Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 202504 dokumen yang sesuai dengan query
cover
Hendra Angga Yuwono
"Teknologi dari citra hiperspektral berisi informasi dalam bentuk spektral dan spasial sehingga menghasilkan sejumlah data yang sangat besar sehingga dapat menambah beban dalam pemrosesan data. Deep learning adalah metode terbaru yang memiliki struktur yang dalam dari jaringan saraf tiruan (JST) yang mampu memproses data dalam skala besar dan dapat meningkatkan kinerja pemodelan dalam analisis data. Maka dari pada itu penelitian ini bertujuan untuk algoritma deep learning pada pengolahan citra hiperspektral untuk pengukuran kuantitatif dengan studi kasus kandungan air dan garam pada teripang pasir kering. Jenis teripang yang digunakan dalam penelitian ini adalah jenis teripang teripang pasir kering (Holothuria scabra) atau yang biasa dikenal dengan Beche-de-mer yang mempunyai nilai ekonomis yang tinggi. Pada penelitian ini, dilakukan sistem pengukuran berbasis citra hiperspektral dengan panjang gelombang 400-1000 nm yang mampu mengukur kadar air dan garam secara non-destruktif dan cepat. Algoritma yang digunakan adalah algoritma deep learning Proposed CNN yang digunakan untuk membangun sistem model prediksi kadar air dan garam pada teripang pasir kering. Sistem pengukuran dievaluasi dengan koefisien determinasi (R2) dan root mean square error (RMSE). Adapun hasil pengukuran kadar air nilai R2 dan RMSE untuk data pelatihan adalah 0,99 dan 0,11 sedangkan untuk data testing adalah 0,92 dan 0,29. Hasil pengukuran kadar garam nilai R2 dan RMSE untuk data pelatihan adalah 0,97 dan 0,16 sedangkan untuk data testing adalah 0,87 dan 0,36. Pada hasil pengukuran tersebut menunjukkan bahwa hasil sistem prediksi yang diusulkan untuk sistem pengukuran kadar air dan garam untuk teripang pasir kering memiliki performa yang baik.

The technology of hyperspectral imagery contains information in spectral and spatial form so as to produce a very large amount of data so that it can add to the burden of data processing. Deep learning is the latest method that has a deep structure of artificial neural network (ANN) which is capable of processing large-scale data and can improve modeling performance in data analysis. Therefore, this study aims for a deep learning algorithm on hyperspectral image processing for quantitative measurements with a case study of water and salt content in dry sand sea cucumbers. The type of sea cucumber used in this study is a type of dry sand sea cucumber (Holothuria scabra) or commonly known as Beche-de-mer which has high economic value. In this study, a hyperspectral image-based measurement system with a wavelength of 400-1000 nm was used which is able to measure water and salt content non-destructively and quickly. The algorithm used is the deep learning algorithm Proposed CNN which is used to build a prediction model system for water and salt content in dry sand sea cucumbers. The measurement system was evaluated by the coefficient of determination (R2) and the root mean square error (RMSE). The results of the measurement of water content R2 and RMSE values ​​for training data are 0.99 and 0.11 while for testing data are 0.92 and 0.29. The results of the measurement of salt content R2 and RMSE values ​​for training data are 0.97 and 0.16 while for testing data are 0.87 and 0.36. The results of these measurements indicate that the results of the prediction system proposed for the measurement system of water and salt content for dry sand sea cucumbers have good performance."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia , 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sabar
"Kadar air dan kadar garam merupakan beberapa parameter yang digunakan untuk memprediksi tingkat kualitas teripang pasir kering (Holothuria scabra) atau yang dikenal Bêche-de-mer. Namun, pengukuran kadar air dan garam umumnya bersifat destruktif dan dilakukan secara manual melalui uji laboratorium sehingga memakan waktu yang lama. Dalam penelitian ini, sistem pengukuran yang dikembangkan untuk memprediksi kualitas teripang pasir kering adalah sistem pengukuran yang berbasis citra Visible Near-Infrared (V-NIR) yang mampu mengukur kadar air dan garam secara non-destruktif. Algoritma partial least squares regression (PLSR) digunakan untuk membangun model prediksi pada data spektral. Sistem pengukuran untuk kadar air dan garam di evaluasi dengan koefisien korelasi untuk data pelatihan sebesar 0,99 dan 0,99 secara berurutan. Sedangkan untuk root mean square error dari kadar air dan garam adalah 0,92 dan 0,11. Hasil penelitian ini menunjukkan bahwa sistem ini dapat diusulkan sebagai sistem pengukuran kadar air dan garam secara non-destruktif untuk menguji kualitas pada teripang pasir kering (Holothuria scabra) dan dapat diimplementasikan sebagai sistem penyortiran di dunia industri.

