Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 43294 dokumen yang sesuai dengan query
cover
Susetyo Galu Pratomo
"Piranti keselamatan dalam kendaraan tidak bisa dipisahkan dari kemajuan teknologi di bidang otomotif. Piranti keselamatan seperti pengendali kestabilan kendaraan dapat membantu pengemudi untuk mengendalikan kendaraan guna mengurangi resiko kecelakaan ketika berkendara dalam kondisi kritis. Sistem pengendali kestabilan kendaraan akan dirancang menggunakan skema pengendalian berbasis Linear Parameter Varying-Model Prediction Control (LPV-MPC). Penelitian dalam thesis ini akan berbasis software in the loop (SIL) dengan memanfaatkan model kendaraan two-track dan aplikasi simulator CarSim. Model yang digunakan dalam perancangan akan dilakukan validasi dan optimasi guna memberikan respon output yang baik ketika digunakan pada penelitian. Pengendalian kestabilan pada penelitian ini meliputi pengendalian kecepatan, side slip dan yaw rate dari kendaraan. Prosedur pengujian hasil perancangan pengendali yang dilakukan ialah pengujian double-lane change (DLC) dengan kecepatan 120 km/h sesuai ISO:3888, pengujian DLC dengan kecepatan 80 km/h, pengujian terhadap nilai horison pengendali dan prediksi serta matriks Q dan R yang berbeda. Desain pengendali kestabilan yang diajukan dapat dikategorikan berhasil menjaga kestabilan kendaraan dilihat hasil nilai error dan akurasi pada prosedur DLC 120 km/h setelah dilakukan tuning parameter, nilai error turun 70.93% dan akurasi naik 0.39% untuk kecepatan longitudinal,7.83% dan 1.6% untuk side slip serta 67.92% dan 2.43% untuk yaw rate. Nilai error dan akurasi pada prosedur DLC 80 km/h setelah dilakukan tuning parameter, nilai error turun 72.62% dan 0.005% dan 0.28% untuk side slip serta 90.37% dan 1.32% untuk yaw rate.

Safety devices in vehicles cannot be separated from technological advances in the automotive sector. Safety devices such as vehicle stability controllers can help drivers to control the vehicle to reduce the risk of accidents when driving in critical conditions. The vehicle stability control system will be designed using a control scheme based on Linear Parameter Varying - Model Prediction Control (LPV-MPC). The research in this thesis will be based on software in the loop (SIL) using a two-track vehicle model and the CarSim simulator application. The model used in the design will be validated and optimized in order to provide a good output response when used in research. The stability control in this study includes controlling the speed, side slip and yaw rate of the vehicle. The test procedure for the results of the controller design carried out is a double-lane change (DLC) test with a speed of 120 km/h according to ISO: 3888, a DLC test with a speed of 80 km/h, a test of the control horizon value and predictions as well as different Q and R matrices. . The proposed stability control design can be categorized as successful in maintaining vehicle stability, judging by the results of the error value and accuracy in the DLC procedure of 120 km/h after parameter tuning, the error value decreases by 70.93% and the accuracy increases by 0.39% for longitudinal speed, 7.83% and 1.6% for side. slip and 67.92% and 2.43% for yaw rate. The error value and accuracy in the DLC procedure are 80 km/h after parameter tuning, the error value decreases by 72.62% and the accuracy increases by 0.16% for longitudinal speed, 0.005% and 0.28% for side slip and 90.37% and 1.32% for yaw rate. "
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohammad Aditya Rafi Pratama
"Dalam beberapa tahun terakhir, riset dalam bidang keamanan dalam berkendara menjadi sebuah perhatian penting bagi industri otomotif, hal ini disebabkan oleh kecelakaan lalu lintas yang masih marak terjadi. Sudah banyak penelitian mengenai metode pengendali yang dikembangkan untuk mengatasi masalah kestabilan pada kendaraan. Salah satunya adalah metode kendali Linear Parameter Varying Model Predictive Control (LPV-MPC). Kelebihan dari metode LPV-MPC ini adalah model nonlinear dapat diekspresikan sebagai sebuah kombinasi dari model-model linear dengan parameter yang bersifat varying dengan beberapa time varying parameter tanpa harus menggunakan linierisasi. Pada penelitian ini, dikembangkan sebuah sistem Active Safety berbasis LPV-MPC yang berguna untuk menjaga kestabilan kendaraan bus listrik dalam melakukan manuver berkendara seperti manuver Double Lane Change (DLC) dengan tetap pada kecepatan yang ditentukan. Pengendali LPV-MPC mengatur gaya masing-masing roda dan sudut belok roda depan sehingga dapat stabil dalam melewati track acuan yang diberikan. Hasil dari penelitian menunjukkan bahwa metode LPV-MPC mampu untuk menjaga kestabilan bus listrik pada saat melewati track acuan dengan tetap pada kecepatan target yang ditentukan pada penelitian thesis ini. Sehingga dapat disimupulkan kendaraan bus listrik dengan sistem Active Safety berbasis LPV-MPC dapat menjaga kestabilan dalam melakukan manuver berkendara.

