Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 181540 dokumen yang sesuai dengan query
cover
Juansen Varian Gosal
"Hidrogen merupakan salah satu sumber energi terbarukan yang sedang berkembang secara global dan menjadi tumpuan dasar untuk mencapai net zero emission pada tahun 2050. Secara produksi, hidrogen dapat dibentuk melalui proses steam methane reforming menggunakan gas alam dan minyak. Hidrogen juga dapat diproduksi melalui proses gasifikasi dengan batu bara. Kemudian, hidrogen dapat diproduksi melalui teknologi elektrolisis dengan biomassa maupun bahan baku terbarukan lainnya. Pada penelitian ini, produksi hidrogen berfokus pada batu bara dimana batu bara memiliki keberlanjutan yang tinggi akibat ketersediaan bahan baku yang melimpah di Indonesia. Selain itu, batu bara secara biaya memiliki harga yang lebih murah dan kapasitasnya tinggi untuk sumber energi. Pada penelitian ini dilakukan analisis teknoekonomi produksi hidrogen dengan gasifikasi batu bara dengan tujuan untuk mendapatkan hidrogen murni dan menganalisis kelayakan dari proses produksi hidrogen. Metode yang dilakukan dalam penelitian ini adalah melakukan simulasi menggunakan software ASPEN HYSYS V11 dan Aspen Adsorption V11 dan menganalisis profitabilitas menggunakan Microsoft Excel. Penelitian ini memberikan hasil bahwa hidrogen yang dihasilkan memiliki kemurnian 100% dengan dua proses separasi bertingkat, yaitu pemisahan gas asam dan PSA. Selain itu, secara ekonomi produksi hidrogen dengan gasifikasi batu bara memberikan hasil NPV sebesar Rp9.961.859.001; IRR sebesar 14,76%; ROI sebesar 13,50%.; LCOH sebesar 3 USD/kg dengan harga penjualan produk hidrogen sebesar Rp82.000 dimana hasil ini memberikan informasi bahwa proyek layak secara ekonomi dan menguntungkan.

Hydrogen is one of the emerging renewable energy sources being developed globally and serves as a fundamental pillar in achieving net zero emissions by 2050. In terms of production, hydrogen can be generated through steam methane reforming using natural gas and oil. It can also be produced via the gasification of coal. Additionally, hydrogen can be produced through electrolysis technology using biomass or other renewable feedstocks. This study focuses on hydrogen production from coal, given coal's high sustainability due to its abundant availability in Indonesia. Moreover, coal is relatively inexpensive and has a high energy capacity, making it a cost-effective energy source.This research conducts a techno-economic analysis of hydrogen production via coal gasification, aiming to produce pure hydrogen and assess the feasibility of the production process. The method involves simulation using ASPEN HYSYS V11 and Aspen Adsorption V11, with profitability analysis carried out using Microsoft Excel. The results show that the hydrogen produced has 100% purity through a two-stage separation process: acid gas removal and PSA (Pressure Swing Adsorption). Economically, hydrogen production from coal gasification yields a Net Present Value (NPV) of IDR 9,961,859,001; an Internal Rate of Return (IRR) of 14.76%; a Return on Investment (ROI) of 13.50%; and a Levelized Cost of Hydrogen (LCOH) of 3 USD/kg, with a hydrogen selling price of IDR 82,000. These results indicate that the project is economically feasible and profitable."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fiki Tricayandaru
"Gasifikasi merupakan proses termokimia untuk mengkonversi bahan bakar padat seperti batubara, kayu dan biomassa lain menjadi bahan bakar gas yang terdiri dari komponen CO, H2, CH4, CO2 dan N2. Teknologi gasifikasi ini semakin diminati disebabkan harga bahan bakar minyak yang semakin mahal. Pemanfaatan batubara dengan teknologi gasifikasi diharapkan menjadi sumber energi baru dan dapat menggantikan peran bahan bakar minyak ke depannya.