Water content and salt Content are parameters used to predict the quality level of dried sea cucumber (Holothuria scabra) or known by Beche-de-mer. However, Measurements of moisture content and salt content are generally conductive and carried out manually through laboratory tests so that it takes a long time. In this study, a measurement system developed to predict the quality of dried sea cucumber is a valid system for Visible-Near Infrared (V-NIR) images based on the spectral reflectance characteristics of the moisture content and salt content to predict non-destructively the values ​​of the moisture and salt content. The partial least squares regression (PLSR) algorithm is used to build prediction models on spectral data. Predictive system models are used to obtain moisture and salt values. The predicted results are compared with the results of measurements of data references obtained using the laboratory test. The measurement prediction system for moisture and salt content has a correlation coefficient for test data 0,99 and 0,99 respectively. While for the root mean square error of the water and salt levels are 0,92 and 0,11. The results of this study indicate that this system can be proposed as a non-destructive system of measuring moisture and salt content to test the quality of dried sea cucumbers (Holothuria scabra) and is suitable for implementation in sorting systems in the industrial world
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T54260
UI - Tesis Membership  Universitas Indonesia Library
cover
Naufal Alharits Sadly
"Sistem prediksi kadar fenolik pada daun Bisbul (Diospyros discolor Willd.) berbasis citra hiperspektral visible and near-infrared (VNIR) terbukti mampu dibuat dan mendapatkan hasil dengan nilai yang baik. Kamera hiperspektral dengan rentang panjang gelombang 400-1000 nm digunakan dalam mengakuisisi citra VNIR pada daun Bisbul. Penelitian ini membahas mengenai komparasi dari beberapa model regresi baru dengan penelitian terdahulu yang diharapkan bisa mendapatkan hasil yang lebih baik dalam memprediksi kadar fenolik pada daun Bisbul. Digunakan tiga model regresi dalam membuat sistem prediksi ini yaitu model Partial Least Square Regression (PLSR), Random Forest, dan XGBoost Regressor. Sistem Prediksi menggunakan PLSR menghasilakan sebesar 3,62 (RMSE test), 0,81 (R2 test), nilai akurasi sebesar 91,3%, dan waktu training 0,27 detik. Sistem Prediksi menggunakan Random Forest tanpa menggunakan seleksi fitur menghasilakan sebesar 4,04 (RMSE test), 0,81 (R2 test), nilai akurasi sebesar 90,86%, dan waktu training 17,81 detik. Sistem Prediksi menggunakan Random Forest dengan seleksi fitur menghasilakan sebesar 3,84 (RMSE test), 0,79 (R2 test), nilai akurasi sebesar 91,31%, dan waktu training 19,05 detik. Sistem Prediksi menggunakan XGBoost Regressor dengan menghasilakan sebesar 3,48 (RMSE test), 0,83 (R2 test), nilai akurasi sebesar 91,1%, dan waktu training 24,9 detik. Performa terbaik dihasilkan oleh model XGBoost Regressor dengan sedikit perbedaan dengan PLSR. Model XGBoost Regressor berhasil meningkatkan performa sebesar 14% pada RMSE dan 2% pada R2 berbanding dengan PLSR.

