Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 150847 dokumen yang sesuai dengan query
cover
Davendra Shayna Hassan
"Menguji validitas relativitas umum dapat dilakukan dengan memodifikasinya untuk mencari penyimpangan. Beberapa teori gravitasi termodifikasi menghasilkan potensial gravitasi dengan suku eksponensial yang menyerupai potensial Yukawa untuk aproksimasi medan lemah. Walaupun pengujian eksperimental dari koreksi Yukawa masih terbatas pada skala sistem tata surya, beberapa penelitian terbaru telah menggunakan data dari kurva rotasi galaksi untuk membatasi parameter Yukawa ini secara observasional, namun dengan asumsi bahwa barion terkopel secara lemah dengan gravitasi untuk memenuhi batasan gravitasi lokal. Studi kami mengabaikan asumsi ini dan menganalisis suku koreksi Yukawa baik dalam halo materi gelap maupun komponen bariyonik. Kami menyelidiki empat model: Newton, Almeida, MG, dan MG Duo, berdasarkan keberadaan suku koreksi Yukawa dalam komponennya dan kopling antar jenis partikel. Kami menguji keempat model ini pada tiga set data yang berbeda dari galaksi Bima Sakti, termasuk data Sofue (2015, 2017, dan 2020) dan data kurva rotasi dari Gaia DR3 oleh Wang (2023) dan Zhou (2023). Kami menemukan dukungan statistik yang kuat melalui faktor Bayes untuk model MG Duo yang menunjukkan kopling terpisah antara baryon-baryon dan baryon-DM. Namun, data observasional yang lebih tepat yang mencakup rentang radius galaksi yang lebih luas masih diperlukan untuk meningkatkan pemahaman tentang modifikasi di wilayah dalam galaksi Bima Sakti.

Testing the validity of general relativity can be done by modifying it to search for potential deviations. Several modified gravity theories introduce a Yukawa-like exponential term in the gravitational potential for weak-field limits. While experimental tests of the Yukawa-correction are limited to Solar system scales, recent studies have used galactic rotation curve data to observationally constrain these Yukawa parameters, although assuming that baryons are weakly coupled to gravity to satisfy local gravity constraints. In our study, we relax this assumption and analyze the Yukawa-correction in both dark matter halo and baryonic components. We investigate four models: Newtonian, Almeida, MG and MG Duo models, based on the presence of the Yukawa-correction term in the components and the coupling between particle species. We tested these models on three Milky Way datasets: Sofue (2015, 2017, 2020) and rotation curves by Wang (2023) and Zhou (2023) derived from Gaia DR3 data. We find strong statistical favor through the Bayes factor for the MG Duo model that presents a separated coupling between baryon-baryon and baryon-DM. However, more precise observational data covering a broader range of galactic radii is still required to enhance our understanding of modifications in the inner regions of the Milky Way."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andri Rahmansyah
"Tekanan anisotropik mampu meningkatkan massa maksimum dan jari-jari bintang neutron. Selain itu, tekanan anisotropik juga berperan pada sifat-sifat bintang neutron yaitu tidal deformability dan momen inersia. Tekanan anisotropik pada bintang neutron dapat terjadi karena dua faktor yaitu faktor geometri dan faktor materi. Salah satu faktor materi tekanan anisotropik yaitu model dua fluida. Pada model dua fluida, dua materi pada inti bintang neutron tidak bercampur sehingga kami bisa memprediksikan perbedaan kecepatan dua materi tersebut serta menginvestigasi dampak pada sifat-sifat bintang neutron. Pada tesis ini, kami menginvestigasi dua hal. Pertama, kami menginvestigasi 3 model tekanan anisotropik pada bintang neutron yang diajukan oleh Bowers-Liang (BL), Horvat dkk (DY), dan Cosenza dkk (HB). Kedua, kami menginvestigasi model dua fluida pada bintang neutron dengan mengasumsikan materi gelap terjebak di bintang neutron. Kami menggunakan dua model materi gelap yaitu materi gelap fermion dan boson. Sebagai tambahan, kami memperoleh persamaan dari model dua fluida dengan materi anisotropik mengenai sifat-sifat bintang neutron untuk investigasi lebih lanjut.