Tujuan penelitian adalah mempelajari karakteristik gasifikasi batu bara subbituminous dengan menggunakan reaktor gasifikasi jenis Downdraft Fixed Bed Gasifier. Penelitian ini bertujuan untuk mendapatkan profil temperatur di gasifier selama beroperasi, laju aliran (flowrate), nilai kalori (Heating Value), kandungan gas produser, Equivalence Ratio(ER) , konversi karbon, Spesific gasification Rate (SGR), Spesific Gas Production Rate (SGPR) serta efisiensi gasifikasi. Tujuan penelitian tersebut diatas dilakukan dengan memvariasikan laju udara gasifikasi (suplai udara ke reaktor).
Tahap pengujian gasifikasi menggunakan batubara dengan LHV 5668 Kkal/kg sebanyak 18 kg dengan diameter penampang reaktor 0.15 m, luas penampang reactor 0.018 m2, menggunakan varian laju udara 112,81-365,78 lpm, Equivalance ratio 0,102- 0,172. Efisiensi terbaik dari penelitian ini mendapatkan nilai 42% dengan rentang gasifikasi (waktu flame burner menyala ) 85 menit, laju gas produser 293,57 lpm, SGR 719,73 kg/h.m2, SGPR 1616,49 m3/h.m2. LHV gas produser yang didapat 1070,49 kkal/m3.
Untuk menunjang hasil gas produser lebih baik maka dilakukan pengembangan feeding door dan aplikasi gas holding tank setelah siklon.

Gasification is a thermochemistry process for converting solid fuel such as coal, wood, and biomass into another gas fuel which contains CO, H2, CH4, CO2 and N2. Gasification technology rapidly concern because of high rise of oil fuel price. Coal utilization with gasification method hopefully will become a new energy resource and can transform oil fuel in soon.
This purpose of this research is for to studyin sub-bituminous gasification characteristics with using Downdraft Fixed Bed Gasifier. Also for obtaining temperature profile at gasifier during the operation, flowrate, heating value, and producer gascontain, equivalence ratio (ER), carbon convertion, Spesific gasification Rate (SGR),Spesific Gas Production Rate (SGPR) and gasification efficiency. All of matter above are done by varying the flowrate gasification (air into reactor supply).
Gasification trial phase using coal LHV 5668 Kkal/kg with amount 18 kg, reactor wide 0,15 m, diameter of reactor 0,15 m, also using flowrate variants 112,81- 365,78 liter/min. Equivalance ratio 0,102-0,172. Best efficiency obtained 42% with gasification time (time for flame burner ignited) 85 minutes, flowrate producer gas 293,57 liter/min, SGR 679,41Kg/h.m2, SGPR 1259,40 m3/h.m2. Producer gasLHV obtained 1070,49 Kkal/m3.
In order to get the best result of gas producer, some development in feeding door and gas holding tank after cyclone has installed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S37336
UI - Skripsi Open  Universitas Indonesia Library
cover
Yudha Ary Fianto
"Dalam memenuhi kebutuhan energi untuk bahan bakar dalam skala industri, maka diperlukan energi yang murah dan berkualitas. Oleh karena itu, gasifikasi batubara digunakan untuk menjadi alternatif dalam penggunaan energi untuk bahan bakar. Untuk aplikasi industri dibutuhkan kualitas api yang baik sesuai dengan kebutuhan dan jenis pembakaran yang dilakukan industri tersebut. Oleh karena itu, pada penelitian ini dilakukan pengujian terhadap karakteristik api yang diperoleh dari gasifikasi dengan memvariasikan masukan udara pada burner. Pada penelitian ini dilakukan korelasi antara masukan udara pada burner dengan temperatur api, pembentukan unsur CO, CO2, HC, dan NOx serta kalkulasi heat release rate pada combustion laboratory unit. Setelah melakukan percobaan didapat efisiensi gasifikasi batubara sebesar 39,5 % dengan masukan udara pada reaktor sebesar 217 lpm dan dilengkapi dengan gas cleaning system seperti water scrubber dan cyclone. Dari hasil ini, penulis mendapatkan korelasi masukan udara sekunder pada burner sebanding dengan temperatur api, pembentukan unsur CO, CO2, HC, dan NOx serta kalkulasi heat release rate pada combustion laboratory unit.