Phenolic levels prediction system on Bisbul leaves (Diospyros discolor Willld.) Based on visible and near-infrared (VNIR) hyperspectral images proved to be able to be made and get results with good values. Hyperspectral camera with a wavelength range of 400-1000 nm is used in acquiring VNIR images on Bisbul leaves. This study discusses the comparison of several new regression models with previous studies that are expected to get better results in predicting phenolic levels in Bisbul leaves. Three regression models are used in making this prediction system, namely the Partial Least Square Regression (PLSR), Random Forest, and XGBoost Regressor models. The prediction system using PLSR produces 3.62 (RMSE test), 0.81 (R2 test), an accuracy of 91.3%, and a training time of 0.27 seconds. The prediction system uses Random Forest without using the selection feature with results of 4.04 (RMSE test), 0.81 (R2 test), an accuracy of 90.86%, and a training time of 17.81 seconds. The prediction system using Random Forest with feature selection resulted in 3.84 (RMSE test), 0.79 (R2 test), an accuracy of 91.31%, and a training time of 19.05 seconds. The prediction system using the XGBoost Regressor produces 3.48 (RMSE test), 0.83 (R2 test), an accuracy of 91.1%, and training time of 24.9 seconds. The best performance is produced by XGBoost Regressor with a slight difference from PLSR. The XGBoost Regressor model managed to improve performance by 14% on RMSE and 2% on R2 compared to PLSR."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Frendy Muhamad Rachmansyah
"Pengukuran viskositas zat cair merupakan aspek penting dalam berbagai industri. Dalam mengukur viskositas suatu cairan umumnya menggunakan viskometer bola jatuh. Namun penggunaan viskometer bola jatuh memiliki kekurangan dalam ketelitian dalam menentukan kecepatan terminal bola ketika mencapai kedalaman tertentu. Dalam penelitian ini, penulis merancang pendekatan baru yang menggabungkan teknologi pengolahan video dengan metode deep learning, khususnya algoritma You Only Look Once (YOLO), untuk mengukur viskositas zat cair secara efisien dan akurat. Pendekatan ini memungkinkan pengukuran viskositas dilakukan dengan menggunakan kamera sederhana, yang secara otomatis menganalisis pergerakan jatuhnya kelereng dalam suatu fluida. Penulis melatih model deep learning menggunakan dataset video jatuhnya bola pada suatu cairan yang diambil secara langsung menggunakan kamera smartphone, dan menunjukkan bahwa pendekatan ini mampu menghasilkan pengukuran viskositas yang akurat dengan waktu perhitungan yang lebih cepat dibandingkan menggunakan viskometer bola jatuh. Hasil percobaan menunjukkan bahwa model YOLO mampu mendeteksi 11 objek dari total 25 gambar dengan presisi 0,99 dan konsistensi tinggi (mAP50-95 sebesar 0,86). Model ini efektif dalam mendeteksi jatuhnya kelereng, dengan waktu pemrosesan per gambar yang cepat. Meskipun beberapa frame tidak terdeteksi, model menunjukkan akurasi tinggi dalam memprediksi viskositas dengan MAE sebesar 0,13, menjadikannya andal dan efisien untuk pengukuran viskositas dalam aplikasi industri dan laboratorium.

Viscosity measurement of liquid substances is an important aspect in various industries. The traditional method of measuring viscosity is by using a falling ball viscometer. However, this method has limitations in accurately determining the terminal velocity of the ball at a certain depth. In this research, the author designed a new approach that combines video processing technology with deep learning methods, specifically the You Only Look Once (YOLO) algorithm, to measure the viscosity of liquid substances efficiently and accurately. This approach allows viscosity measurement to be done using a simple camera, which automatically analyzes the movement of a marble falling in a fluid. The author trained a deep learning model using video datasets of the falling ball in a liquid captured directly using a smartphone camera, and demonstrated that this approach can produce accurate viscosity measurements with faster calculation time compared to using a falling ball viscometer. The experimental results demonstrated that the YOLO model accurately detected 11 objects out of 25 images with a precision of 0,99 and a consistent mAP50-95 score of 0,86. Applied to 7 video frames, it processed images quickly with times of 1,9 ms for preprocessing, 45,7 ms for inference, and 0,6 ms for post-processing. Despite some frames missing detections, the model achieved a high accuracy in predicting viscosity with a Mean Absolute Error (MAE) of 0,13, making it reliable for various industrial and laboratory applications."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Timotius Victory