Anisotropic pressure can increase maximum mass and radius of neutron stars. Moreover, anisotropic pressure has also impact on tidal deformability and the moment of inertia of neutron stars. The occurrence of anisotropic pressure due to the two things, one from geometric and one from matter. The two-fluid model is one of the anisotropic pressure due to the matter. In the two-fluid model, two matters in the neutron star’s core can not mix. Therefore, we can predict their different velocity and investigase their impact on neutron star properties. In this thesis, we investigate two things. First, we investigate three anisotropic pressure models proposed by Bowers-Liang (BL), Horvat et al (DY), and Cosenza et al (HB). Second, we investigate the two-fluid model in neutron stars by assuming dark matter trap in neutron star. We use two dark matter models. Those are the fermion and boson model. In addition, we obtain equations from the two-fluid model with anisotropic matter about neutron star properties for future investigation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"Lubang hitam adalah suatu benda dengan massa yang sangat masif, sehingga menyebabkan cahaya bisa tertarik dan terjebak ke dalamnya tanpa bisa melepaskan diri. Bila cahaya terjebak oleh lubang hitam, maka tidak akan mungkin ada informasi yang bisa diperoleh untuk membuktikan adanya lubang hitam secara langsung. Tetapi pengamatan akan perilaku benda-benda bergerak dan distribusi energi dari suatu lokasi bisa diterapkan untuk menentukan adanya distribusi massa dari suatu lokasi, dalam hal ini diterapkan untuk menentukan keberadaan lubang hitam. Pengamatan resolusi tinggi pada berbagai rentang pengamatan dari obyek-obyek bergerak di arah pusat galaksi kita, yaitu galaksi Bima Sakti, pada arah Sagitarius A*, menunjukkan indikasi kuat adanya lubang hitam di pusat galaksi kita. Dengan pemahaman akan keberadaan lubang hitam tersebut, maka dapat dipelajari evolusi galaksi kita serta evolusi dari alam semesta secara keseluruhan."
621 DIRGA 9 (1-4)
Artikel Jurnal  Universitas Indonesia Library
cover
Adams, Fred
"This book explores the subject in the context of quantum gravity. A novel approach to uncover the dark faces of the standard model of cosmology. The possibility that dark energy and dark matter are manifestations of the inhomogeneous geometry of our universe. On the history of cosmological model building and the general architecture of cosmological modes. Illustrations on the large scale structure of the universe. A new perspective on the classical static Einstein cosmos. Global properties of world models including their topology. The arrow of time in a universe with a positive cosmological constant. Exploring the consequences of a fundamental cosmological constant for our universe. Exploring why the current observed acceleration of the universe may not be its final destiny. Demonstrating that nature forbids the existence of a pure cosmological constant. Our current understanding of the long term (in time scales that greatly exceed the current age of the universe) future of the universe. And the long term fate and eventual destruction of the astrophysical objects that populate the universe, including clusters, galaxies, stars, planets, and black holes."
New York: [Springer, ], 2012
e20425185
eBooks  Universitas Indonesia Library
cover
Schultz, David
"The andromeda galaxy and the rise of modern astronomy examines the astronomical studies of Andromeda and its importance to our developing knowledge of the universe. The book discusses how M31 was described both by the Ancients, but more importantly, by astronomers from the nineteenth century to the present. While at the start of the twentieth century the universe was thought of as a finite cosmos dominated by the Milky Way, the study of Andromeda galaxy shattered that image, leading ultimately to the conception of an infinite universe of countless galaxies and vast distances. Even today, M31 is a major focal point for new astronomical discoveries, and it also remains one of the most popular (and rewarding) celestial objects for amateur astronomers to observe and study. This book reveals the little-known history of M31 and the scientists who study it.
