Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 139359 dokumen yang sesuai dengan query
cover
I Made Indra Mahaarta
"Teknologi pemindaian dan rekonstruksi model tiga dimensi (3D) telah mengalami evolusi yang pesat, terutama dengan meningkatnya tren perkembangan teknologi LiDAR yang lebih portabel dan mudah dijangkau oleh pengguna awam, seperti yang terlihat pada perangkat genggam. Terlepas dari kemajuan di bidang perangkat keras, perkembangan perangkat lunak sebagai antarmuka pengguna dengan teknologi tersebut masih sangat terbatas dan belum dapat mengakomodasi kebutuhan dan pengetahuan yang dimiliki oleh masyarakat luas. Penelitian ini mengusulkan pengembangan sistem \textit{end-to-end} yang mampu memindai, memvisualisasikan, serta melakukan segmentasi aset 3D dari hasil rekaman lingkungan 3D. Pendekatan menggunakan teknik terbaru seperti 3D Gaussian Splatting dan Point Transformer tidak hanya dapat meningkatkan kualitas dan aksesibilitas segmentasi objek 3D, tetapi juga membuka jalan untuk adopsi yang lebih luas di berbagai bidang yang menargetkan pengguna awam.

Three-dimensional (3D) model scanning and reconstruction technology has undergone rapid evolution, especially with the increasing trend of developing LiDAR technology that is more portable and easily accessible to ordinary users, as seen in handheld devices. Despite the progress in hardware, the development of software as a user interface for the technology is still very limited and has not been able to accommodate the needs and knowledge possessed by the wider community. This research proposes the development of an end-to-end system capable of scanning, visualizing, and segmenting 3D assets from recorded 3D environments. The approach of using the latest techniques, such as 3D Gaussian Splatting and Point Transformer, can not only improve the quality and accessibility of 3D object segmentation but also pave the way for wider adoption in various fields targeting lay users."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marcellino Chris O'vara
"Teknologi pemindaian dan rekonstruksi model tiga dimensi (3D) telah mengalami evolusi yang pesat, terutama dengan meningkatnya tren perkembangan teknologi LiDAR yang lebih portabel dan mudah dijangkau oleh pengguna awam, seperti yang terlihat pada perangkat genggam. Terlepas dari kemajuan di bidang perangkat keras, perkembangan perangkat lunak sebagai antarmuka pengguna dengan teknologi tersebut masih sangat terbatas dan belum dapat mengakomodasi kebutuhan dan pengetahuan yang dimiliki oleh masyarakat luas. Penelitian ini mengusulkan pengembangan sistem \textit{end-to-end} yang mampu memindai, memvisualisasikan, serta melakukan segmentasi aset 3D dari hasil rekaman lingkungan 3D. Pendekatan menggunakan teknik terbaru seperti 3D Gaussian Splatting dan Point Transformer tidak hanya dapat meningkatkan kualitas dan aksesibilitas segmentasi objek 3D, tetapi juga membuka jalan untuk adopsi yang lebih luas di berbagai bidang yang menargetkan pengguna awam.

Three-dimensional (3D) model scanning and reconstruction technology has undergone rapid evolution, especially with the increasing trend of developing LiDAR technology that is more portable and easily accessible to ordinary users, as seen in handheld devices. Despite the progress in hardware, the development of software as a user interface for the technology is still very limited and has not been able to accommodate the needs and knowledge possessed by the wider community. This research proposes the development of an end-to-end system capable of scanning, visualizing, and segmenting 3D assets from recorded 3D environments. The approach of using the latest techniques, such as 3D Gaussian Splatting and Point Transformer, can not only improve the quality and accessibility of 3D object segmentation but also pave the way for wider adoption in various fields targeting lay users."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sultan Fahrezy Syahdwinata Nugraha
"Segmentasi tiga dimensi merupakan task yang pada awalnya sulit digunakan yang disebabkan keterbatasan spesifikasi perangkat. Segmentasi tiga dimensi memanfaatkan point cloud sebagai input dan point cloud dihasilkan dari sensor LiDAR yang kepemilikannya sangat terbatas. Dahulu, LiDAR hanya ada pada perangkat industri, berguna untuk mendapatkan informasi tiga dimensi lahan. Sekarang, LiDAR sudah terdapat pada perangkat ponsel, namun hanya pada yang spesifikasinya termasuk golongan high-end atau mewah. Berangkat dari permasalahan tersebut, muncul pertanyaan mengenai kemungkinan segmentasi tiga dimensi tanpa menggunakan sensor LiDAR, tujuannya agar fitur tersebut tidak eksklusif ke suatu kelompok, melainkan semua orang yang memiliki ponsel dengan kamera bisa melakukan segmentasi tiga dimensi. Dirumuskanlah penghasil point cloud dengan menggunakan 3D Gaussian Splatting. Model segmentasi yang digunakan juga merupakan state-of-the-art, yaitu Point Transformer v2 dan v3, serta sebuah metode segmentasi tiga dimensi unik yang memanfaatkan 3DGS secara langsung, yaitu SAGA. Hasil penelitian menemukan bahwa SAGA merupakan model segmentasi tiga dimensi yang paling baik. Selain hasil kemampuannya mensegmentasi 3DGS, SAGA juga mampu mensegmentasi objek tanpa batasan kelas sehingga membuat SAGA unggul pada konteks penelitian ini.