In the energy needs for fuel in industrial scale, the energy needed cheap and good quality. Therefore, the gasification of coal used to be an alternative in the use of energy for fuel. For industrial applications need a good quality of fire in accordance with the needs and the type of burning of the industry. Therefore, in this study conducted a fire test on the characteristics obtained from the gasification by varying the input air at burner. In this study conducted a correlation between the input air at the burner flame temperature, the formation of the elements of CO, CO2, HC, and NOx and heat release rate calculations in a combustion laboratory unit. After performing an experiment to get the efficiency of coal gasification for 39.5% of the input air to the reactor for 217 LPM and is equipped with gas cleaning systems such as water scrubber and cyclone. From these results, the authors find the correlation of secondary air inputs to the burner flame proportional to the temperature, the formation of the elements of CO, CO2, HC, and NOx and heat release rate calculations in a combustion laboratory unit."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50993
UI - Skripsi Open  Universitas Indonesia Library
cover
Raja Darmawan Noerhadi
"Permintaan akan energi menjadi sesuatu yang substansial dalam semua aspek kehidupan.Isu global warming menjadi tantangan yang juga harus dihadapi dalam memilih energi alternatif. Batubara yang merupakan salah satu sumber energi yang melimpah di dunia juga mempunyai peranan dalam mengurangi permasalahan energi yang ada saat ini. Oleh karena itu, gasifikasi batubara digunakan untuk menjadi alternatif dalam penggunaan energi untuk bahan bakar. Kualitas api yang baik, optimum, disertai emisi yang baik adalah salah satu parameter energi yang diinginkan saat ini. Oleh karena itu, pada penelitian ini dilakukan uji karakteristik gas burner dengan mevariasikan jumlah vane pade swirl gas burner. Variasi tersebut akan memunculkan korelasi dengan kualitas api, heat release rate, dan pembentukan emisi pada combustion unit. Fungsi dari swirl adalah untuk menciptakan zona resirkulasi internal (IRZ). Pada pembakaran non-premixed IRZ berfungsi dalam menyempurnakan percampuran udara dengan bahan bakar agar pembakaran dapat berjalan sempurna, untuk menstabilkan beberapa fraksi hasil pembakaran, agar terbakar kembali sehingga kadar partikel padat pada exhaust gas dapat dikurangi.Variasi jumlah vane akan mepengaruhi optimasi dari IRZ. Pada penelitian ini menggunakan tiga variasi jumlah vane (6,8,10) pada swirl gas burner dengan tujuan mengetahui vane yang optimum dalam menghasilkan temperatur api, heat release rate, dan pembentukan emisi pada combustion unit. Hasil penelitian pada variasi jumlah vane pade swirl gas burner tersebut adalah zona resirkulisasi internal yang paling baik terjadi pada swirl vane 8. Hal ini dikarenakan percampuran udara dengan bahan bakar pada swirl vane 8 berjalan lebih sempurna dan menstabilkan beberapa fraksi hasil pembakaran agar terbakar secara lebih sempurna. Hal ini dapat ditunjukkan dari hasil penelitian bahwa swirl vane 8 mempunyai temperatur tertinggi pada termokopel pada 1 dan 2 (783,33°C dan 643,33°C). Kemudian, Heat release rate terbesar terjadi pada swirl vane 8 (10,878 kJ/s). CO2 pada swirl vane 6 sebesar 16,5% vol., pada swirl vane 8 sebesar 18 % vol., dan pada swirl vane 10 sebesar 17,6% vol. Efisiensi pembakaran terbaik terjadi swirl vane 8 (83,41%), diikuti swirl vane 10 (82,7%), dan swirl vane 6 (81,2%) pada posisi terakhir.