"Pengguna media sosial di Indonesia merupakan salah satu yang terbanyak di dunia. Hal ini mendorong pemilik produk atau layanan menggunakan media sosial sebagai saluran utama untuk penjualan dan layanan pelanggan. Masyarakat Indonesia cenderung mencari ulasan online sebelum memutuskan pembelian, sehingga ulasan pengguna sangat mempengaruhi keputusan pembelian dan keberhasilan bisnis. Oleh karena itu, pemilik produk dan layanan harus cepat tanggap terhadap sentimen ulasan pengguna untuk mempertahankan reputasi dan menghindari penurunan penjualan. Analisis sentimen adalah salah satu cara untuk mengetahui sentimen terhadap produk atau layanan. Terdapat pendekatan machine learning dan deep learning dalam analisis sentimen. Penggunaan machine learning pada analisis sentimen ulasan pengguna berbahasa Indonesia telah banyak dilakukan, namun eksplorasi dalam bidang deep learning masih jarang ditemukan. Penelitian ini menggunakan model CNN-BiLSTM dan BiLSTM-CNN yang dibandingkan dengan logistic regression, support vector machine, dan naïve bayes. Pada skenario pertama, analisis ulasan pengguna di Traveloka menunjukkan model BiLSTM-CNN dengan Precision tertinggi 85% dan AUC 82.14%, serta model Support Vector Machine (SVM) dengan Accuracy 83.25% dan F1-Score 86.53%. Pada skenario kedua, analisis ulasan pengguna provider telekomunikasi menunjukkan SVM sebagai yang terbaik dengan Accuracy 78.15%, Precision 68.78%, F1-Score 76.33%, dan AUC 77.36%. Dari hasil ini, model machine learning lebih unggul dibandingkan deep learning.

Social media users in Indonesia are among the largest in the world. This drives product or service owners to use social media as the main channel for sales and customer service. Indonesian consumers tend to look for online reviews before making a purchase decision, so user reviews greatly influence purchasing decisions and business success. Therefore, product and service owners must quickly respond to user review sentiments to maintain reputation and avoid sales decline. Sentiment analysis is one way to understand the sentiment towards a product or service. There are machine learning and deep learning approaches in sentiment analysis. The use of machine learning in sentiment analysis of user reviews in Indonesian has been widely conducted, but exploration in the field of deep learning is still rarely found. This study uses CNN-BiLSTM and BiLSTM-CNN models compared to logistic regression, support vector machine, and naïve bayes. In the first scenario, analysis of user reviews on Traveloka shows the BiLSTM-CNN model with the highest Precision of 85% and AUC of 82.14%, and the Support Vector Machine (SVM) model with an Accuracy of 83.25% and F1-Score of 86.53%. In the second scenario, analysis of user reviews of telecommunications providers shows SVM as the best with an Accuracy of 78.15%, Precision of 68.78%, F1-Score of 76.33%, and AUC of 77.36%. From these results, machine learning models outperform deep learning models."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nadya Safitri
"Pemilihan metode machine learning atau deep learning menjadi suatu permasalahan dalam klasifikasi. Hal ini didapatkan dari penelitian yang menunjukkan bahwa deep learning kinerjanya lebih baik daripada machine learning, namun terdapat penelitian bahwa kedua metode tersebut kinerjanya tidak menentu tergantung dataset yang digunakan. Oleh karena itu, penelitian ini membandingkan kinerja dari machine learning dan deep learning untuk permasalahan klasifikasi teks dan analisis sentimen terhadap dampak Covid-19 di Indonesia. Hasil penelitian ini menunjukkan bahwa kinerja pada klasifikasi teks dan analisis sentimen menggunakan metode machine learning lebih baik dibandingkan dengan deep learning. Hasil penelitian mengenai klasifikasi teks menunjukkan bahwa kinerja metode machine learning yaitu Label Powerset dan Random Forest menghasilkan akurasi 77 % sedangkan kinerja metode deep learning yaitu Long Short-Term Memory (LSTM) dan Gate Reccurent Unit (GRU) menghasilkan akurasi 48%. Hasil penelitian mengenai analisis sentimen menunjukkan bahwa kinerja metode machine learning yaitu Label Powerset dan Random Forest menghasilkan akurasi 63 % sedangkan kinerja metode deep learning yaitu Long Short-Term Memory (LSTM) dan Gate Reccurent Unit (GRU) menghasilkan akurasi 55% dan 54%. Keseimbangan jumlah label pada semua label mempengaruhi hasil dari klasifikasi. Oleh karena itu, disarankan untuk menggunakan metode untuk menyeimbangkan jumlah label yang digunakan untuk klasifikasi.