Three-dimensional segmentation is a task that was initially difficult to use due to limited device specifications. Three-dimensional segmentation utilizes the point cloud as input and the point cloud is generated from the LiDAR sensor, which has very limited ownership. In the past, LiDAR only existed in industrial devices, useful for obtaining three-dimensional information of land. Now, LiDAR is available on mobile devices, but only on those whose specifications are included in the high-end or luxury class. Starting from this problem, the question arises about the possibility of three-dimensional segmentation without using a LiDAR sensor, the goal is that the feature is not exclusive to a group, but everyone who has a cellphone with a camera can do three-dimensional segmentation. A point cloud generator using 3D Gaussian Splatting was formulated. The segmentation models used are also state-of-the-art, namely Point Transformer v2 and v3, and a unique three-dimensional segmentation method that utilizes 3DGS directly, namely SAGA. The results found that SAGA was the best three-dimensional segmentation model. In addition to the results of its ability to segment 3DGS, SAGA is also able to segment objects without class constraints, which makes SAGA superior in the context of this research."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Guna Suryo Aji
"Perancangan model 3 Dimensi dari sebuah kampus untuk keperluan visualisasi lokasi dapat dilakukan dengan pemindaian secara 3 dimensi. 3D Gaussian Splatting merupakan teknik pemindaian objek 3 Dimensi menggunakan 3D Gaussian sebagai representasi data volumetric dari proses Structure-from-Motion yang di konversi menjadi splats sebagai representasi objek yang memiliki data warna dan intensitas yang membentuk sebuah citra digital dengan akurasi warna dan posisi, dan detail objek yang tinggi. Untuk melihat render dari 3D Gaussian viewer berbasis web yang dapat menggunakan library ThreeJS. Menggunakan metode 3D Gaussian Splatting sebuah model kampus virtual 3D dapat diciptakan dan dilihat melalui aplikasi web dengan library ThreeJS . Hasil dari pembuatan model 3D Gaussian Splatting tersebut adalah rata-rata waktu training 9,49 menit dan hasil dari pengembangan aplikasi web tersebut menghasilkan rata-rata framerate 111 FPS.

