Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 183989 dokumen yang sesuai dengan query
cover
Septa Anggraini
"Sistem Peringatan Dini Gempabumi atau Earthquake Early Warning System (EEWS) merupakan sistem peringatan yang memberikan informasi mengenai estimasi waktu tiba gelombang S yang berpotensi menimbulkan guncangan signifikan bahkan merusak dengan memanfaatkan informasi yang dibawa oleh gelombang P. Saat ini kemajuan teknologi dalam menganalisis data yang didukung dengan big data, interkoneksi antar jaringan dan sistem komputasi berkinerja tinggi pada era revolusi industri 4.0 mulai menyebabkan banyaknya penelitian tentang sistem peringatan dini gempa dengan menggunakan metode-metode machine learning dan deep learning. Kami menggunakan data historis raw seismogram sensor single station 3 komponen (2015-2020) yang tercatat pada stasiun PDSI Badan Meteorologi Klimatologi dan Geofisika (BMKG) untuk dilakukan proses pembelajaran dan pengujian melalui pendekatan Deep Neural network dan Random Forest, penulis akan melakukan klasifikasi kejadian gempabumi atau noise, menentukan akurasi pada setiap cluster lokasi episenter gempabumi di wilayah zona subduksi Sumatra bagian barat dan penentuan lokasi gempabumi. Hasil percobaan menunjukkan bahwa model yang dihasilkan saat proses pembelajaran bisa mendeteksi gempabumi dengan akurasi sebesar 90%, presisi 93 % dan menentukan lokasi gempabumi dengan akurasi 80%. Salah satu yang mempengaruhi hasil pengujian yaitu kualitas sinyal yang diperlihatkan dengan nilai SNR serta jarak sumber gempabumi ke stasiun pencatat.

wave arrival time, which can cause significant and destructive seismic energy using the information carried by the P wave. Technological advances in analyzing data supported by big data, the interconnection between networks, and high-performance computing systems in the era of the 4.0 industrial revolution have posed challenges to process and analyze earthquake early warning using modern seismological techniques. Early identification of earthquake events is the key to time efficiency to accelerate the dissemination of information. Here, we implement deep neural network for early earthquake detection and random forest for earthquake location using raw historical data from 3 component BMKG single station at PDSI station (2015 -2020) in the subduction zone of West Sumatra. Statistically, the results of training and testing show good and convergent performance. The signal quality indicated by the SNR value and the distance from the earthquake source to the recording station affect the prediction results."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mila Apriani
"Indonesia memiliki tingkat aktivitas seismik yang tinggi, sehingga penentuan magnitudo gempabumi penting dalam Sistem Peringatan Dini Gempabumi. Dalam Sistem Peringatan Dini Gempabumi, besaran parameter magnitudo gempabumi harus diperkirakan lebih awal, sehingga peringatan dini dapat disebarluaskan sebelum gelombang S dan surface datang. Dalam studi sebelumnya, teknologi Machine learning dapat digunakan untuk mengenali peristiwa gempa bumi dan mengekstrak informasi tersembunyi dengan kumpulan data yang besar. Penelitian ini merupakan penelitian pendahuluan, mengusulkan metode alternatif untuk menghitung magnitudo gempa secepat mungkin, datanya 1 detik sebelum dan 3 detik setelah gelombang P dari data historis raw seismogram stasiun tunggal 3 komponen, stasiun BLJI, Indonesia, serta dikembangkan dengan deep neural network (DNN) tipe regresi dan deep neural network (DNN) tipe klasifikasi. Hasil dari penelitian, penulis menghitung estimasi nilai magnitudo momen broadband di wilayah Indonesia, dan menunjukkan model alternatif terbaik yang dapat digunakan untuk perhitungan magnitudo secara cepat pada stasiun seismik BLJI adalah dengan menggunakan deep neural network regresi dengan akurasi 93.33% dan MAPE 6.67%.