In recent years, research in the field of safety in driving has become an important concern for the automotive industry, this is due to traffic accidents that are still rife. There have been many studies on control methods developed to overcome stability problems in vehicles. One of them is the Linear Parameter Varying Model Predictive Control (LPV-MPC) control method. The advantage of this LPV-MPC method is that the nonlinear model can be expressed as a combination of linear models with varying parameters with several time varying parameter without having to use linearization. In this study, an Active Safety system based on LPV-MPC was developed which is useful for maintaining the stability of electric bus vehicles in carrying out driving maneuvers such as the Double Lane Change (DLC) maneuver while remaining at a specified speed. The LPV-MPC controller regulates the force of each wheel and the turning angle of the front wheels so that they can be stable in passing the given reference track. The results of the study indicate that the LPV-MPC method is able to maintain the stability of the electric bus when passing the reference track while remaining at the target speed specified in this thesis research. So it can be concluded that electric bus vehicles with an Active Safety system based on LPV-MPC can maintain stability in driving maneuvers."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Pratama Mahadika
"

Harga bahan bakar yang terus meningkat memaksa produsen otomotif untuk melakukan inovasi dalam meningkatkan efisiensi bahan bakar. Kendaraan hibrida khususnya konfigurasi Parallel Hybrid Electric Vehicle telah terbukti mampu meningkatkan efisiensi bahan bakar. Kunci utama dalam meningkatkan efisiensi bahan bakar kendaraan hibrida terdapat pada pengendali Energy Management System yang mengatur kinerja mesin dan motor sehingga kendaraan dapat bekerja pada rentang kerja yang optimal. Desain sistem kendali akan menggunakan pengendali berbasis algoritma shortest path dalam mengendalikan Energy Management System pada konfigurasi Parallel Hybrid Electric Vehicle sehingga mampu mengoptimalkan pembagian daya selama perjalanan yang siklus berkendaranya telah diketahui sebelumnya. Perancangan dalam desain pengendalian dilakukan dengan mengidentifikasi model sistem kendaraan yang digunakan untuk mengetahui jumlah bahan bakar yang digunakan. Kemudian dari model sistem tersebut akan dicari nilai bahan bakar yang dibutuhkan selama berkendara dengan berbagai kemungkinan selama siklus berkendara. Lalu akan dibuat pengendali dengan mencari rute terpendek untuk menghasilkan urutan sinyal kendali dengan nilai yang paling optimal dan efisien. Tujuan dari sistem pengendalian ini adalah untuk menentukan besaran pembagian kinerja mesin dan motor sehingga kendaraan dapat bekerja dalam keadaan yang paling efisien. Hasil dari penelitian membuktikan bahwa pengendali dengan algoritma shortest path mampu mengatur pembagian torsi mesin pembakaran internal dengan motor listrik dengan nilai yang optimal.


