatkan dari Rumah Sakit Cipto Mangunkusumo, Jakarta, Indonesia. Metode klasifikasi yang digunakan adalah Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), dimana Particle Swarm Optimization-Genetic Algorithm (PSO-GA) digunakan untuk mengoptimisasi parameter pada Support Vector Machine (SVM). Untuk mengevaluasi hasil kinerja metode tersebut, akan dilihat nilai akurasi, presisi, recall, dan f1-score dan dibandingkan dengan metode SVM tanpa optimisasi. Dari hasil yang didapat, klasifikasi dengan menggunakan Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM) menghasilkan performa yang lebih baik jika dibandingkan dengan Support Vector Machine (SVM) tanpa optimisasi parameter.

Cancer is an uncontrolled growth of abnormal cells in the body. When cancer starts in the lungs, it is referred as lung cancer. There are certain factors that increase a person's risk of this disease, such as smoking (including passive smoker), a family history of lung cancer, exposure to radiation, and HIV infection. This disease can be diagnosed through image tests, including chest x-ray, CT scan, MRI scan, PET scan, and bone scan. Although diagnosis has been made in many ways, there are still many errors in diagnosing the disease. To overcome and help this problem, the classification of lung cancer can be done by using machine learning method. The dataset that used to classify this disease is CT Scan obtained from Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The classification method that will be used is Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), where Particle Swarm Optimization-Genetic Algorithm (PSO-GA) was used to optimize the parameters of the Support Vector Machine (SVM). To evaluate the results of the performance of the method, values of accuracy, precision, recall, and f1-score will be seen and it will be compared with SVM without the optimization. From the results obtained, classification using Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO- GA-SVM) produces better performance compared to Support Vector Machine (SVM) without parameter optimization."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faisa Maulidina
"Kanker merupakan pertumbuhan sel abnormal di dalam tubuh yang tidak terkendali. Ketika kanker dimulai di paru-paru, hal ini dinamakan sebagai kanker paru-paru. Terdapat faktor-faktor tertentu yang meningkatkan risiko seseorang yang mengidap penyakit ini, yaitu dengan merokok (termasuk perokok pasif), riwayat kanker paru-paru dalam keluarga, terpapar radiasi, dan infeksi HIV. Penyakit ini dapat didiagnosis melalui image tests, diantaranya yaitu chest x-ray, CT scan, MRI scan, PET scan, dan bone scan. Meskipun diagnosa telah dilakukan dengan banyak cara, namun masih terdapat banyak kesalahan dalam mendiagnosa penyakit tersebut. Untuk mengatasi dan membantu hal tersebut, klasifikasi penyakit kanker paru-paru dapat dilakukan dengan menggunakan metode machine learning. Dataset yang akan digunakan untuk mengklasifikasikan penyakit ini berupa CT Scan yang didapatkan dari Rumah Sakit Cipto Mangunkusumo, Jakarta, Indonesia. Metode klasifikasi yang digunakan adalah Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), dimana Particle Swarm Optimization-Genetic Algorithm (PSO-GA) digunakan untuk mengoptimisasi parameter pada Support Vector Machine (SVM). Untuk mengevaluasi hasil kinerja metode tersebut, akan dilihat nilai akurasi, presisi, recall, dan f1-score dan dibandingkan dengan metode SVM tanpa optimisasi. Dari hasil yang didapat, klasifikasi dengan menggunakan Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM) menghasilkan performa yang lebih baik jika dibandingkan dengan Support Vector Machine (SVM) tanpa optimisasi parameter.

Cancer is an uncontrolled growth of abnormal cells in the body. When cancer starts in the lungs, it is referred as lung cancer. There are certain factors that increase a person's risk of this disease, such as smoking (including passive smoker), a family history of lung cancer, exposure to radiation, and HIV infection. This disease can be diagnosed through image tests, including chest x-ray, CT scan, MRI scan, PET scan, and bone scan. Although diagnosis has been made in many ways, there are still many errors in diagnosing the disease. To overcome and help this problem, the classification of lung cancer can be done by using machine learning method. The dataset that used to classify this disease is CT Scan obtained from Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The classification method that will be used is Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), where Particle Swarm Optimization-Genetic Algorithm (PSO-GA) was used to optimize the parameters of the Support Vector Machine (SVM). To evaluate the results of the performance of the method, values of accuracy, precision, recall, and f1-score will be seen and it will be compared with SVM without the optimization. From the results obtained, classification using Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO- GA-SVM) produces better performance compared to Support Vector Machine (SVM) without parameter optimization."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Revan Dzaky Fahrezi
"Penelitian ini bertujuan untuk mengintegrasikan analisis sentimen dan teknik pengelompokan teks (text clustering) dalam mengevaluasi kualitas layanan berdasarkan model SERVQUAL, yang mencakup lima dimensi utama: Tangibility, Responsiveness, Reliability, Assurance, dan Empathy. Metode yang digunakan meliputi Naïve Bayes, Support Vector Machine, dan K-Nearest Neighbor untuk melakukan klasterisasi sentimen yang bervariasi di setiap dimensi SERVQUAL. Hasil analisis menunjukkan bahwa sentimen pelanggan berbeda di setiap dimensi, dengan beberapa area menonjol dalam sentimen negatif atau positif. Teknik clustering teks membantu mengidentifikasi tema-tema umum dan masalah yang sering dihadapi pelanggan. Kesimpulan dari penelitian ini adalah pendekatan analisis sentimen dan text clustering memberikan wawasan yang lebih detail dan mendalam mengenai kualitas layanan, yang memungkinkan perusahaan untuk mengambil tindakan yang lebih tepat dalam meningkatkan setiap dimensi SERVQUAL untuk meningkatkan kepuasan dan loyalitas pelanggan secara keseluruhan