Indonesia has a high level of seismic activity, so determining earthquake magnitudo is important in the Earthquake Early Warning System. In the Earthquake Early Warning System, the magnitudo of the parameter magnitudo must be estimated earlier, so that warnings can be issued before the S waves and the surface arrive. In previous studies, machine learning technology could be used to recognize earthquake events and extract hidden information with large data sets. This research was a preliminary study, proposing an alternative method to calculate the earthquake magnitudo as quickly as possible, the data was 1 second before and 3 seconds after the P wave from historical data of raw seismograms for single 3-component stations, BLJI stations, Indonesia, and developed with regression and classification type deep neural network (DNN). The results of the research, were an estimated magnitudo value of the moment of broadband in the territory of Indonesia, and shows the best alternative model that can be used for rapid magnitude at the BLJI seismic station was deep neural network regression with an accuracy of 93.33% and MAPE 6.67%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kivlan Rafly Bahmid
"Salah satu aspek pertahanan negara yang cukup penting adalah pertahanan udara negara. Sayangnya, Industri Pertahanan Indonesia masih cukup kurang mendukung. Salah satu isu yang diakibatkan oleh masalah ini adalah kurang berkembangnya teknologi pertahanan udara di Indonesia dibanding dengan negara-negara lain, seperti teknologi pengendalian pesawat, seperti Unmanned Aerial Vehicle (UAV). Oleh karena ini, diperlukan pengembangan teknologi pengendalian pesawat yang mandiri dan bersetara dengan pihak luar negeri. Dinamika penerbangan merupakan masalah yang bersifat non-linear, time-varying, memiliki coupling, dan terefek oleh gangguan eksternal. Untuk memecahkan masalah ini, diperlukan pengendali pesawat berbasis metode Direct Inverse Control. Direct Inverse Control memerlukan sistem identifikasi dari sistem yang ingin dikendalikan agar dapat mengembangkan neural network inverse. Pada penelitian ini, diajukan sistem identifikasi pesawat Cessna-172P berbasis Deep Neural Network dan Recurrent Neural Network. Kinerja kedua sistem identifikasi sudah cukup dalam mereplikasikan dinamika penerbangan pesawat Cessna-172P. Dari analisis kinerja kedua sistem identifikasi, sistem identifikasi berbasis recurrent neural network menghasilkan kesahalan prediksi yang lebih rendah, tetapi menggunakan daya dan waktu komputasi yang lebih banyak.

One important aspect of national defense is the country's air defense. Unfortunately, the Indonesian Defense Industry still lacks sufficient support. One issue resulting from this problem is the underdevelopment of air defense technology in Indonesia compared to other countries, such as aircraft control technology like Unmanned Aerial Vehicles (UAV). Therefore, the development of independent aircraft control technology that is on par with foreign counterparts is needed. Flight dynamics pose nonlinear, time-varying challenges with coupling and are affected by external disturbances. To address this problem, an aircraft controller based on the Direct Inverse Control method is required. Direct Inverse Control necessitates system identification of the desired controlled system to develop an inverse neural network. In this study, a Deep Neural Network and Recurrent Neural Network-based identification system for the Cessna-172P aircraft is proposed. Both identification systems perform well in replicating the flight dynamics of the Cessna-172P aircraft. From the performance analysis of both identification systems, the recurrent neural network-based identification system produces lower prediction errors but requires more computational power and time."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasbullah
"Survei Kesehatan Indonesia (SKI) tahun 2023 yang dilakukan oleh Kementerian Kesehatan (Kemenkes) ada sekitar 70 juta perokok aktif di Indonesia. Apabila dihitung dari populasi penduduk Indonesia ada 28,62% penduduk yang merokok di tahun 2023 dan persentase ini meningkat dari tahun sebelumnya sebanyak 0,36%. Perilaku merokok ini menyebabkan berbagai penyakit seperti penyakit paru-paru kronis, kerusakan gigi, penyakit mulut, stroke, serangan jantung, kanker rahim, gangguan mata, dan kerusakan pada rambut. Untuk menekan jumlah perokok di Indonesia, diperlukan sistem untuk deteksi perokok. Deteksi perokok saat ini memakan biaya yang mahal, bantuan ahli, dan sistem yang kompleks. Oleh karena itu, deep learning dengan algoritma Convolutional Neural Network hadir sebagai solusi untuk mengatasi masalah tersebut. Skripsi ini membahas bagaimana merancang sistem deep learning dengan Convolutional Neural Network (CNN) untuk keperluan deteksi wajah perokok. Skripsi ini juga membahas bagaimana pengaruh berbagai skenario jumlah data pelatihan dan data pengujian serta penambahan ekstraksi fitur wajah terhadap metrik evaluasi . Hasil dari rancangan dievaluasi dengan metrik evaluasi kalkulasi loss function, akurasi, dan F1 score. Hasil simulasi menunjukan skenario data pelatihan 70% dan data pengujian 30% adalah skenario terbaik dengan nilai metrik evaluasi pengujian pada skenario ini sebesar 2.236 untuk loss, 54.5% untuk akurasi, dan 34.9% untuk F1 score. Skenario ini diimprovisasi dengan adanya penambahan ekstraksi fitur perokok pada awal preprocessing yang ditandai dari penurunan loss sebesar 65.65%, peningkatan akurasi sebesar 19%, dan peningkatan F1 score sebesar 24.08%.

