Penelitian ini membahas konstruksi distribusi Marshall-Olkin-Kumaraswamy-Eksponensial (MOKw-E), yang merupakan kombinasi distribusi Marshall-Olkin (MO) dan Kumarawasmy-Eksponensial (Kw-E). Distribusi ini dikenal sebagai model fleksibel yang dapat diaplikasikan untuk data dengan berbagai bentuk distribusi. Estimasi parameter dilakukan menggunakan Maximum Likelihood Estimation (MLE) dengan bantuan dua metode numerik, yaitu metode Nelder-Mead dan metode Gradien Konjugat Fletcher Reeves. Kedua metode ini banyak digunakan dalam penyelesaian permasalahan optimasi karena memiliki tingkat efisiensi yang tinggi dengan komputasi yang sederhana tetapi memberikan hasil yang akurat. Kedua metode ini akan dibandingkan dengan melihat nilai Mean Squared Error (MSE) yang merupakan suatu metrik untuk melihat seberapa cocok model dengan data yang digunakan. Terakhir, model yang dikembangkan diaplikasikan pada data severitas klaim asuransi pengangguran untuk menunjukkan kemampuan model dalam memodelkan data severitas klaim. Model tersebut akan dibandingkan dengan model yang dibangun dari distribusi Kw-E dengan melihat nilai Akaike Information Criteria (AIC) dan Bayessian information criteria (BIC) untuk menunjukan bahwa model yang dikembangkan lebih baik dibandingkan model asalnya.
This research discusses the construction of the Marshall-Olkin-Kumaraswamy-Exponential (MOKw-E) distribution, which is a combination of the Marshall-Olkin (MO) and Kumaraswamy-Exponential (Kw-E) distributions. This distribution is known as a flexible model applicable to data with various distribution shapes. Parameter estimation is performed using Maximum Likelihood Estimation (MLE) with the assistance of two numerical methods the Nelder-Mead method and the Conjugate Gradient Fletcher Reeves method. Both methods are widely used in solving optimization problems due to their high efficiency with simple computations yet accurate results. These methods will be compared by examining the Mean Squared Error (MSE) values, which is a metric to assess how well the model fits the data. Finally, the developed model is applied to unemployment insurance claim severity data to demonstrate the model's capability in representing severity claim data. The model will be compared with a model built from the Kw-E distribution by evaluating the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) values to show that the developed model is superior to the original model.
"Setiap peristiwa, objek, atau individu dalam kehidupan saling terkait dan saling mempengaruhi. Untuk mengetahui bagaimana hubungan antara variabel acak dapat menggunakan copula. Copula dapat menghubungkan antara fungsi distribusi bivariat dengan fungsi distribusi marginal tanpa harus ada informasi keterkaitan tertentu antar variabel acak. Terdapat beberapa jenis copula, seperti copula elliptical, copula Archimedean, dan copula extreme value. Namun, dalam pemodelan multivariat, masing-masing jenis copula memiliki keterbatasan dalam memodelkan struktur ketergantungan yang kompleks dalam hal simetri dan sifat ketergantungan ekor. Kelas vine copula mengatasi keterbatasan ini dengan membangun model multivariat menggunakan copula bivariat dalam struktur berbentuk pohon. Copula bivariat yang digunakan dalam penelitian ini meliputi keluarga copula Clayton, Gumbel, Frank, Gaussian, dan student’s t. Penelitian ini membahas tentang konstruksi model vine copula, penaksiran parameter, dan aplikasinya. Konstruksi vine copula dilakukan melalui dekomposisi fungsi kepadatan peluang bersyarat dan melakukan substitusi fungsi kepadatan copula bivariat ke dalam hasil dekomposisi tersebut. Data yang digunakan adalah data logaritma konsentrasi dari unsur kimia dalam sampel air di Colorado. Karena data yang digunakan merupakan data empiris yang tidak diketahui distribusi marginalnya, metode estimasi parameter yang digunakan adalah pseudo-maximum likelihood dengan estimasi sequential. Lalu, dilakukan pemilihan model yang paling sesuai dengan menggunakan kriteria informasi Akaike (AIC). Hasilnya menunjukkan bahwa Sesium dan Titanium memiliki hubungan dependensi terhadap Skandium. Selain itu, Skandium dan Titanium memiliki ketergantungan paling kuat dibandingkan dengan pasangan variabel lainnya.