Designing a 3 dimensional model of a campus for location visualization needs can be done using 3 dimensional scanning. 3D Gaussian Splatting is a 3 dimensional scanning technique using 3D Gaussians as a representation of volumetric data from Structure-from-Motion process that is converted into splats as the representation of objects with color and intensity that creates a digital view with high accuration of color, position, and object detail. To see the render of 3D Gaussian Splatting a web based viewer can be used using the ThreeJS library. Using the 3D Gaussian Splatting method a 3D model for virtual campus can be created and viewed using a web application by utilizing ThreeJS library. The result of creating the 3D model using 3D Gaussian Splatting is an average training time of 9,49 minutes and the result of the development of the web based application is an average framerate performance of 111 FPS."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adrian Kaiser
"Segmentasi semantik adalah sebuah task pada bidang computer vision yang dewasa ini menjadi semakin penting. Segmentasi semantik sendiri dapat dipakai untuk memisahkan satu benda dengan benda yang lainnya, baik pada dua dimensi maupun tiga dimensi. Segmentasi semantik tiga dimensi umumnya mengutilisasikan sebuah point cloud yang dapat diambil menggunakan sensor Light Detection and Ranging (LIDAR). Sejak 2020, Apple menyertakan sensor LIDAR pada beberapa model iPhone. Hal tersebut memungkinkan orang awam untuk merekonstruksi berbagai objek dan keadaan di sekitarnya. Berdasarkan hal tersebut, dapat dirumuskan sebuah aplikasi yang dapat membantu penggunanya untuk melakukan scan terhadap benda rumah tangga untuk mengetahui panjang, lebar, tinggi, dan volume melalui kombinasi dari segmentasi semantik dan beberapa metode lainnya. Dibandingkan juga performa beberapa model yang menjadi kandidat integrasi dengan aplikasi tersebut, yaitu Dynamic Graph Convolutional Neural Network (DGCNN), Kernel Point Convolutional Neural Network (KPConv), Point Transformer, dan Point Transformer dengan Contrast Boundary Learning (CBL). Hasil pengujian menujukkan bahwa Point Transformer dengan CBL memiliki Intersection over Union yang paling baik. Didapatkan juga bahwa DGCNN adalah model yang paling baik untuk diimplementasikan sepenuhnya pada iPhone untuk edge computing.

Semantic segmentation is a computer vision task that has become increasingly important in recent years. Semantic segmentation can be utilized to separate one object from another in a two dimensional or three dimensional environment. Semantic segmentation normally utilizes a point cloud that can be obtained using a Light Detection and Ranging (LIDAR) sensor. As of 2020, Apple has packaged a built-in LIDAR sensor on a few iPhone models. This allows everyday users to reconstruct all sorts of objects around them. Owing to that
fact, there can be formulized an application that helps its users to find the length, width, height, and volume of an object through a combination of semantic segmentation along with a few other methods. We also compared the performance of different models as candidates to be integrated into the application, which are Dynamic Graph Convolutional Neural Network (DGCNN), Kernel Point Convolutional Neural Network (KPConv), Point Transformer, and Point Transformer with Contrast Boundary Learning (CBL). We found that Point Transformer with CBL has the best Intersection over Union result. We also found that DGCNN is the best model to be fully implemented on an iPhone for edge computing.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Karenina Kamila
"Sektor perikanan Indonesia merupakan salah satu sektor penting bagi kemajuan perekonomian Indonesia dikarenakan Indonesia yang memiliki luas laut yang sangat besar dan SDA ikan yang berlimpah. Namun, sampai saat ini perdagangan ikan ilegal masih sering terjadi di kalangan nelayan yang biasanya dilakukan di atas kapal walaupun sudah ada petugas pengawas. Untuk mengatasi masalah ini perlu adanya sistem pengawasan dengan menggunakan kamera CCTV dan artificial intelligence di atas kapal dengan harapan dapat mengurangi resiko kecurangan petugas setempat dan meningkatkan efektivitas pengawasan penangkapan ikan. Penelitian ini berfokus untuk mencari model dengan menyesuaikan beberapa hyperparameter untuk mendapatkan hasil yang terbaik dengan menggunakan algoritma YOLOv6 untuk object detection dan YOLOv8 untuk segmentation. Penelitian ini mendapatkan model terbaik untuk object detection menggunakan YOLOv6 dengan nilai mAP @0,5 sebesar 0,833, mAP @0,5-0,95 sebesar 0,63, F1-score sebesar 0,861 dan FPS 92 dan segmentation menggunakan YOLOv8 menghasilkan nilai mAP mask @0,5 sebesar 0,804, mAP mask @0,5-0,95 sebesar 0,426, mAP box @0,5 sebesar 0,843, dan mAP box @0,5-0,95 sebesar 0,561. Kedua versi YOLO tersebut dapat mengklasifikasi jenis ikan yang ditangkap oleh nelayan dengan harapan dapat mempermudah proses pencatatan dan penyimpanan data hasil penangkapan ikan.