"
New York: Springer, 2012
e20421146
eBooks  Universitas Indonesia Library
cover
Feri Apryandi
"Berdasarkan paper Gupta [1] telah dihitung massa dari 12 gugusan galaksi (dengan data Chandra X-ray) menggunakan persamaan Tolman-Oppenheimer-Volkov (TOV) dari kesetimbangan hidrostatik dan persamaan keadaan gas ideal. Rumus secara penghitungan analitik untuk kerapatan gas dan temperatur untuk gugusan ini, sebelumnya telah diturunkan oleh Vikhlinin, dkk [2]. Lalu digunakan untuk menentukan massa klaster/gugusan. Kemudian massa berbasis persamaan TOV ini diselisihkan dengan massa dari persamaan hidrostatika Newton lalu dibandingkan dengan penghitungan yang diperoleh menggunakan persamaan hidrostatika Newton (ΔM/M). Ditemukan hasil bahwa hanya sedikit perbedaan antara dua massa tersebut, perbedaannya sebesar suku 10^(-5), sehingga efek relativistik dapat diabaikan. Disini penulis akan menggunakan pendekatan yang lain untuk menghitung perbandingan massa nya (ΔM/M), yaitu dengan prinsip ketidakpastian diperumum/GUP, serta teori gravitasi termodifikasi EiBI (Eddington-inspired Born Infeld) dan BHG (Beyond Horndeski Gravity), tetapi dalam tinjauan non-relativistik dan kesetimbangan hidrostatik. Parameter bebas dari GUP dan masing-masing teori gravitasi termodifikasi ini kemudian dikaitkan dengan data-data gugusan galaksinya pada literatur, nantinya dapat diperoleh koreksi massanya serta persentase perbandingan massanya. Berdasarkan hasil yang diperoleh dalam karya ilmiah tesis ini dengan mudah dapat dijelaskan impak dari GUP dan teori gravitasi termodifikasi EiBI dan BHG pada objek di gugus galaksi. Hasil yang diperoleh adalah bahwa pendekatan GUP/Entropic Force (dengan parameter β_0 = -1,656 × 10^43 [3]) tidak terlalu berdampak pada massa objek galaksi, karena nilai koreksi massa yang diperoleh dari penghitungan GUP orde nya sangat kecil yaitu 10^(-67). Agar berdampak, paramaternya divariasikan, didapat β_0 = -1,656 × 10^110 ≈ -10^110. Dampaknya yaitu massa globular (galaksi) semakin besar. Pada teori gravitasi EiBI (dengan parameter κ = 5 m^2 [4]) juga tidak terlalu memberikan dampak pada massa objek galaksi disebabkan hasil orde koreksi massa dengan EiBI juga kecil yaitu 10^(-46). Lalu agar memiliki dampak, maka parameter κ divariasikan dan diperoleh nilai rentangnya yaitu 5 × 10^38 ≤ κ ≤ 5 × 10^40 m^2. Dampaknya adalah massa globular semakin kecil. Namun untuk teori gravitasi BHG, langsung memberikan dampak terhadap massa galaksi dengan tanpa memvariasikan parameternya, dengan parameter Υ = -0,1655 [5]. Dampak yang terjadi adalah memperbesar keseluruhan massa galaksi klaster. Kemudian dampak dari teori BHG ini adalah memperkecil nilai korelasi-R (regresi linear kurva), yang diperoleh dengan fitting ratio dari persamaan M = (M_dyn^c)/(M_bar^c ) [6] yang awalnya diperoleh M = 0,84 ± 0,04 [6] menjadi M = 0,316 ± 0,00044, maka dapat disimpulkan bahwa akibat perubahan massa pada teori BHG dapat memperkecil nilai korelasi-R nya.

Based on Gupta’s paper [1] has been calculated the mass of 12 galaxy clusters (with Chandra X-ray data) using the Tolman-Oppenheimer-Volkov (TOV) equation of hydrostatic equilibrium and the equation of state for an ideal gas. The analytically calculated formulas for gas density and temperature for these clusters have previously been derived by Vikhlinin et al. [2] Then, it is used to determine the mass of the clusters/galaxy groups. Then the mass based on the TOV equation is subtracted from the mass from Newton’s hydrostatic equation and then compared with the calculations obtained using Newton’s hydrostatic equation (ΔM/M). It was found that there was only a slight difference between the two masses; the difference was in terms of 10^(-5), so the relativistic effect could be neglected. Here we calculate the mass ratio (ΔM/M) by considering the effect of the Generalized Uncertainty Principle (GUP), as well as the modified EiBI (Eddington-inspired Born Infeld) and BHG theories of gravity (Beyond Horndeski Gravity), but within non-relativistic hydrostatic equilibrium. The constraint parameters of GUP and each modified theory of gravity are then linked to the data on their galaxy clusters in the literature, so that later mass corrections can be obtained as well as the percentage ratio of their masses. So that from the results, we can easily explain the impact of the GUP and the modified EiBI and BHG theories of gravity on objects in galaxy clusters. The results obtained are that the GUP/Entropic Force approach (with parameter β_0 = -1,656 × 10 ^43 [3]) does not have much impact on the mass of the galaxy object, because the mass correction