Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 55255 dokumen yang sesuai dengan query
cover
Hernando Fakhri Fasikhin
"Skripsi ini membahas proses manufaktur roda pada mockup mobil terbang. Tujuan dari penelitian ini adalah mendesain dan memanufaktur roda pada mockup mobil terbang agar dapat divisualisasikan. Pada penelitian ini terdapat 2 tahap yang dilakukan dalam proses manufaktur mockup roda mobil terbang yaitu tahap desain yang kemudian dilanjut dengan tahap manufaktur. Dalam tahap desain, dilakukan analisis clash detection untuk menguji interferensi yang terjadi pada desain dan finite element analysis untuk mengukur kekuatan struktur dari desain yang telah dibuat. Kemudian dilakukan proses manufaktur mockup roda mobil terbang ini sehingga menghasilkan mockup mobil terbang dengan roda depan yang dapat terlipat dan roda belakang yang terpasang dengan skala 1:1. Tujuan dari pembuatan mockup ini adalah agar dapat dijadikan referensi untuk penelitian mobil terbang pada tahap selanjutnya. Hasil dari analisisnya adalah, mockup roda dari mobil terbang terlipat sebesar 90o dan ketika roda terbuka jarak antar roda adalah 2 meter dengan ketinggian dari ground clearance mobil terbang sebesar 10 centimeter.

This thesis discusses the manufacturing process of the wheel system for a flying car mockup. The objective of this research is to design and manufacture the wheels for the flying car mockup in order to facilitate visualization. The research consists of two main stages: the design stage and the manufacturing stage. During the design stage, a clash detection analysis was conducted to evaluate potential interferences within the design, followed by a finite element analysis (FEA) to assess the structural strength of the proposed design. Subsequently, the manufacturing process of the flying car mockup wheels was carried out, resulting in a full-scale (1:1) mockup featuring a retractable front wheel and a fixed rear wheel. The purpose of developing this mockup is to serve as a reference for future research in the development of flying car. The result of the analysis shows that the mockup of the flying car’s wheel is retracted by 90 degrees. When the wheels are deployed, the distance between them is 2 meters, with a ground clearance of the flying car measuring 10 centimeters. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arvin Kareem Fadhurahman
"Skripsi ini membahas perancangan dan proses manufaktur mockup interior mobil terbang dengan skala 1:1, dengan penekanan utama pada pencapaian aspek ergonomi yang optimal bagi pengguna. Tujuan dari skripsi ini adalah untuk menghasilkan sebuah mockup interior mobil terbang yang telah memenuhi standar ergonomi berdasarkan pengujian nilai Posture Evaluation Index (PEI), serta dapat dijadikan referensi untuk optimasi desain interior di masa mendatang melalui proses manufaktur yang efisien. Metodologi yang digunakan dalam penelitian ini melibatkan analisis tiga konfigurasi postur menggunakan perangkat lunak Siemens Jack 9.0, dengan pendekatan metode Posture Evaluation Index yang mengintegrasikan hasil dari tiga metode analisis ergonomi lainnya, yaitu Low Back Analysis (LBA), Ovako Working Posture Analysis (OWAS), dan Rapid Upper Limb Assessment (RULA). Perancangan komponen interior dilakukan menggunakan perangkat lunak Autodesk Inventor. Hasil penelitian ini berupa rekomendasi konfigurasi kabin yang paling ergonomis, meliputi sudut steering wheels 20°, sudut sandaran kursi 70°, dan torso angle 70°, dengan knee angle yang disesuaikan untuk pengemudi dengan tinggi badan 160 cm, 170 cm, dan 185 cm. Selain itu, penelitian ini juga merinci proses manufaktur komponen-komponen kunci interior, termasuk analisis FBD untuk perancangan pedal yang memperhitungkan gaya operasional. 