The 2023 Indonesian Health Survey (SKI) conducted by the Ministry of Health (Kemenkes) reported that there are approximately 70 million active smokers in Indonesia. This accounts for 28.62% of the Indonesian population in 2023, representing a 0.36% increase from the previous year. Smoking behavior leads to various diseases such as chronic lung disease, tooth damage, oral diseases, stroke, heart attacks, uterine cancer, eye disorders, and hair damage. To reduce the number of smokers in Indonesia, a smoker detection system is necessary. Current smoker detection methods are expensive, require expert assistance, and involve complex systems. Therefore, deep learning with Convolutional Neural Network (CNN) algorithms presents a solution to address these issues. This thesis discusses how to design a deep learning system using Convolutional Neural Networks (CNN) for smoker face detection. It also examines the impact of different training and testing data scenarios and the addition of facial feature extraction on evaluation metrics. The designed system is evaluated using metrics such as loss function calculation, accuracy, and F1 score. The simulation results show that a scenario with 70% training data and 30% testing data is the best scenario, yielding evaluation metric values of 2.236 for loss, 54.5% for accuracy, and 34.9% for F1 score. This scenario was improved with the addition of smoker feature extraction in the preprocessing stage, resulting in a 65.65% reduction in loss, a 19% increase in accuracy, and a 24.08% increase in F1 score."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tumbuan, Ahmad Irfan Luthfi
"Salah satu analisis yang dapat dilakukan untuk mendeteksi adanya gangguan perkembangan anak adalah dengan membandingkan umur skeletal dengan umur nyata dari anak. Umur skeletal dapat dicari dengan melihat umur tulang tangan. Metode penilaian umur tulang dapat dilakukan dengan pendekatan artificial intellgence. Dengan adanya AI diharapkan dapat mengotomatisasi perhitungan umur tulang berdasarkan citra X-Ray tulang tangan anak. Salah satu metode yang dapat digunakan untuk melakukan prediksi umur tulang adalah deep learning menggunakan arsitektur Convolutional Neural Network (CNN). Model CNN dapat melakukan berbagai hal, seperti segmentasi semantik, key point detection dan regresi. Hasil pengujian menunjukkan bahwa dengan menggunakan preprocessing berupa segmentasi semantik, key point detection dan transformasi z-score terhadap umur tulang berhasil mendapatkan nilai RMSE 10.076 bulan dan MAE 7.735 bulan, lebih kecil jika dibandingkan dengan human-level performance yang memiliki MAE 8.76 bulan

One method of analysis that can be done to detect growth hormone deficiency is to compare the skeletal age to the real age of the child. The skeletal age of a subject can be found by estimating the hand bone age. The estimation of hand bone age can be done using artificial intelligence approach. With the presence of AI, we can automate the estimation of bone age using X-Ray images of a child’s hand. One method that we can use to estimate bone age is deep learning using Convolutional Neural Network (CNN) architecture. CNN can do many things, such as semantic segmentation, key point detection, and regression. We found that using preprocessing such as semantic segmentation, key point detection and z-score transformation of the bone age can achieve 10.076 months RMSE and 7.735 months MAE, that is lower than the human-level performance which has 8.76 months MAE."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulana Nurhendronoto
"Emosi adalah perasaan yang muncul dalam diri seseorang sebagai respon dari situasi tertentu. Perasan ini dapat memengaruhi pikiran, perilaku, dan persepsi seseorang terhadap suatu peristiwa. Klasifikasi emosi adalah bagian dari analisis sentimen yang bertujuan untuk menganalisis dan memperoleh emosi dari suatu data. Penelitian klasifikasi emosi berbasis teks perlu dilakukan karena dapat diimplementasikan pada berbagai bidang, seperti kesehatan dan pendidikan. Bahasa Indonesia menduduki peringkat 11 bahasa dengan penutur terbanyak di dunia dengan 200 juta penutur. Namun, penelitian klasifikasi emosi berbasis teks bahasa Indonesia masih sedikit dilakukan. Algoritma machine learning dapat digunakan untuk mengatasi berbagai tantangan dalam penelitian klasifikasi emosi seperti memahami emosi dan menganalisis emosi dari data yang tidak terstruktur. Penelitian ini berfokus pada pengembangan model machine learning dengan teknik convolutional neural network (CNN), long short-term memory (LSTM), dan bidirectional encoder representation from transformer (BERT). Berdasarkan pengujian yang dilakukan, metode convolutional neural network (CNN) mendapatkan F1 score sebesar 84,2%, metode long short term memory mendapatkan F1 score sebesar 82%, metode BERT en uncased mendapatkan F1 score sebesar 22%, dan metode BERT multi cased mendapatkan F1 score sebesar 32%. Hasil pengujian ini menandakan metode CNN merupakan metode dengan hasil pengujian terbaik dan BERT en uncased merupakan metode dengan hasil pengujian terburuk dibanding ketiga metode lainnya.