The demanding of energy is substantial in every part of modern life. The issues of global warming become a global challenge to use the proper alternative energy. Nowadays, Coal which one of the largest energy resources in the world has chance to decrease energy problem. Therefore, coal gasification become alternative energy to become useful fuel. A good quality of fire, optimum energy balance, include low of emission would become a good alternative fuel resources. On this experimental, conducted test on gas burner with different vane number on each swirl. These variation will conduct correlation between a quality of fire, heat release rate, and emission on combustion unit. Swirl has a function to create an internal reaction zone (IRZ). On non-remixed combustion, IRZ has an objective to complete air and fuel mixing which would become a better combustion process, to stabilize fraction of flue gas so the emission would be decrease. These variation of vane number would influence IRZ optimation. This experiment use three variaton of vane number (6,8,10) on swirl gas burner with an objective to find the optimum vane number on producing flame temperature, heat release rate, and emission in combustion unit The results of experiment on variation of vane number on swirl gas burner is the best internal recirculation zone (IRZ) goes to gas burner swirl vane 8. The reason is, on swirl vane 8 has complete air and fuel mixing and low of emission. It can be shown from experiment data. Swirl vane 8 has the highest temperature on thermocouple 1 and 2 (783,33°C dan 643,33°C). Then, the highest Heat release rate happens on swirl vane 8 (10,878 kJ/s). CO2 on swirl vane 6 16,5% vol., swirl vane 8 18 % vol., and swirl vane 10 17,6% vol. Combustion efficiency on swirl vane 8 (83,41%), swirl vane 10 (82,7%), and swirl vane 6 (81,2%)."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S50995
UI - Skripsi Open  Universitas Indonesia Library
cover
Baiqunni Mohammad Irvan
"Gas burner merupakan salah satu proses akhir dari tahapan gasifikasi yang berfungsi untuk mencampur bahan bakar dengan udara atau oksidator yang digunakan untuk membentuk nyala api pembakaran. Belum banyak yang meneliti mengenai karaktersitik api yang dihasilkan. Selain itu, api yang dihasilkan dari burner yang ada juga belum merata ke seluruh bagian dari ruang bakar. Salah satu cara untuk membantu penyebaran api adalah dengan beberapa variasi jumlah swirl vane mulai dari 6, 8, dan 10.
Pada skripsi ini akan dilakukan simulasi gas burner dengan variasi jumlah swirl vane yang menggunakan bahan bakar dari gasifikasi batubara untuk mengetahui pengaruh dari jumlah swirl vane tersebut terhadap penyebaran api yang dihasilkan. Ada beberapa parameter yang perlu diasumsikan agar simulasi berjalan lancar, antara lain adalah fraksi massa dari syngas tetap, bahan bakar yang digunakan adalah batubara, fraksi massanya adalah N2 62,3274%. CO 15,2763%, H2 6,7618%, CO2 6,9544%, CH4 1,7352% dan O2 0.9845%. Dengan kecepatan syngas adalah 5 m/s dan kecepatan udara tangensialnya adalah 9,7 m/s. Temperatur syngas sendiri adalah 473,15 K dan temperatur udara tangensialnya 300,15 K.
Hasil simulasi menunjukan bahwa dengan semakin kecilnya jumlah vane pada swirl akan semakin besar nilai turbulen kinetic energy pada masing-masing burner tersebut, hal ini akan mempengaruhi besarnya zona resirkulasi internal dari aliran yang ada. Zona resirkulasi internal ini akan mempengaruhi kualitas pembakaran yang ada. Sementara variasi jumlah swirl vane tidak banyak mempengaruhi temperatur yang dihasilkan dari ketiga jenis gas burner yang dihasilkan.

Gas burner is the end of process of gasification phase that its purpose is to mix fuel with air and other ocsidator to form burning flame. There are no many research to see flame characteristic that produce in gas burner. meanwhile flame that produce in this gas burner not spreadly well all over the burner. One method to overcome this problem is using variation of the swirl vane number between 6, 8, and 10.
In this thesis will be simulate gas burner with variation of Swirl Vane Number that using fuel from coal gasification. To make simulation done, we need to make some assuption. First, including composition of the gas mass fraction in the syngas remain, namely, N2 62,3274%. CO 15,2763%, H2 6,7618%, CO2 6,9544%, CH4 1,7352% dan O2 0,9845%. The velocity of synthetic gas (syngas) is remain constant at 5 m/s otherwise the velocity of secondary air through gas burner is 9,7 m/s. Temperature syngas is 473,15 K and temperatur of secondary air is 300,15 K.