This thesis discusses the design and manufacturing process of a full-scale (1:1) interior mockup for a flying car, with a primary focus on achieving optimal ergonomic aspects for users. The objective of this thesis is to produce an interior mockup that meets ergonomic standards based on the Posture Evaluation Index (PEI) assessment and can serve as a reference for future interior design optimization through an efficient manufacturing process. The methodology employed in this study involves analyzing three posture configurations using Siemens Jack 9.0 software, applying the Posture Evaluation Index method, which integrates results from three ergonomic analysis techniques: Low Back Analysis (LBA), Ovako Working Posture Analysis (OWAS), and Rapid Upper Limb Assessment (RULA). The interior components were designed using Autodesk Inventor. The results of this study provide recommendations for the most ergonomic cabin configuration, including a steering wheel angle of 20°, seatback angle of 70°, and torso angle of 70°, with knee angles adjusted for drivers with heights of 160 cm, 170 cm, and 185 cm. Additionally, this research details the manufacturing process of key interior components, including a Free Body Diagram (FBD) analysis for the pedal design that considers operational forces. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julian Jensen Purnomo
"Tujuan dari penelitian ini adalah merancang dan melakukan manufaktur body dan kanopi untuk mock-up mobil terbang. Mock-up adalah model fisik dari suatu desain yang digunakan untuk pengajaran, demonstrasi, evaluasi desain, promosi, dan berbagai kebutuhan lainnya. Penelitian ini juga akan menganalisis proses manufaktur pada body dan kanopi mobil terbang. Penelitian ini diawali dengan mendapatkan design requirement kemudian dilakukan studi literatur untuk mendapatkan benchmarking mekanisme pelipatan pintu dan bentuk body, setelah mendapatkan benchmark yang serupa maka dilanjutkan ke desain sketsa body. Ketika desain sketsa sudah sesuai design requirement maka tahap berikut merubah desain sketsa menjadi 3D Model menggunakan aplikasi Autodesk Inventor 2025, selanjutnya pemilihan material yang akan digunakan pada mock-up. Setelah melakukan desain dan pemilihan material maka selanjutnya akan dilakukan stress & strength analysis untuk mengetahui kekuatan yang dapat di tamping oleh struktur kanopi dan apakah kanopi dapat menopang beban dari pintu, jika sudah melakukan pengujian tersebut output yang dihasilkan merupakan blueprint untuk memproduksi body dan kanopi mobil terbang. Body dibagi menjadi 3 bagian yaitu bagian depan, tengah, dan belakang. Body akan ditopang oleh kanopi. Kanopi juga menopang pintu masuk mobil terbang dimana pintu ini adalah akses untuk pengemudi mobil terbang. Mock-Up ini dilakukan dengan skala 1:1 (life size). Mock-Up mobil terbang ini memiliki dimensi panjang 4,8 m dan tinggi 1,1 m. Rangka mobil terbang menggunakan material galvanized rectangular steel dengan ukuran 100 mm x 50 mm dan ketebalan dinding 2 mm. Struktur kanopi mock-up mobil terbang akan menggunakan low-carbon steel tube dengan ukuran 25,4 mm dan ketebalan dinding 1,6 mm.

The objective of this research is to design and manufacture the body and canopy for a flying car mock-up. A mock-up is a physical model of a design used for teaching, demonstration, design evaluation, promotion, and various other purposes. This study will also analyze the manufacturing process of the body and canopy of the flying car. The research begins with gathering design requirements, followed by a literature study to benchmark door folding mechanisms and body shapes. Once a suitable benchmark is found, a body sketch design is developed. When the sketch design meets the design requirements, the next step is converting the sketch into a 3D model using Autodesk Inventor 2025. Afterward, materials are selected for the mock-up. Following the design and material selection, a stress and strength analysis is conducted to determine the structural integrity of the canopy and assess whether it can support the load of the door. Once these tests are completed, the final output is a blueprint for producing the flying car's body and canopy. The body is divided into three sections: front, middle, and rear. It will be supported by the canopy. The canopy also supports the entry door, which serves as the access point for the flying car's driver. The mock-up is built at a 1:1 scale (life-size). The flying car mock-up has dimensions of 4.8 meters in length and 1.1 meters in height. The frame of the flying car uses galvanized rectangular steel with dimensions of 100 mm x 50 mm and a wall thickness of 2 mm. The canopy structure of the flying car mock-up uses low-carbon steel tubes with a diameter of 25.4 mm and a wall thickness of 1.6 mm. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanif Al-Ghazali
"Perkembangan industri telah berpengaruh terhadap perkembangan kendaraan bermotor dalam hal transportasi. Industri transportasi pun makin berkembang diiringi dengan penemuan- penemuan yang memudahkan konsumen dalam berpindah tempat. Hal tersebut membuat pertumbuhan jumlah kendaraan bermotor semakin meningkat dan memunculkan masalah baru yaitu kemacetan yang membuat masyarakat mengalami kerugian dalam hal finansial akibat waktu yang terpakai di jalan. Oleh karena itu, pengembangan mobil terbang menjadi salah satu hal penting dalam membantu mengatasi masalah tersebut. Penelitian ini bertujuan untuk membantu pengembangan mobil terbang terutama pada konsep roda belakang mobil terbang. Penelitian ini memperkenalkan komponen roda belakang menggunakan jenis suspensi torsion beam. Proses perancangan hingga pengujian dilakukan secara detail untuk memberikan informasi yang bermanfaat. Serangkaian analisa kekuatan juga dilakukan untuk mengetahui apakah desain roda belakang mobil terbang tersebut dapat menjadi acuan dalam perangan desain mobil terbang secara menyeluruh. Setelah melewati rangkaian pengujian, komponen roda belakang mobil terbang berhasil di desain menggunakan material aluminium alloy 7075- T6 dengan spesifikasi wheelbase sebesar 2.836 mm, track width sebesar 1.815 mm, dan travel suspension sepanjang 55,27 mm.