The choice of machine learning or deep learning methods becomes a problem in classification. This is obtained from research which shows that deep learning performs better than machine learning, but there is research that the two methods perform erratically depending on the dataset used. Therefore, this study compares the performance of machine learning and deep learning for text classification problems and sentiment analysis on the impact of Covid-19 in Indonesia. The results of this study indicate that the performance of text classification and sentiment analysis using machine learning methods is better than deep learning. The results of research on text classification show that the performance of machine learning methods, namely Label Power and Random Forest, produces an accuracy of 77%, while the performance of deep learning methods, namely Long Short-Term Memory (LSTM) and Gate Recurrent Unit (GRU), produces an accuracy of 48%. The results of the research on sentiment analysis show that the performance of machine learning methods, namely Label Power and Random Forest, produces an accuracy of 63%, while the performance of deep learning methods, namely Long Short-Term Memory (LSTM) and Gate Recurrent Unit (GRU), produces 55% and 54% accuracy. The balance of the number of labels on all labels affects the results of the classification. Therefore, it is advisable to use a method to balance the number of labels used for classification."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dwi Guna Mandhasiya
"Ilmu Data adalah irisan dari matematika dan statistika, komputer, serta keahlian domain. Dalam beberapa tahun terakhir inovasi pada bidang ilmu data berkembang sangat pesat, seperti Artificial Intelligence (AI) yang telah banyak membantu kehidupan manusia. Deep Learning (DL) sebagai bagian dari AI merupakan pengembangan dari salah satu model machine learning yaitu neural network. Dengan banyaknya jumlah lapisan neural network, model deep learning mampu melakukan proses ekstrasi fitur dan klasifikasi dalam satu arsitektur. Model ini telah terbukti mengungguli teknik state-of-the-art machine learning di beberapa bidang seperti pengenalan pola, suara, citra, dan klasifikasi teks. Model deep learning telah melampaui pendekatan berbasis AI dalam berbagai tugas klasifikasi teks, termasuk analisis sentimen. Data teks dapat berasal dari berbagai sumber, seperti sumber dari media sosial. Analisis sentimen atau opinion mining merupakan salah satu studi komputasi yang menganalisis opini dan emosi yang diekspresikan pada teks. Pada penelitian ini analisis peforma machine learning dilakukan pada metode deep learning berbasis representasi data BERT dengan metode CNN dan LSTM serta metode hybrid deep learning CNN-LSTM dan LSTM-CNN. Implementasi model menggunakan data komentar youtube pada video politik dengan topik terkait Pilpres 2024, kemudian evaluasi peforma dilakukan menggunakan confusion metric berupa akurasi, presisi, dan recall.

Data Science is the intersection of mathematics and statistics, computing, and a domain of expertise. In recent years innovation in the field of data science has developed very rapidly, such as Artificial Intelligence (AI) which helped a lot in human life. Deep Learning (DL) as part of AI is the development of one of the machine learning models, namely neural network. With the large number of neural network layers, deep learning models are capable of performing feature extraction and classification processes in a single architecture. This model has proven to outperform state-of-the-art machine learning techniques in areas such as pattern recognition, speech, imagery, and text classification. Deep learning models have gone beyond AI-based approaches in a variety of text classification task, including sentiment analysis. Text data can come from various sources, such as source from social media. Sentiment analysis or opinion mining is a computational study that analyze opinions and emotions expressed in text. In this research, machine learning performance analysis is carried out on a deep learning method based on BERT data representation with the CNN and LSTM and hybrid deep learning CNN-LSTM and LSTM-CNN method. The implementation of the model uses YouTube commentary data on political videos related to the 2024 Indonesia presidential election, then performance analysis is carried out using confusion metrics in the form of accuracy, precision, and recall."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Mahdi Ramadhan