The simulation results showed that with the small number of swirl vane on the greater value of turbulent kinetic energy at each of these burners, this will affect the internal recirculation zone from the existing flow. This internal recirculation zone will affect the quality of the existing combustion. While varying the amount of swirl vane not much affect the temperature generated from the three types of gas burners produced.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S59926
UI - Skripsi Open  Universitas Indonesia Library
cover
Nandanawa Aqilah
"Hidrogen merupakan salah satu sumber energi alternatif yang menjanjikan sebab terdapat potensi proses produksi tanpa emisi. Skema produksi hidrogen dapat melalui proses termokimia, biokimia, ataupun elektrokimia. Metode termokimia memiliki konversi yang tinggi namun menghasilkan emisi yang cukup besar. Di sisi lain, proses biokimia tidak menghasilkan emisi yang tinggi akan tetapi biaya yang tinggi dan konversi yang rendah. Penelitian ini menganalisis aspek teknis, lingkungan, dan ekonomi dengan mengevaluasi yield gas hidrogen, emisi CO2, dan levelized cost of hydrogen (LCOH). Perhitungan emisi mencakup scope 1 & 2. Percobaan dark fermentation dilakukan pada suhu 85°C menggunakan bakteri thermotoga neapolitana dengan variasi konsentrasi inokulum (0,3-0,7 g/L) pada perangkat lunak SuperPro Designer. Variasi metode pretreatment juga dilakukan antara metode steam explosion dan hidrolisis asam. Percobaan gasifikasi dilakukan pada perangkat lunak Aspen Plus V11 dengan variasi rasio uap-biomassa (0,8-1,2) dan variasi suhu (750-950°C). Berdasarkan hasil penelitian ditemukan bahwa dalam konfigurasi proses dengan hasil hidrogen tertinggi, hasil yield gasifikasi lebih tinggi (0,71 m3/kg jerami padi) dibandingkan proses dark fermentation (0,067 m3/kg jerami padi). Sedangkan dalam hal emisi yang dihasilkan dark fermentation unggul secara signifikan yaitu hanya sebesar 501 kg CO2eq, dimana gasifikasi menghasilkan 1480 ton CO2eq. Secara harga pokok produksi metode gasifikasi memiliki harga yang lebih rendah sekitar 0,7 USD/m3 dibandingkan dark fermentation yang mencapai 2,98 USD/m3. Jadi, dalam segi yield dan LCOH metode gasifikasi lebih unggul daripada dark fermentation. Namun, dark fermentation lebih baik dari segi emisi dibandingkan gasifikasi.

Hydrogen represents a promising alternative energy carrier due to its potential for emission-free production. Various production pathways are available, including thermochemical, biochemical, and electrochemical processes. Thermochemical methods generally offer high conversion efficiencies but are accompanied by substantial greenhouse gas emissions. In contrast, biochemical processes such as dark fermentation tend to generate lower emissions but are hindered by low conversion rates and high production costs. This study presents a comparative assessment of the technical, environmental, and economic aspects of hydrogen production via dark fermentation and gasification. Emission calculations cover scopes 1 & 2. The analysis focuses on hydrogen yield, carbon dioxide equivalent (CO₂eq) emissions, and levelized cost of hydrogen (LCOH). Dark fermentation was simulated at 85°C using Thermotoga neapolitana with varying inoculum concentrations (0.3–0.7 g/L) and different pretreatment methods, namely steam explosion and acid hydrolysis, using SuperPro Designer. Gasification was modeled in Aspen Plus V11 with variations in steam-to-biomass ratio (0.8–1.2) and operating temperature (750–950°C). Results indicate that gasification yielded significantly more hydrogen (0.71 m³/kg rice straw) compared to dark fermentation (0.067 m³/kg rice straw). However, dark fermentation resulted in considerably lower emissions (501 kg CO₂eq) relative to gasification (1480 tons CO₂eq). From an economic perspective, gasification also achieved a lower LCOH at approximately 0.7 USD/m³, compared to 2.98 USD/m³ for dark fermentation. Overall, while gasification demonstrates superior yield and economic performance, dark fermentation offers notable environmental benefits"