Increasing fuel price has forced automotive manufacturers to innovate in increasing fuel efficiency. Hybrid vehicles, especially Parallel Hybrid Electric Vehicle configuration have been proven to be able to improve fuel efficiency. The main key in term of fuel efficiency of hybrid vehicles is the controller of the Energy Management System that manages the performance of the engine and motor so that the vehicle can work in the optimal working range. The control system design will utilize a controller using shortest path algorithm to control the Energy Management System in the Parallel Hybrid Electric Vehicle configuration so it can optimize power distribution during the trip in which the driving cycle has been previously known. The design of the control design is done by identifying the vehicle system model that is used to determine total fuel used during driving. Then from the model, it will find the fuel value needed while driving with various possibilities during the driving cycle. Then controller will be made to produce control signal  sequences with the most optimal and efficient value. The purpose of this control system is to determine the distribution of engine and motor performance so that the vehicle can work in the most efficient conditions. The results of the study prove that controller using shortest path algorithm are able to control torque distribution from internal combustion engine and electric motor with optimal value.

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nikolas Jalu Padma Iswara
"Fitur sistem kestabilan dapat di definisikan sebagai sebuah fitur keselamatan yang mampu menginterferensi kendali kendaaran dalam keadaan yang sulit dikendalikan oleh pengemudi pada umumnya. Dalam peningkatan sistem stabilitas kendaraan listrik dengan motor penggerak pada masing – masing roda, penulis melakukan penelitian menggunakan skema pengenali non-linear berdasarkan Model Predictive Control (MPC). Untuk menghindari efek samping yang tidak diinginkan, skidding atau ketidaknyamanan pengemudi dalam kondisi berkendara kritis, metode MPC memungkinkan untuk mempertimbangkan kendala motor listrik penggerak dan rasio slip. Pengendali ini diusulkan untuk mengatasi masalah yang menantang. Pendekatan analitis untuk pengontrol yang diusulkan diberikan dan diterapkan untuk mengevaluasi pengendalian dan stabilitas kendaraan listrik. Pada pengujian sistem pengendali ini akan menggunakan aplikasi LabView sebagai simulasi untuk hasil kinerja dari sistem yang akan di uji. Untuk pengujian pada model kendaraan, penulis menggunakan aplikasi CarSim untuk melihat hasil sistem pengendali yang sebelumnya sudah dirancang.

The stability system feature can be defined as a safety feature that is able to interfere with vehicle control in situations that are difficult for drivers to control in general. In improving the stability system of electric vehicles with motor drives on each wheel, the authors conducted a study using a non-linear recognition scheme based on a Predictive Control Model (MPC). To avoid unwanted side effects, skidding, or driver discomfort in critical driving conditions, the MPC method makes it possible to consider the constraints of the electric motor drive and slip ratio. This controller is proposed to overcome challenging problems. An analytical approach to the proposed controller is given and applied to evaluate the control and stability of electric vehicles. In testing, this controller system will use the LabView application as a simulation for the performance results of the system to be tested. For testing on vehicle models, the authors use the CarSim application to see the results of the control system that was previously designed."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raufzha Ananda
"Kemajuan teknologi dibidang otomotif telah berkembang sangat pesat. Salah satu perkembangannya yaitu sistem kendali pada kendaraan dengan menggunakan mikroprosesor. Sistem kendali ini digunakan untuk pengamanan kendaraan yang dapat mengurangi angka kecelakaan yang terjadi. Sistem keamanan yang dikembangkan untuk mencegah terjadinya kecelakaan berkendara yang berpusat pada stabilitas yaw dan slip samping pada kendaraan. Dalam rangka mengembangkan sistem tersebut dibutuhkan pengujian berulang-ulang untuk mendapatkan hasil yang sesuai dengan keinginan. Perancangan yang dibantu dengan simulasi Hardware in The Loop (HIL) merupakan metode yang tepat untuk melakukan pengujian dari sistem. Pengujian ini dapat mengurangi waktu dan jumlah uji kendaraan yang sebenarnya di jalan, menurunkan biaya pengembangan dan meningkatkan kualitas pengembangan produk baru. Pada penelitian ini akan dilakukan simulasi HIL menggunakan Model Predictive Control (MPC) yang diawali dengan simulasi Software In The Loop untuk mempelajari dan menguji sistem kendali untuk stabilitas laju yaw pada otomotif. Dimana hasil pengujian simulasi HIL berjalan cukup baik dan bekerja secara real time.