This study aims to integrate sentimen analysis and text clustering techniques to evaluate service quality based on the SERVQUAL model, which includes five main dimensions: Tangibility, Responsiveness, Reliability, Assurance, and Empathy. The methods used include Naïve Bayes, Support Vector Machine, and K-Nearest Neighbor to perform sentimen clustering that varies across each SERVQUAL dimension. The analysis results show that customer sentimens differ across each dimension, with certain areas standing out in either negatif or positive sentimens. Text clustering techniques help identify common themes and issues frequently faced by customers. The conclusion of this study is that the sentimen analysis and text clustering approach provides more detailed and in-depth insights into service quality, enabling companies to take more precise actions in enhancing each SERVQUAL dimension to increase overall customer satisfaction and loyalty."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melati Vidi Jannati
"Klasifikasi data kanker menggunakan microarray data menjadi salah satu cara untuk mendapatkan pengobatan yang lebih tepat. Kendala yang terdapat adalah karakteristik dari microarray yang memiliki fitur yang sangat banyak. Seringkali fitur tersebut tidak begitu informatif bagi pengklasifikasian sehingga perlu adanya suatu cara untuk memilih fitur-fitur yang mengandung informasi yang penting. Salah satu cara tersebut adalah dengan pemilihan fitur. Pada penelitian ini, metode pemilihan fitur yang digunakan berdasarkan clustering dengan fungsi kernel. Fitur-fitur yang sudah terpilih kemudian diklasifikasikan menggunakan metode Support Vector Machine.
Evaluasi dari klasifikasi pada penelitian ini melibatkan K-Fold Cross Validation, metode tersebut akan membagi data secara acak, tetapi merata sehingga akurasi yang didapat juga merata. Hasil akurasi tersebut dilakukan dengan berbagai uji terhadap parameter yang berkaitan seperti K partisi, nilai dan fitur-fitur yang digunakan. Pada proses klasifikasi tanpa pemilihan fitur tingkat akurasinya mencapai 89.68 dengan k partisi sebanyak 6 sementara dengan 5 fitur akurasinya menjadi 95.87 pada partisi sebanyak 10.

Classification of cancer using microarray data is one way to get a more precise treatment. The obstacle on classification data is the characteristics of microarray data that is having many features. These features are often not so informative for classification, so it needs a way to select the features that contain important information. One way is by selection feature. In this research, the method of selection features that are used based on clustering with kernel function. Features that are already selected then classified using Support Vector Machine.
Evaluation of classification in this research involves a K Fold Cross Validation, that methods split data randomly but uniformly so that it can reach all of accuracy. The results of accuracy data was done with different test against related parameters such as K partition, the value of and the features that are used. On the classification process without selection features rate of accuracy reached on 89.68 with k partition number 6 while with the 5 features obtained 95.87 on partition number 10.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S66852
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mayang Nurul Aulia
"Performa akademik adalah bagian penting dari suatu sekolah. Saat ini, sebagian besar sekolah di Indonesia masih jarang melakukan klasifikasi performa akademik siswa, sehingga diperlukan metode yang tepat untuk mengklasifikasikan siswa berdasarkan perfroma akademiknya.  Pada peneltian ini digunakan metode Nave Bayes Classifier (NBC) dan metode Support Vector Machine (SVM) untuk mengklasifikasikan performa akademik siswa SMAN 38 Jakarta. Metode NBC menghasilkan tingkat akurasi tertinggi sebesar 96%, recall 100%, precision 92.68% dan %. Sedangkan metode SVM dengan kernel linier menghasilkan tingkat akurasi tertinggi sebesar 98%, recall 100%, precision 96.42% dan f1-score.