The Indonesian fisheries sector is one of the important sectors for the progress of the Indonesian economy because Indonesia has a very large sea area and abundant fish resources. However, until now illegal fish trade is still common among fishermen, which is usually carried out on boats even though there are supervisors. To overcome this problem, it is necessary to have a surveillance system using CCTV cameras and artificial intelligence on board so that it will reduce the risk of fraud by local officers and increase the effectiveness of fishing supervision. This research focuses on finding a model by adjusting several hyperparameters to get the best results using the YOLOv6 algorithm for object detection and YOLOv8 for segmentation. This study found the best model for object detection using YOLOv6 with a mAP @0.5 value of 0.833, mAP @0.5-0.95 of 0.63, F1-score of 0.861 and FPS 92 and segmentation using YOLOv8 produces a mAP mask value @0.5 is 0.804, mAP mask @0.5-0.95 is 0.426, mAP box @0.5 is 0.843, and mAP box @0.5-0.95 is 0.561. The two YOLO versions can classify the types of fish caught by fishermen in the hope of facilitating the process of recording and storing data on fishing results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ghefira Nur Fatimah Widyasari
"Penyakit kardiovaskular merupakan penyebab utama kematian global, termasuk di Indonesia. Evaluasi kesehatan dini, menggunakan heart rate variability (HRV) melalui pengukuran root mean square of successive RR interval differences (RMSSD) dan percentage of successive RR intervals that differ by more than 50 𝑚𝑠 (pNN50), menjadi penting untuk merefleksikan respons relaksasi, stres, kualitas tidur, dan aktivitas fisik. Evaluasi ini sebaiknya dilakukan saat seseorang masih dalam kondisi sehat. Sejalan dengan itu, penelitian ini bertujuan mengevaluasi kesehatan pasien dengan irama jantung normal melalui metode clustering pada variabel RMSSD, pNN50, dan usia, yang diambil dari rekaman elektrokardiogram milik online database Physionet. Setiap cluster yang terbentuk dapat memberikan informasi unik, memungkinkan penentuan risiko penyakit kardiovaskular serta penanganan yang tepat. Namun, karena pola data yang digunakan tidak jelas, mengandung outlier, dan berdimensi rendah, maka dilakukan perbandingan antara metode Hierarchical clustering dan Gaussian Mixture Models (GMM) clustering yang mampu mengatasi hal tersebut. Mengingat GMM clustering yang sangat sensitif terhadap inisialisasi awal, penelitian ini menggunakan dua pendekatan inisialisasi, yaitu acak dan K-Means. Penentuan metode terbaik dilakukan dengan mempertimbangkan metrik evaluasi (efektivitas) dan waktu komputasi metode (efisiensi). Hasil penelitian menunjukkan bahwa GMM clustering dengan inisialisasi K-Means adalah metode terbaik dengan membentuk tiga cluster. Meskipun alat EKG menilai pasien dalam kondisi sehat, namun analisis clustering dapat mengungkapkan informasi penting, terutama bagi pasien yang teridentifikasi memiliki tingkat HRV yang relatif rendah.

Cardiovascular diseases are a leading cause of global mortality, including in Indonesia. Early health evaluation, utilizing heart rate variability (HRV) through root mean square of successive RR interval differences (RMSSD) and percentage of successive RR intervals that differ by more than 50 𝑚𝑠 (pNN50) measurements, is crucial to reflect responses to relaxation, stress, sleep quality, and physical activity. This evaluation is ideally conducted while an individual is still in a healthy condition. In line with that, this research aims to evaluate the health of patients with a normal sinus rhythm through clustering methods on variables like RMSSD, pNN50, and age, extracted from electrocardiogram recordings from the online Physionet database. Each cluster can provide unique information, enabling the identification of cardiovascular disease risks and appropriate interventions. However, due to unclear data patterns, the presence of outliers, and is low-dimensiona, a comparison is made between Hierarchical clustering and GMM methods, capable of addressing these issues. Given GMM clustering's sensitivity to initializations, this study employs two approaches, random and K-Means. The determination of the best method is based on considerations of evaluation metrics (effectiveness) and computational time (efficiency). Research results indicate that GMM clustering with K-Means initialization is the most effective and efficient method, forming three clusters. Despite ECG assessments indicating healthy conditions, clustering analysis can reveal crucial information, especially for patients identified with relatively low HRV levels."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adi Nurhadiyatna
"Dalam pengenalan objek pada sistem pengawasan lalu lintas dibutuhkan sebuah metode yang mampu membedakan antara objek dan non objek. Salah satu metode umum yang biasa digunakan adalah background subtraction. Background subtraction menjadi bagian awal yang penting dari sebuah aplikasi dalam metode computer vision. Hasil dari background subtraction biasanya digunakan dalam proses pada level yang lebih tinggi. Kami mengajukan sebuah metode Gaussian Mixture Model (GMM) dengan algoritma Hole Filling(HF). Ide utama dari pendekatan yang diajukan karena hasil dari GMM menghasilkan noisy image yang berasal dari kesalahan klasifikasi. Hal ini terjadi karena berbagai situasi (waving trees, rippling water dan illumination change). Metode HF yang sederhana mampu meningkatkan akurasi hingga 97,9% dan Kappa statistic hingga 0,74 dengan mengurangi kesalahan klasifikasi dari GMM. Hasil eksperimen and evaluasi pada pixel level menunjukkan bahwa GMMHF mampu unggul dari metode yang lain. Dengan peningkatan kinerja deteksi kendaraan menggunakan GMMHF, estimasi kecepatan kendaraan mendapatkan perbaikan. GMMHF yang dipadukan dengan Pin Hole model menghasilkan estimasi kecepatan terbaik dibandingkan skenario lainnya, dimana simpangan ratarata sebesar 7,4 Km/jam.