Advances in automotive technology has developed very rapidly. One development is the vehicle control system using a microprocessor. This control system is used for security vehicles that can reduce the number of accidents that occur. Security system developed to prevent accidents driving centered yaw stability and side slip of the vehicle. In order to develop such a system required repeated testing to get the results as you wish. The design with Hardware in The Loop (HIL) is an appropriate method for the testing of the system. This test can reduce the time and the amount of the actual vehicle test on the road, lowering development costs and improve the quality of new product development. This research will be conducted HIL simulation that use Model Predictive Control (MPC) with doing Software In The Loop Simulation previuosly to learn and test the stability control system for yaw rate at automotive. The result of the simulation are doing very well and give the real time output.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59847
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christian Salmon
"ABSTRAK
Kendaraan listrik ringan ini dirancang menggunakan rangka space frame serta untuk beroperasi di lingkungan kampus Universitas Indonesia. Kendaraan listrik ini dibuat lebih ringan guna meningkatkan efisiensi konsumsi energi kendaraan. Rangka space frame kendaraan listrik ringan ini menggunakan material Al 6061 T6 yang memiliki massa lebih ringan namun tetap mempertahankan kekuatan struktur saat diberikan pembebanan. Sistem suspensi depan dan belakang serta drivetrain dirancang untuk menggunakan komponen yang tersedia di pasaran. Perancangan dan perhitungan kekuatan dilakukan dengan menggunakan program Autodesk Inventor® yang kemudian dikonfirmasi dengan metode analitis, lalu dibandingkan dengan tegangan yield material dengan mempertimbang angka faktor keselamatan serta dynamic factor. Rangka kendaraan ini pada akhirnya disimpulkan mampu menahan pembebanan statis berdasarkan kriteria kegagalan Von Mises yang diperbesar dengan faktor pembebanan dinamik dan faktor keselamatan.

ABSTRACT
This light weight electric commuter is designed utilizing space frame and designed to operate within Universitas Indonesia Campus. This electric sightseeing vehicle frame is made to be lighter to increase energy consumption efficiency. This space frame electric vehicle frame using Al 6061 T6 that has lighter mass but retained its strength when loaded. Front and rear suspension and drivetrain is designed to use component available in market. Design and calculation of strength using Autodesk Inventor® program then confirmed by analytical calculation, finally compared with yield strength with safety factor and dynamic factor consideration. This vehicle frame is finally concluded capable to withstand static load based on Von Mises failure criteria amplified by dynamic factor and safety factor.
"
2015
S59062
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardaffa Kemal Rasha
"The emergence of electric vehicles have gained the public attention as the new mode of transport in the last few years. Not only that it is relatively cheaper to charge compared to filling gasoline, it is also good for the environment. In addtion to that, electric vehicles gets a lot of benefit especially in Indonesia, such as cheaper vehicle tax, and electric vehicle is free from the odd-even rule, that is why more people are switching to electric vehicles right now. Currently, Universitas Indonesia is converting a Toyota Calya into an electric car. Since heavy modifications is done to the car such as removing the engine and adding a battery, characteristics of the car may change. Hence, the objective of this thesis is to identify the handling characteristic of the Toyota Calya electric car. To identify the handling characteristic, a vehicle handling equation is used. The data gained from the calculation are the Ackermann turning radius, sideslip angle, the maximum skid, centrifugal force on the tires, slip angle, and understeer coefficient. The calculations shows that electric conversion of the Toyota Calya affects the handling equation, and the car will experience understeer. In conclusion, because the understeer coefficient 0,0575, the electric Toyota Calya will experience understeer, but not much as the value is small. To fix this issue some things can be done to the car such as changing the front tires to a larger track or lower the car’s front suspension.