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nindita Larasati
"ABSTRACT
An extensive search of clean energy is the main drive for hydrogen production technology advancements. Hydrogen is an appealing energy source as an alternative to fossil fuels due to its carbon neutral lifecycle, making it more environmental friendly. Gasification technology is one of the most sought-after method of hydrogen production due to its efficiency and flexibility of the feedstock options. This research intends to bridge the gap where current literature is lacking by presenting a thermodynamic equilibrium model through simulation of non-catalytic steam gasification of oil palm kernel shell using Aspen Plus v10.0 software. A couple of operating parameters that have adverse effect on gasification efficiency, namely temperature of gasifier and steam-to-biomass (S/B) ratio were investigated in this study. The simulation results show that the optimum operating condition to get the highest hydrogen yield is obtained at temperature of 800 oC and S/B ratio of 1.0 wt/wt. Temperature enhances hydrogen content up to 82.54 vol% at the range of 750 to 800 oC while the highest margin of the incline of hydrogen composition is observed from 0.5 to 1.0 wt/wt at  80.90 vol% to 82.24 vol%. Based on the results, temperature has more impact on hydrogen yield compared to S/B ratio due to endothermic reactions being favored at high temperature such as water gas reaction and steam methane reforming reaction. Although hydrogen yield increases with an increase in S/B ratio, it is not beneficial to introduce too much excess steam since it does not have great impact to hydrogen yield with less than 1% increase per kg steam introduced. Different feedstocks were used as comparison to test the applicability of the model. It is found that pine sawdust and oil palm kernel shell are proven to be the most suitable feedstock as they give high hydrogen yield and high hydrogen content in syngas due to high volatile matter and fixed carbon content in addition to low moisture and ash content compared to municipal solid wastes (MSW), green wastes, food wastes, and straw.

ABSTRAK
Penelitian mengenai energi bersih adalah dorongan utama dari kemajuan teknologi produksi hidrogen. Hidrogen adalah sumber energi yang menarik sebagai alternatif dari bahan bakar fosil dikarenakan oleh siklus yang netral dari karbon, menjadi lebih ramah lingkungan. Teknologi gasifikasi adalah salah satu metode yang paling terkemuka akibat efisiensi dan fleksibilitas pemilihan bahan baku. Penelitian ini bertujuan untuk menjembatani kesenjangan dimana literatur terkini kurang mendalami dengan mengajukan model ekuilibrium termodinamika melalui simulasi gasifikasi uap non-katalis dengan bahan baku cangkang kelapa sawit menggunakan perangkat lunak Aspen Plus versi 10.0. Beberapa parameter operasi yang berpengaruh terhadap efisiensi gasifikasi seperti temperatur dari reaktor dan rasio uap-biomassa telah diteliti dalam studi ini. Hasil simulasi menunjukkan kondisi operasi optimal untuk mendapatkan hasil produksi hidrogen tertinggi dicapai pada temperatur 800 C dan rasio uap-biomass 1.0 wt/wt. Temperatur menaikkan komposisi hidrogen sehingga 82.54 vol% pada kisaran 750 sampai 800 C sedangkan margin kenaikan komposisi hidrogen paling tinggi didapat dari 0.5 sampai 1.0 wt/wt dari 80.90 vol% menjadi 82.24 vol%. Berdasarkan dari hasil, temperatur memberikan dampak yang lebih besar dibandingkan rasio uap-biomass diakibatkan oleh reaksi endotermik yang lebih spontan pada temperatur tinggi seperti reaksi air-gas dan reaksi reformasi metana dan uap. Walaupun hasil hidrogen meningkat seiring kenaikan dari rasio uap-biomass, memasukkan uap terlalu banyak tidak efisien sebab efeknya tidak signifikan dengan kenaikan kurang dari 1% per kilogram uap tambahan. Bahan baku berbeda digunakan sebagai perbandingan untuk menguji penerapan model ini. Hasil menunjukkan bahwa serbuk kayu pinus (pine sawdust) dan cangkang kelapa sawit terbukti menjadi bahan baku yang paling cocok untuk gasifikasi karena menghasilkan hasil dan komposisi hidrogen yang paling tinggi disebabkan oleh konten zat mudah menguap dan karbon tetap yang tinggi dengan konten kelembaban dan abu yang rendah dibandingkan limbah padat, limbah hijau, limbah makanan, dan jerami."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrean Diyandana Filemon