Emotions are feelings that arise within a person in response to a particular situation. These feelings can affect a person's thoughts, behavior, and perception of an event. Emotion classification is a part of sentiment analysis that aims to analyze and derive emotions from data. Text-based emotion classification research needs to be done because it can be implemented in various fields, such as health and education. Indonesian is ranked the 11th most spoken language in the world with 200 million speakers. However, there is still little research on Indonesian text-based emotion classification. Machine learning algorithms can be used to overcome various challenges in emotion classification research such as understanding emotions and analyzing emotions from unstructured data. This research focuses on developing machine learning models with convolutional neural network (CNN), long short-term memory (LSTM), and bidirectional encoder representation from transformer (BERT) techniques. Based on the tests conducted, the convolutional neural network (CNN) method gets an F1 score of 84,2%, the long short term memroy method gets an F1 score of 82%, the BERT en uncased method gets an F1 score of 22%, and the BERT multi cased method gets an F1 score of 32%. These results indicate that the CNN is the bets method while the BERT en uncased is the worst method compared to the three other methods."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Alwi Sukra
"Teknologi deep learning dapat menyelesaikan banyak masalah yang sulit dipecahkan oleh rumus matematis biasa. Salah satu masalah yang bisa diatasi adalah bahaya akibat rasa kantuk yang dialami pengemudi saat berkendara. Pada penelitian ini dibuat aplikasi android sistem deteksi kantuk yang memanfaatkan kamera smartphone. Kamera digunakan untuk mendapatkan informasi fitur citra wajah yaitu aspek rasio mata kanan, aspek rasio mata kiri, aspek rasio mulut, percentage of eye closure (PERCLOS), tingkat kejadian microsleep, dan tingkat kejadian menguap. Fitur-fitur tersebut didapat dari proses transformasi titik-titik landmark wajah. Pada penelitian ini, ditemukan bahwa metode terbaik untuk mendapatkan titik landmark wajah adalah dengan pelacakan Lucas-Kanade optical flow dengan 5 jumlah frame yang dilacak. Fitur-fitur yang dikumpulkan dapat digunakan untuk mendeteksi tingkat kantuk dengan memanfaatkan model deep learning yang telah dilatih dengan data yang dikumpulkan dari 10 orang. Pada penelitian ini, ada 2 jenis model deep learning yang dilatih untuk mendeteksi tingkat kantuk yaitu model deep neural network (DNN) dan long short-term memory (LSTM). DNN memiliki keseluruhan performa yang lebih baik dibandingkan LSTM. DNN memiliki accuracy sebesar 0.902538 dan f1 sebesar 0.899563. Sedangkan LSTM memiliki dari accuracy sebesar 0.891857 dan f1 sebesar 0.892689. Aplikasi android sistem deteksi kantuk yang dibuat menggunakan model deep learning DNN dan memiliki performa yang bagus dengan accuracy sebesar 0.844 dan f1 sebesar 0.865052. Aplikasi Android memiliki mekanisme pemberitahuan berupa suara yang dimainkan ketika pengemudi mengantuk. Selain itu, pada aplikasi Android juga terdapat 2 fungsi tambahan yaitu deteksi tidur dan deteksi gangguan konsentrasi pengemudi. Kedua fungsi tersebut akan mengeluarkan suara ketika terdeteksi untuk memberitahukan kepada pengguna. Dengan adanya aplikasi sistem deteksi kantuk yang dibuat pada penelitian ini, diharapkan dapat mendeteksi tingkat kantuk pengemudi sehingga mengurangi risiko kecelakaan akibat mengantuk.