"Penggunaan kecerdasan buatan berbasis Deep Learning untuk mendukung prediksi dan pengambilan keputusan sangat populer di banyak bidang. Salah satu bidang tersebut adalah di sektor kesehatan, terutama dalam pengobatan kanker. Banyak ahli onkologi radiasi dan fisikawan medis sedang melakukan penelitian yang menjanjikan dalam histologi dan stadium kanker, prediksi hasil, segmentasi otomatis, perencanaan perawatan, dan jaminan kualitas. Penelitian ini merupakan studi pendahuluan pengembangan dan perbandingan model deep learning yang berfungsi sebagai alat konversi dari nilai piksel citra Electronic Portal Imaging Device (EPID) ke dosis. Data diambil dari dua bidang radioterapi dengan teknik yang berbeda, yang pertama dosimetri transit pada Varian Unique 6MV foton dan dosimetri non-transit pada Varian Halcyon. Selanjutnya karena data yang tersedia hanya sedikit, data tersebut direproduksi dengan teknik augmentasi sehingga data tersebut cukup untuk menjadi data latih pada berbagai model deep learning, hasilnya divalidasi menggunakan indeks gamma 3%/3mm terhadap citra dosis hasil perencanaan dari TPS. Beberapa model deep learning telah berhasil dibuat yang dapat mengubah nilai piksel EPID menjadi distribusi dosis. Pada dosimetri transit telah berhasil dibuat model Convolutional Neural Network (CNN) dengan 6 layer dengan hasil validasi terbaik mencapai 92,40% ± 28,14%. sedangkan pada dosimetri non-transit, model terbaik mencapai tingkat kelulusan gamma indeks rata-rata 90,07 ± 4,96%. Validasi lebih lanjut dalam banyak kasus dan perbaikan perlu dilakukan untuk meningkatkan akurasi kemiripan dengan citra acuan dengan mempertimbangkan karakteristik yang terkandung dalam gambar EPID dan jumlah dataset.

The use of deep learning to support prediction and decision making is very popular in many areas. Many radiations oncologist and medical physicists are conducting promising research in cancer histology and staging, outcome prediction, automated segmentation, treatment planning, and quality assurance. This research is a preliminary study of the development and comparison of deep learning model that work as a conversion tool from the pixel value of Electronic Portal Imaging Device (EPID) images to dose. Data were taken from two radiotherapy plane with different techniques, the first was transit dosimetry on the Varian Unique 6MV Photon and the second non-transit dosimetry on the Varian Halcyon. Furthermore, due to limited of data source, the data was reproduced by augmentation techniques so that the data was sufficient to become training data on various deep learning models, the results were validated using a gamma index of 3%/3mm compared to the planned dose image from TPS. Several deep learning models has been successfully created that can convert the EPID pixel value into a dose distribution. In transit dosimetry, a Convolutional Neural Network (CNN) model with 6 layers has been successfully created with the best results from the validation reaching 92.40% ± 28.14%. while in non-transit dosimetry, the best model achieves an average gamma passing rate of 90.07 ± 4.96%. Further validation in many cases and improvements need to be made to increase the accuracy of similarity by considering the characteristics contained in the EPID image and the number of datasets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Fauzi Rahmad
"Arsitektur model deep learning kini sudah semakin kompleks setiap harinya. Namun semakin besar model maka dibutuhkan kekuatan komputasi yang cukup besar juga dalam menjalankan model. Sehingga tidak semua perangkat Internet of Things (IoT) dapat menjalankan model yang begitu besar secara efisien. Untuk itu teknik model optimization sangat diperlukan. Pada penelitian kali ini penulis menggunakan metode optimasi menggunakan layer weight regularization, serta penyederhanaan arsitektur model pada hybrid deep learning model. Dataset yang digunakan pada penelitian kali ini adalah N-BaIoT. Sementara evaluasi performa model yang digunakan adalah accuracy, confussion matrix, dan detection time. Dengan tingkat accuracy yang sama, model yang diusulkan berhasil meningkatkan waktu deteksi model lebih cepat 0,8 ms dibandingkan dengan model acuan.