Kemunculan kendaraan listrik telah mendapatkan perhatian publik sebagai moda transportasi baru dalam beberapa tahun terakhir. Tidak hanya biayanya yang relatif lebih murah dibandingkan pengisian bensin, juga baik untuk lingkungan. Selain itu, kendaraan listrik mendapatkan banyak manfaat terutama di Indonesia, seperti pajak kendaraan yang lebih murah, dan kendaraan listrik bebas dari aturan ganjil genap, itulah sebabnya saat ini semakin banyak orang yang beralih ke kendaraan listrik. Saat ini Universitas Indonesia sedang mengubah Toyota Calya menjadi mobil listrik. Karena modifikasi berat dilakukan pada mobil seperti melepas mesin dan menambahkan baterai, karakteristik mobil dapat berubah. Oleh karena itu, tujuan dari tugas akhir ini adalah untuk mengidentifikasi karakteristik handling mobil listrik Toyota Calya. Untuk mengidentifikasi karakteristik penanganan, digunakan persamaan penanganan kendaraan. Data yang diperoleh dari perhitungan tersebut adalah radius putar Ackermann, sudut selip, skid maksimum, gaya sentrifugal pada ban, sudut selip, dan koefisien understeer. Perhitungan menunjukkan bahwa konversi listrik Toyota Calya mempengaruhi persamaan penanganan, dan mobil akan mengalami understeer. Kesimpulannya, karena koefisien understeer 0,0575 maka Toyota Calya elektrik akan mengalami understeer, namun tidak sebesar nilainya yang kecil. Untuk mengatasi masalah ini beberapa hal dapat dilakukan pada mobil seperti mengganti ban depan ke trek yang lebih besar atau menurunkan suspensi depan mobil."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luthfi Arif Radriyantomo
"Simulasi ini membahas tentang perancangan, dan desain DC to DC Converter Bidirectional untuk aplikasi sistem Regenerative Braking yang akan digunakan pada kendaraan listrik. Dimana sistem Regenerative Braking ini merupakan sistem yang biasa digunakan pada kendaraan beroda untuk memanfaatkan energi kinetik balik saat dilakukan pengereman, dan diubah menjadi energi listrik, sehingga energi tersebut tidak terbuang sia-sia dan dapat dimanfaatkan secara efektif.
Pada simulasi ini ditunjukan proses pendesainan Full-Bridge Push-Pull DC-DC Converter Bidirectional 400V menjadi 10.8V dan sebaliknya, dengan menggunakan transformator berfekruensi tinggi 50kHz. Full-Bridge Push-Pull DC-DC Converter Bidirectional yang telah didesain tersebut akan digunakan untuk menyimpan energi lebih dari sistem Regenerative Braking menuju supercapacitor, lalu energi yang tersimpan tersebut dapat dikembalikkan lagi menuju Dc Link untuk digunakan kembali energinya sebagai energi cadangan yang nantinya dapat diimplementasikan pada kendaraan listrik. Supercapacitor dipilih karena sifatnya yang ideal untuk sistem, yaitu dapat dengan cepat melakukan charge/discharge, dan dapat menyuplai energi dengan densitas yang besar.