value obtained from the calculation of the order GUP is minimal, namely 10^(-67). In order to have an impact, the parameters are varied, we get β_0 = -1,656 × 10^110 ≈ -10^110. The impact is that the mass of globular (galaxies) is getting bigger. In the theory of gravity, EiBI (with parameter κ = 5 m^2 [4]) also does not have much impact on the mass of galaxy objects because the result of the order of mass correction with EiBI is also small, namely 10^(-46). Then in order to have an impact, the κ parameter is varied, and the range value is 5 × 10^38 ≤ κ ≤ 5 × 10^40 m ^2. The impact is that the globular mass is getting smaller. However, the BHG theory of gravity directly impacts the mass of the galaxy without varying its parameters, with the parameter Υ = -0,1655 [5]. The impact that occurs is to increase the overall mass of the cluster galaxy. Then the impact of this BHG theory is to reduce the value of the R-correlation (linear regression of the curve), which is obtained by fitting ratio from the equation M = (M_dyn^c)/(M_bar^c ) [6] originally obtained M = 0,84 ± 0,04 [6] becomes M = 0,316 ± 0,00044, it can be concluded that due to changes in mass in the BHG theory can reduce the value of its R-correlation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nababan, Kevin Riandi
"Pada tesis ini dipelajari objek kompak anisotropik dengan interior diisi dengan dark energy (energi gelap). Objek yang disebut anisotropik, karena tekanan radial dan tangensial di interior objek tidak sama. Untuk memodelkan keadaan energi gelap, digunakan persamaan keadaan Van der Waals dengan parameter bebas ”γ”, “β̅” dan “φ̅”. Perhitungan dilakukan dengan menyelesaikan persamaan Tolman-Oppenheimer￾Volkof (TOV) dimensonless (tidak berdimensi). Di formalisme ini, radius ” ξ” berharga nol hingga satu. Studi yang dilakukan adalah memeriksa jangkauan dari ”γ”, “β̅” dan “φ̅” agar memenuhi objek yang stabil secara fisis. Kestabilan objek kompak ditinjau dari kuadrat kecepatan suara radial dan tangensial. Hasil diperoleh “γ ∈ [0, 0.38]”, “φ̅ ∈ [-0.05, 0]” dan “β̅ ∈ [-0.58, 0]”, untuk memenuhi objek yang stabil. Melalui jangkauan”γ”, “β̅” dan “φ̅” yang diperoleh, ditinjau profil-profil objek.

In this thesis, an anisotropic compact object with an interior filled with dark energy is studied. The object is called anisotropic, because the radial and tangential pressures in the interior of the object are not the same. To model the state of dark energy, the Van der Waals equation of state is used with free parameters "γ", "β̅" and "φ̅". The calculation is done by solving the dimensionless Tolman-Oppenheimer-Volkof (TOV) equation. In this formalism, the radius "ξ" has a value of zero to one. The study conducted is to examine the range of "γ", "β̅" and "φ̅" to meet a physically stable object. The stability of the compact object is reviewed from the square of the radial and tangential sound speeds. The results obtained are “γ ∈ [0, 0.38]”, “φ̅ ∈ [-0.05, 0]” and “β̅ ∈ [-0.58, 0]”, to meet the stable object. Through the range of “γ”, “β̅” and “φ̅” obtained, the object profiles are reviewed.."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dedy Suardi
Bandung: Rosda, 1989
297.4 DED t
Buku Teks  Universitas Indonesia Library
cover
Butar-Butar, Arwin Juli Rakhmadi
Depok: Rajawali Pers, 2018
520 BUT p
Buku Teks SO  Universitas Indonesia Library
cover
Rigamonti, Attilio
"This textbook, now in its third edition, provides a formative introduction to the structure of matter that will serve as a sound basis for students proceeding to more complex courses, thus bridging the gap between elementary physics and topics pertaining to research activities. The focus is deliberately limited to key concepts of atoms, molecules and solids, examining the basic structural aspects without paying detailed attention to the related properties. For many topics the aim has been to start from the beginning and to guide the reader to the threshold of advanced research. This edition includes four new chapters dealing with relevant phases of solid matter (magnetic, electric and superconductive) and the related phase transitions. The book is based on a mixture of theory and solved problems that are integrated into the formal presentation of the arguments. Readers will find it invaluable in enabling them to acquire basic knowledge in the wide and wonderful field of condensed matter and to understand how phenomenological properties originate from the microscopic, quantum features of nature.
"
Switzerland: Springer International Publishing, 2015
e20528474
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>