The deep learning model architecture is getting more complex every day. However, the larger the model, the greater the computational power is needed to run the model. So not all Internet of Things (IoT) devices can run such a large model efficiently. For this reason, model optimization techniques are needed. In this study, the author uses an optimization method using layer weight regularization, as well as simplification of the model architecture on the hybrid deep learning model. The dataset used in this research is N-BaIoT. While the evaluation of the performance of the model used is accuracy, confusion matrix, and detection time. With the same level of accuracy, the proposed model succeeded in increasing the detection time of the model by 0.8 ms faster than the reference method."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adawiyah Ulfa
"Pengembangan inhibitor Dipeptidyl Peptidae-4 (DPP-4) sangat diperlukan dalam pengobatan Diabetes Mellitus tipe 2 dengan efek samping yang rendah. Pemodelan hubungan kuantitatif struktur aktivitas (QSAR) merupakan pendekatan analisis hubungan struktur kimia dengan aktivitasnya yang banyak digunakan dalam desain obat penyakit Diabetes. Pada tesis ini, model QSAR klasifikasi dibangun untuk memprediksi struktur aktivitas senyawa pada inhibitor DPP-4 yang dapat memblokir kerja enzim DPP-4. Dalam representasi molekul digunakan circular fingerprint ECFP dan FCFP yang menyajikan notasi SMILES dalam format vektor biner. Fingerprint ECFP dan FCFP yang berdiameter 4 dan 6 sebagai input data dalam membangun model QSAR klasifikasi. Pada QSAR klasifikasi dengan pendekatan deep learning memberikan waktu yang cepat dalam proses virtual screening senyawa aktif atau tidak aktif dalam inhibitor DPP-4. Penelitian ini menggunakan model Hybrid Deep Learning 1D CNN-LSTM untuk memprediksi aktivitas senyawa inhibitor dalam kelas aktif atau tidak aktif berdasarkan nilai aktivitas biologis dengan proporsi data latih dan data uji yang berbeda. Dalam arsitektur 1D CNN-LSTM terdiri dari model 1D CNN sebagai tahap ektraksi fitur dan output dari lapisan konvolusi 1D CNN digunakan dalam lapisan LSTM. Selain itu, pemilihan fitur dengan metode Random Forest-Recursive Feature Elimination (RF-RFE) digunakan untuk memperoleh fitur yang optimal dari dataset ECFP dan FCFP. Selanjutnya, penelitian ini membandingkan performa model dengan menerapkan pemilihan fitur RF-RFE dan tanpa pemilihan fitur RF-RFE. Hasil penelitian ini menunjukkan bahwa model QSAR klasifikasi menggunakan Hybrid Deep Learning yaitu 1D CNN-LSTM dengan pemilihan fitur RF-RFE memperoleh performa model yang lebih baik dibandingkan model tanpa pemilihan fitur optimal. Performa model 1D CNN-LSTM dengan pemilihan fitur RF-RFE menggunakan data ECFP_4 dengan proporsi data latih 80% memiliki akurasi sebesar 0.9075, sensitivitas 0.9008, spesifisitas 0.9142, dan nilai MCC 0.8151.

The development of Dipeptidyl Peptidase-4 (DPP-4) inhibitors is urgently needed in the treatment of Type 2 Diabetes Mellitus with low side effects. Activity structure quantitative relationship modeling (QSAR) is an analytical approach to the relationship between chemical structure and activity which is widely used in diabetes drug design. In this thesis, a classification QSAR model was built to predict the structure of the activity of the DPP-4 inhibitor compound that can block the action of the DPP-4 enzyme. In molecular representation, ECFP and FCFP circular fingerprints are used which present SMILES notation in binary vector format. ECFP and FCFP fingerprints with diameters of 4 and 6 as input data in building a classification QSAR model. The QSAR classification with a deep learning approach provides fast time in the virtual screening process for active or inactive compounds in DPP-4 inhibitors. This study uses the Hybrid Deep Learning 1D CNN-LSTM model to predict the activity of inhibitor compounds inactive or inactive classes based on the value of biological activity with different proportions of training data and test data. The 1D CNN-LSTM architecture consists of a 1D CNN model as the feature extraction stage and output of 1D CNN convolution layer is used in the LSTM layer. In addition, feature selection using the Random Forest-Recursive Feature Elimination (RF-RFE) method was used to obtain optimal features from the ECFP and FCFP datasets. Furthermore, this study compares the performance of the model by applying the RF-RFE feature selection and without the RF-RFE feature selection. The results of this study indicate that the classification QSAR model using Hybrid Deep Learning, namely 1D CNN-LSTM with RF-RFE feature selection, obtains better model performance than the model without optimal feature selection. The performance of the CNN-LSTM 1D model with RF-RFE feature selection using ECFP_4 data with a proportion of 80% training data has an accuracy of 0.9075, sensitivity of 0.9008, specificity of 0.9142, and an MCC value of 0.8151.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>