This simulation discusses the process, and the design of DC to DC Bidirectional Converter for Regenerative Braking system applications that will be used on electric vehicle. Where the Regenerative Braking system is a system commonly used in wheeled vehicles to utilize reverse kinetic energy when braking is carried out, and converted into electrical energy, so that energy is not wasted and can be utilized effectively.
In this simulation the design process for Full-Bridge Push-Pull DC-DC Bidirectional 400V Converter to 10.8V and vice versa, using a transformer with a high frequency of 50kHz. The Full-Bridge Push-Pull Bidirectional DC-DC Converter that has been designed will be used to store extra energy from the Regenerative Braking system towards the supercapacitor, then the stored energy can be returned to Dc Link to be reused as a backup energy which can later be implemented on electric vehicles. Supercapacitor was chosen because it is ideal for systems, which can quickly charge / discharge, and can supply energy with a large density.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Arif Maulana
"Head unit pada kendaraan merupakan perangkat yang digunakan untuk memutar media seperti musik dan radio yang bahkan dapat digunakan sebagai alat navigasi dengan kemampuan menampilkan peta ketika berkendara. Pada penulisan ini, dilakukan penelitian bagaimana sebuah head unit kendaraan khususnya kendaraan listrik dapat digunakan tidak hanya untuk memutar media saja, tetapi juga sebagai alat human-machine interface (HMI) yang dapat menampilkan parameter-parameter kendaraan seperti kecepatan, RPM motor, dan suhu. Pada kendaraan listrik, parameter lain yang dapat ditampilkan adalah tegangan dan arus dari bagian kendaraan listrik seperti power distribution unit (PDU), battery management system (BMS), inverter, dan sebagainya. Head unit yang digunakan pada penelitian ini menggunakan sistem yang sudah ada banyak di pasar, yaitu berbasiskan sistem operasi Android sehingga dari segi fungsi utamanya sebagai head unit, ia bisa langsung mengutilisasikan kemampuan yang ditawarkan oleh sebuah perangkat Android. Dalam perancangan sistemnya, sebuah aplikasi Android dengan antarmuka pengguna grafis (GUI) yang dirancang secara fungsional dikembangkan dan di-install pada head unit. Head unit ini kemudian akan terhubung melalui koneksi serial USB dengan sebuah microcontroller yang bertindak sebagai salah satu node yang mewakilkan head unit tersebut pada jaringan CAN bus kendaraan. Dengan begitu, head unit dapat membangun komunikasi dengan perangkat-perangkat kendaraan.

The head unit in a vehicle is a device used to play media such as music and radio that can even serve as a navigation tool with the ability to display maps when driving. In this paper, research is conducted on how a vehicle head unit, especially on electric vehicles, can be used not exclusively to play media, but also as a human-machine interface (HMI) tool that can display vehicle parameters such as speed, motor RPM, and temperature. In electric vehicles, other parameters that can be shown are voltage and current from electric vehicle parts such as the power distribution unit (PDU), battery management system (BMS), and inverter, among others. The head unit used in this research uses a system that already exists in many markets, namely the Android operating system so that in terms of its primary function, the head unit can directly utilize the capabilities offered by an Android device. In the system design, an Android application with a functionally designed graphical user interface (GUI) was developed and installed on the head unit. The head unit will then connect via a USB serial connection with a microcontroller that acts as one of the nodes representing the head unit on the vehicle CAN bus network. Thus, the head unit can establish communication with the vehicle parts."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rico Andrean
"ABSTRAK
Kendaraan roda empat dapat mengalami perilaku understeer atau oversteer ketika berbelok. Perilaku tersebut menunjukkan ketidakstabilan pada kendaraan yang dapat terjadi ketika kendaraan di laju dengan kecepatan tinggi diatas permukaan jalan dengan koefisien gesek yang rendah. Ketidakstabilan ini dapat menjadi potensi bahaya ketika berkendara.Desain pengendali prediktif bertingkat dengan model gerak kendaraan double track, diajukan dalam skripsi ini untuk mengatasi perilaku understeer dan oversteer. Perancangan pengendali dimulai dari mendapatkan data masukkan dan keluaran pergerakkan kendaraan. Kemudian dengan metode least square bertingkat, didapatkan matrik matrik model identifikasi bertingkat. Model identifikasi tingkat pertama digunakan untuk mendapatkan nilai eror estimasi keluaran, sedangkan model identifikasi tingkat kedua digunakan sebagai model pengendali prediktif bertingkat.Pada akhir penelitian, desain pengendali prediktif bertingkat diuji melalui simulasi untuk melihat kemampuan pengendali yang telah dirancang.

ABSTRACT
Oversteer and understeer could be experienced by each of four wheel vehicle. The behaviours show the instability of the vehicle, and might be happened because of high velocity of the vehicle and low friction coefficient of the road. The instability could be one of the potential risks in driving the vehicle.The design of multistage predictive control with double track vehicle model is proposed in this research to handle understeer and oversteer behaviours. The design started from collecting the related input and output. Then the multistage least square method is used to find the matrix used in multistage identification model. The first stage of identification model is used to get prediction error that happened while estimating the output. The second level of identification model is used as multistage predictive control model.In the end of research, the multistage predictive control is tested through simulation to check the performance of the controller."
2017
S67803
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>