.There is a necessity in traffic control system using camera to have the capability to discriminate between an object and non-object in the image. One of the procedure to discriminate between those two is usually performed by background subtraction. Gaussian Mixture Model (GMM) is popular method that has been employed to tackle the problem of background subtraction. However, the output of GMM is a rather noisy image which comes from false classification. This situation may arise because several conditions in the video input such as, waving trees, rippling water, and illumination changes. In this paper, a version of GMM technique which is combined with Hole Filling Algorithm (HF) classifier is proposed to alleviate those has problems. The experimental result shows that the proposed method improved the accuracy up to 97.9% and Kappa statistic up to 0.74. This result has outperformed many similar methods that is used for evaluation. With improvement of vehicles detection performance using GMMHF, vehicle?s speed estimation also improved. GMMHF that combined with Pin Hole Model produce the best speed estimation compared with other scenarios, where standard deviation is 7,4 Km/hr."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Suparno Sastra M.
Jakarta: Elex Media Komputindo, 2009
620.004 2 SUP d
Buku Teks  Universitas Indonesia Library
cover
Irwansah
"Pada proses analisa video, permasalahan deteksi dan identifikasi objek adalah masalah yang sering dijumpai dan menjadi akar masalah yang menyebabkan analisa video masih belum bisa dilakukan secara real time dan diaplikasikan untuk hal yang kompleks. Oleh sebab itu, telah banyak metode yang dikembangkan untuk mengatasi permasalahan tersebut. Salah satu metode yang digunakan untuk identifikasi objek adalah Gaussian Bayes Classifier. Pada skripsi ini dirancang dan disimulasikan identifikasi objek yang berada di tangan dengan menggunakan Gaussian Bayes Classifier. Parameter correctness percentage digunakan untuk menguji performansi dari identifikasi objek (kaleng Green Sands, kaleng Pocari Sweat, dan Biore) yang berada di tangan. Hasil simulasi menunjukkan bahwa hasil pengidentifikasian objek yang memiliki ketepatan pengidentifikasian yang paling paling baik adalah ketika mengidentifikasi antara tidak ada objek dengan objek kaleng Green Sands yang memiliki nilai rata ? rata correct percentage yang mencapai 89% untuk setiap percobaannya dan 94,6% untuk setiap percobaannya saat pengidentifikasian tidak ada objek.

In video analysis process, problem in object detection and object identification is a common problem and the root problem that causes the video analysis still can?t be used in real time and applied to complex condition. Therefore, many methods have been developed to overcome these problems. One of the methods which is used for object identification is Gaussian Bayes Classifier method. In this thesis is designed and simulated object identification in hand using Gaussian Bayes Classifier. Correctness percentage parameter is used to test the performance of in hand object identification (for object Greend Sands?s can, Pocari Sweat?s can, and Biore) . The simulation result show that identification result which has best accuracy is when identifying between no object and object Green Sands?s can which has average value of correct percentage that reach 89% for each experiment and 94,6% for each experiment when identifying no object."
2012
S1922
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>