Deep learning technology can solve many problems that are difficult to solve by ordinary mathematical formulas. One of the problems that can be overcome is the danger due to drowsiness experienced by the driver while driving. In this study, a drowsiness detection system on Android application that uses a smartphone camera is made. The camera is used to obtain facial image feature informations which is right eye aspect ratio, left eye aspect ratio, mouth aspect ratio, percentage of eye closure (PERCLOS), microsleep rate, and yawning rate. These features are obtained by transforming and processing facial landmark points. In this study, it was found that the best method for obtaining facial landmarks points is from Lucas-Kanade optical flow tracking with 5 frames tracked. The features collected can be used to detect drowsiness by utilzing a deep learning model that has been trained with data collected from 10 volunteers. In this study, there are 2 types of deep learning models that are trained to detect drowsiness that are deep neural network (DNN) and long short-term memory (LSTM). DNN has better overall performance than LSTM. DNN has an accuracy of 0.902538 and f1 of 0.899563. Whereas LSTM has an accuracy of 0.891857 and f1 of 0.892689. The drowsiness detection system Android application is created using the DNN model and has a good performance with an accuracy of 0.844 and f1 of 0.865052. The Android application has a notification mechanism in the form of sound that played when the driver is detected to be drowsy. In addition, the Android application also has an additional function that are sleeping detection and driver distraction detection. Both functions will make a sound when detected to notify the user. With the application of drowsiness detection system made in this study, it is expected to detect the level of drowsiness of the driver thereby reducing the risk of accidents due to drowsiness.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Madeline Rosmariana
"Peralatan Perangkat Pelepas Tekanan (PRD) dioperasikan dengan tujuan untuk melindungi kehidupan dan keselamatan dalam suatu sistem bertekanan. Peralatan akan mengalami penurunan kondisi seiring berjalannya waktu pemakaian. Ketidakmampuan PRD untuk melakukan fungsinya perlu diidentifikasi sebagai mode kegagalan. Untuk mengurangi risiko apabila terjadi kegagalan, suatu pendekatan seperti Risk Based Inspection (RBI) dapat dilakukan. Metode RBI yang umum digunakan masih menggunakan pendekatan kualitatif, sehingga menghasilkan variasi yang cukup besar. Penelitian ini mengusulkan metode analisa risiko dengan menggunakan pembelajaran mesin berbasis deep learning untuk mengembangkan suatu model penilaian risiko pada PRD akibat mode kegagalan fail on demand (POFOD) yang diharapakan dapat mempersingkat waktu, meningkatkan akurasi, efisiensi dalam pengolahan data hasil inspeksi, serta biaya; dengan menawarkan hasil akurasi perhitungan yang tinggi. Penelitian ini menghasilkan program prediksi risiko dengan menggunakan metode klasifikasi pembelajaran mesin berbasis deep learning akibat mode kegagalan fail on demand pada peralatan perangkat pelepas tekanan. Pembuatan dataset yang digunakan pada model bersumber dari 160 data yang diolah dengan menggunakan standar API 581. Penelitian ini menggunakan beberapa parameter model seperti test size sebesar 20%, random state bernilai 0, penggunaan jumlah epoch sebesar 150, learning rate sebesar 0.001, dan layer berjumlah 3 dengan dense 64,64,8; yang menghasilkan akurasi model sebesar 91%, dari validasi confusion matrix.