"Batubara dapat diolah menjadi bahan bakar cair melalui proses Fischer-Tropsch. Agar mudah diolah menjadi bahan bakar cair, batubara harus melalui proses gasifikasi untuk menghasilkan gas H2 dan CO dengan rasio 2:1. Kandungan abu dalam batubara yang selama ini sering diabaikan, diperkirakan memiliki efek sebagai katalis terhadap reaksi-reaksi gasifikasi. Pada penelitian ini, hendak diteliti pengaruh suhu reaksi dan kandungan abu terhadap rasio mol H2/CO dan yield gas sintesis yang dihasilkan. Batubara yang digunakan adalah batubara jenis sub-bituminous. Variasi kandungan abu dalam batubara dibagi menjadi dengan abu dan tanpa abu, dilakukan dengan dengan metode aglomerasi menggunakan pelarut CPO-air. Gasifikasi dilakukan dengan metode steam gasification yang menggunakan umpan arang dan kukus agar meningkatkan rasio mol H2/CO. Suhu operasi yang digunakan adalah 650°C, 700°C, dan 750°C. Rasio kukus terhadap arang ditetapkan 2,7 dan waktu tinggal kukus dalam unggun arang adalah 3,5 detik. Gasifikasi batubara yang tidak diaglomerasi (kandungan abu 6%) menghasilkan yield gas tertinggi sebesar 5,3 mmol/mol C dan rasio mol H2/CO tertinggi sebesar 1,94 pada suhu 750°C. Gasifikasi batubara yang diaglomerasi (kandungan abu tersisa 0,9%) menghasilkan yield gas tertinggi sebesar 3,34 mmol/mol C pada suhu 750°C dan rasio mol H2/CO tertinggi sebesar 0,77 pada suhu 650°C.

Coal could be transformed to liquid fuel through Fischer-Tropsch. This process is affordable if the mole ratio of H2/CO from synthetic gas is 2:1. Ash content in coal often to be ignored, but it is predicted to has effect as catalyst for gasification reaction. In this research, the effect of operating temperature and ash content to H2/CO mole ratio and synthetic gas? yield are observed. The coal?s type in this research is sub-bituminous. The ash content will be varied to with-ash and ash-free by agglomeration method with the mixture of CPO-water as solvent. The gasification process is fed with char and steam to increase the mole ratio of H2/CO. The operating temperature varied to 650°C, 700°C, and 750°C. The steam to char ratio is 2,7 and steam?s residence time in char bed is 3,5 s. From gasification of non-agglomerated coal (ash content 6%), the highest yield of gas is 5,3 mmol/mol C and the highest mole ratio of H2/CO is 1,94 at 750°C. From gasification of agglomerated coal (ash content 0,9%), the highest yield of gas is 3,34 mmol/mol C and the highest mole ratio of H2/CO is 0,77 at 650°C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64152
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dionisius Ramaditya Putra Fatruan
"Gasifikasi batubara merupakan proses dekomposisi atau penguraian batubara dengan bentuk padatan menjadi gas-gas mampu bakar seperti CO, H2, dan CH4 dan gas tidak mampu bakar seperti N2 dan CO2, serta partikel lain seperti abu (ash) dan tar. Gas produser yang tidak dapat dimanfaatkan secara langsung sebelum melalui proses pembersihan terlebih dahulu. Hal ini bertujuan untuk membuang partikel pengotor seperti tar yang dapat menyumbat saluran gas. Adapun tujuan dari penelitian ini adalah merancang sebuah downdraft gasifier yang bertujuan untuk mensuplai sebuah diesel engine berkapasitas 50 kVA. Pada penelitian kali ini, penulis memfokuskan pada rancangan reaktor bertipe unnggun tetap aliran kebawah yang berfungsi untuk membakar batubara dan melakukan proses gasifikasi agar menghasilkan gas mampu bakar yang mempunyai nilai kalor yang sesuai dengan kebutuhan engine. Perancangan reaktor ini pun disertai dengan perhitungan blower primer dan blower hisap yang sesuai dengan system gasifikasi tersebut.