Academic performance is an important part of a school. At present, most schools in Indonesia rarely classify students’ academic performance, so we need the right method to classify students based on their academic performance. In this research, the Nave Bayes Classifier (NBC) and Support Vector Machine (SVM) methods are used to classify academic performance of SMAN 38 Jakarta students’. The NBC method produces the highest accuracy 96%, recall 100%, precision 92.68% and f1-score  While the SVM method produces the highest accuracy 98%, recall 100%, precision 96.42% and f1-score  on linear kernels."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qisthina Syifa Setiawan
"Serviks atau leher rahim merupakan salah satu bagian dari sistem alat reproduksi wanita. Salah satu penyakit yang dapat menyerang serviks adalah kanker. Di dunia, kanker serviks adalah salah satu kanker yang menyebabkan kematian dan keganasan yang paling umum terjadi pada wanita. Kanker serviks merupakan penyakit yang memiliki peluang sembuh cukup besar jika terdeteksi sejak dini. Seiring dengan perkembangan teknologi dalam berbagai bidang, termasuk dalam bidang medis, maka pendeteksian dini kanker serviks dapat dilakukan dengan klasifikasi menggunakan bantuan dari metode klasifikasi machine learning. Pada penelitian ini, metode klasifikasi machine learning yang digunakan untuk mengklasifikasikan kanker serviks adalah metode Naïve Bayes (NB) dan Support Vector Machine (SVM) dengan seleksi fitur Grey Wolf Optimization (GWO). Seleksi fitur GWO merupakan seleksi fitur metode wrapper yang digunakan pada penelitian ini untuk mengeliminasi fitur-fitur tidak relevan dalam mengklasifikasikan data kanker serviks, agar NB dan SVM dapat mengklasifikasi dengan lebih akurat. Sehingga, metode ini disebut sebagai metode NB–GWO dan SVM–GWO. Data kanker serviks yang digunakan pada penelitian ini merupakan data numerik dari hasil citra MRI yang diperoleh dari Departemen Radiologi RSUPN Dr. Cipto Mangunkusumo. Berdasarkan hasil penelitian dengan seleksi fitur GWO, metode NB–GWO menghasilkan rata-rata akurasi, recall, dan f1-score tertinggi masing-masing sebesar 96,30%, 96,08%, 97,93%, dan 96,30%, sedangkan metode SVM–GWO menghasilkan rata-rata akurasi dan f1-score tertinggi masing-masing sebesar 95,37% dan 95,36% dengan kernel Linier, rata- rata presisi tertinggi sebesar 97,56% dengan kernel Polinomial, serta rata-rata recall tertinggi sebesar 99,75% dengan kernel RBF. Kemudian, berdasarkan hasil klasifikasi tanpa seleksi fitur GWO, metode NB menghasilkan rata-rata akurasi, presisi, recall, dan f1-score tertinggi masing-masing sebesar 91,98%, 95,21%, 92,90%, 91,95%, sedangkan metode SVM menghasilkan rata-rata akurasi, recall, dan f1-score tertinggi sebesar 92,13%, 99,24%, dan 92,19% dengan kernel RBF, serta rata-rata presisi tertinggi sebesar 93,59% dengan kernel Polinomial. Dengan demikian, metode seleksi fitur GWO dapat meningkatkan kinerja dari NB dan SVM dalam mengklasifikasikan data kanker serviks. Selanjutnya, berdasarkan hasil perbandingan kinerja dari NB–GWO dan SVM–GWO, maka secara keseluruhan metode NB–GWO menghasilkan kinerja yang lebih baik dalam mengklasifikasikan data kanker serviks dibandingkan dengan SVM–GWO.

Cervix is one part of the female reproductive system. One of the diseases that can attack the cervix is cancer. In the world, cervical cancer is one of the cancers that cause death and malignancy that is most common in women. Cervical cancer is a disease that has a considerable chance of recovery if detected early. Along with the development of technology in various fields, including in the medical field, the early detection of cervical cancer can be done by classification using the help of machine learning classification methods. In this study, the machine learning classification method used to classify cervical cancer was Naïve Bayes (NB) and Support Vector Machine (SVM) with Grey Wolf Optimization (GWO) feature selection. GWO feature selection is a wrapper feature selection method used in this study to eliminate irrelevant features in classifying cervical cancer data, so that NB and SVM can classify more accurately. Thus, this method is referred to as the NB–GWO and SVM–GWO. Cervical cancer data used in this study is numerical data from MRI obtained from the Department of Radiology RSUPN Dr. Cipto Mangunkusumo. Based on the results of the study with GWO feature selection, NB– GWO produced the highest average accuracy, recall, and f1-score of 96.30%, 96.08%, 97.93%, and 96.30% respectively, while SVM–GWO produced the highest average accuracy and f1-score of 95.37% and 95.36% respectively with Linear kernel, the highest precision average of 97.56% with Polynomial kernel, and the highest recall average of 99.75% with RBF kernel. Then, based on the results of classification without GWO feature selection, the NB produced the highest average accuracy, precision, recall, and f1- score of 91.98%, 95.21%, 92.90%, 91.95% respectively, while SVM produced the highest average accuracy, recall, and f1-score of 92.13%, 99.24%, and 92.19% with RBF kernel, and the highest average precision of 93.59% with Polynomial kernel. Thus, GWO feature selection method was able to improve the performance of NB and SVM in classifying cervical cancer. Furthermore, based on the results of performance comparison from NB– GWO and SVM–GWO, the overall method of NB–GWO resulted in better performance in classifying cervical cancer data compared to SVM–GWO."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>