Pressure Relief Device (PRD) equipment is operated with the aim of protecting the lives and safety within a pressurized system. An equipment experiences deterioration over time. The inability of PRD equipment to perform its design function needs to be identified as a failure mode. To reduce the risk in case of failure, an approach such as Risk Based Inspection (RBI) can be implemented. The commonly used RBI methods still rely on qualitative approaches, leading to significant variations. This research proposes a method using deep learning to develop a risk assessment model for PRD due to the failure on demand. This is expected to shorten the assessment time, improve accuracy, efficiency, and reduce costs by offering highly accurate calculation results. This research produces a risk prediction program using a deep learning classification method for POFOD in pressure relief device equipment. The dataset used in the model consists of 160 data processed according to API 581 standards. This research utilizes several model parameters, including a test size of 20%, 0 value of random state, 150 epochs, a learning rate of 0.001, and 3 layers with dense of 64, 64, 8. The model achieves an accuracy of 91% from the validation confusion matrix."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fatwa Dewi Widyani
"Pada perusahaan telekomunikasi, jumlah dan interval permintaan seringkali sulit untuk diprediksi dikarenakan adanya ketergantungan yang tinggi terhadap strategi ekspansi pelanggan dan perkembangan teknologi. Permintaan muncul ketika pelanggan hendak melakukan penambahan kapasitas di eksisting lokasi atau membangun jaringan di lokasi baru. Karena pola permintaan yang bersifat sporadis dan penuh dengan ketidakpastian, serta adanya periode yang memiliki jumlah permintaan nol, maka tipe data penelitian dikategorikan sebagai intermittent. Penelitian ini bertujuan untuk membandingkan metode Artificial Neural Network dan Seasonal ARIMA untuk meramalkan permintaan yang bersifat intermittent dalam perusahaan telekomunikasi. Penelitian ini menggunakan data historis permintaan selama enam tahun terakhir. Penelitian ini mempertimbangkan faktor seasonal karena permintaan material akan meningkat selama liburan karena adanya peningkatan traffic jaringan. Dengan membandingkan akurasi peramalan, diperoleh bahwa metode machine learning menggunakan Artificial Neural Network akan memberikan hasil yang lebih unggul dibandingkan metode SARIMA. Peningkatan dalam akurasi peramalan diharapkan berdampak pada komitmen perusahaan dalam memenuhi pesanan secara tepat waktu.

In telecommunication company, amount and interval of customer demand often difficult to predict due to high dependency in customer expansion strategy and technology development. Demand arrives when customer need to add capacity in existing site or build network in new site. Because its sporadic and uncertainty pattern, even sometimes there is null demand for certain period, the demand is categorized as intermittent. This research aims to compare Artificial Neural Network (ANN) and Seasonal Autoregressive Integrated Moving Average (SARIMA) method to forecast intermittent demand in telecommunication vendor company. Historical demand data for 6 years is used to support this research. This research consider seasonality factor as material demand will increase during holiday due to network traffic. By comparing forecast accuracy, it is found that machine learning forecasting by using ANN will outperform SARIMA method. Improvement in forecast accuracy is expected to give impact to company commitment to deliver material in time."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Agil Ghifari
"Penelitian ini berfokus pada pengembangan sistem peringatan dini gempa bumi yang memanfaatkan arsitektur event-driven dan model deep-learning. Tujuannya adalah untuk memodelkan data seismik guna mendeteksi gelombang awal, hiposenter, magnitudo, dan kedalaman gempa. Penulis mengumpulkan data dari ratusan titik seismograf dan mengolahnya dengan model deep-learning untuk menghasilkan prediksi yang akurat. Sistem ini dirancang untuk memberikan visualisasi dan informasi yang mendukung Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) dalam mendeteksi aspek-aspek kritis gempa. Selain itu, penulis mengembangkan sistem terdistribusi untuk mengelola permintaan dan pengolahan data skala besar dengan efisiensi tinggi. Antarmuka pemrograman aplikasi (API) juga disajikan untuk memungkinkan prediksi data yang mudah diakses dan dipahami. Terakhir, integrasi antara model machine learning dengan backend dan frontend dirancang untuk memberikan tampilan yang ramah pengguna. Penelitian ini berkontribusi dalam mengembangkan sistem peringatan dini gempa yang lebih canggih dan responsif, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.

This study focuses on the development of an earthquake early warning system utilizing event-driven architecture and deep-learning models. The aim is to model seismic data to detect initial waves, hypocenters, magnitude, and depth of earthquakes. Data from hundreds of seismograph points were collected and processed using deep-learning models to generate accurate predictions. The system is designed to provide visualizations and information to support the Meteorology, Climatology, and Geophysics Agency (BMKG) in detecting critical earthquake aspects. Additionally, a distributed system was developed to manage large-scale data requests and processing efficiently. An Application Programming Interface (API) is also presented for accessible and understandable data predictions. Finally, the integration of machine learning models with backend and frontend is designed to offer a user-friendly display. This research contributes to the development of a more sophisticated and responsive early warning system, enhancing public preparedness and safety in the face of natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>