Coal gasification is a process to decomposite the coal from solid to producer gas like CO. H2, CH4 and also N2, and CO2 and another particle like ash and tar. Producer gas from gasification can’t directly applied become fuel before cleaning process to remove impurities such as tar particles that can clog the gas. The purpose of this research is to design a downdraft gasifier that aims to supply a diesel engine with a capacity of 50 kVA. In this case, the authors focus on the design of the reactor (Fix Bed Downdraft Gasifier) that used to do coal gasification process in order to be able to produce fuel gas that having a calorific value according to engine needs. The design of the reactor is also accompanied by a calculation of the primary blower and blower suction corresponding to the gasification system."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rudi Hariyanto
"Salah satu kendala yang menghambat program pengembangan gasifikasi biomassa sampai saat ini adalah gas produk gasifikasi siap pakai mengandung kadar tar diatas standar yang diijinkan yaitu <2 g/Nm3 (Energi Engineering- What is Gasification.htm). Sedang syarat yang ideal untuk berat kadar tar yang keluar gasifier tidak lebih dari 1% dari berat gas produk yang digunakan. Penelitian ini sebenarnya merupakan pengembangan penelitian dari tesis Saudara Fajri Vidian, 640202014Y, yang baru sampai tahap penelitian komposisi gas produk gasifikasi. Pengembangan penelitian yang dimaksud disini adalah memberikan penambahan udara pada udara pembakaran. Berdasarkan penelitian JH Howson, kandungan tar dalam gas secara proporsional dapat diturunkan dengan adanya penambahan udara. Oleh karenanya pengujian ini difokuskan untuk mengetahui seberapa besar pengaruh variasi kapasitas udara terhadap nilai kadar tar dan nilai kalor (CV) gas produk khususnya yang keluar dari gasifier dan perbandingannya terhadap standar yang ditetapkan. Dari hasil pengujian yang dilakukan ternyata didapatkan bahwa penggunaan lowrate udara bakar 413,73 lpm atau bukaan katup udara bakar 40° untuk proses gasifikasi biomassa 50% tandan kosong dan 50% tempurung kelapa sawit adalah yang mampu menghasilkan kualitas gas produk paling optimum. Penilaian ini didasarkan atas gas produk yang dihasilkan mempunyai nilai kalor tertinggi yaitu 13,307 MJ/m3 dan prosentase kadar tar di dalam gas produk yang bernilai 0,65%. Nilai ini dibawah dari standar ideal yang ditetapkan sebesar 1% berdasar berat.

One of problem which to pursue the biomassa gasification development program until now is gasification that ready to use are containing tar more than 2 g/Nm3 (Energi Enginering - What is Gasification. htm) from standard allowed. The ideal criteria for tar contain of gasifier is not more than 1% from producer gas weight used. This examination is development from last tesis of Mr. Fajri Vidian, 640202014Y, just from composition exam of the producer gas. The development point of this examination is air addition of acombustion air. Based on JH Howson exam, tar contains on gas in proportional can reduced with air addition. Cause of that this exam focus on knowing the size can influence air flowrate variation with tar and calory (CV) specialy on producer gas. From experimental results that known if the addition of air significantly reduced the level of incondensable hydrocarbons (tar) of the gas. Using 413,73 lpm of the combustion air flowrate with ER = 0,62 resulted the optimum quality of producer gas. The producer gas have a caloricic value (CV) 13,307 MJ/m3 and a level of tar in the gas 0,65% by weight. Its under of 1% that is a standard level and a reasonable design basis for a downstream gas-treatment plant."
Depok: Fakultas Teknik Universitas Indonesia, 2006
T16906
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>