Industrial developments have influenced the development of motorized vehicles in terms of transportation. The transportation industry is increasingly developing, accompanied by discoveries that make it easier for consumers to move places. This causes the number of motorized vehicles to increase and gives rise to a new problem, namely traffic jams which cause people to suffer financial losses due to the time spent on the road. Therefore, the development of flying cars is an important thing to help overcome this problem. This research aims to help develop flying cars, especially the rear wheel concept of flying cars. This research introduces rear wheel components using a torsion beam suspension type. The design and testing process is carried out in detail to provide useful information. A series of strength analyzes were also carried out to find out whether the rear wheel design of the flying car could be a reference in the overall flying car design battle. After passing a series of tests, the rear wheel components of the flying car were successfully designed using 7075-T6 aluminum alloy material. with specifications for wheelbase 2.836 mm, track width 1.815 mm, and travel suspension 55,27 mm."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafiq Ali Abdillah Azizi
"Saat Ini Universitas Indonesia sedang melakukan penelitian mengenai mobil terbang. Mobil terbang merupakan sebuah kendaraan yang mampu beroperasi di darat dan udara. Untuk dapat beroperasi maksimal dibutuhkan roda pendarat inti untuk proses pendaratan. Perancangan sistem ekstensi dan retraksi pada roda mobil dapat menjadi solusi untuk roda mobil berfungsi menjadi roda pendarat. Untuk dapat melakukan proses ekstensi dan retraksi, dibutuhkan aktuator hidrolik dengan tekanan kerja sistem 100 bar, diameter piston 50 mm dan diameter piston rod 25 mm. Nilai keamanan juga sangat penting dalam merancang sistem roda pendarat inti ini. Untuk itu penulis melakukan pengujian untuk mendapatkan nilai faktor keamanan dan nilai indeks defleksi yang terjadi. Dari hasil pengujian, desain roda pendarat inti mobil terbang memiliki nilai faktor keamanan terkecil 1,52, dan nilai indeks defleksi terbesar 0,002. Berdasarkan hasil penelitian, desain tersebut telah memenuhi standar keamanan roda pendarat dengan nilai faktor keamanan 1,5 , dan nilai indeks defleksi 1/240.

University of Indonesia is conducting research on flying cars. Flying car is a vehicle that can operating in the air and on the ground. Based on the criteria, flying car must have main landing gears for the landing process. The design of an extension and retraction system on the landing gear can be a solution for car wheels to function as landing gear. To carry out the extension and retraction process, the system needed a hydraulic actuator with 100 bar of working pressure, 50 mm of piston diameter, and 25 mm of piston rod diameter. Safety was very important in designing this main landing gear system. For this reason, the authors conducted tests to get the value of the safety factor and the value of the deflection index on this design. This main landing gear design has the smallest safety factor value of 1.52 and the largest deflection index value of 0.002. Based on the results, the design is qualified the landing gear safety standards with a safety factor value of 1.5 and a deflection index value of 1/240."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Panjaitan, Martin Proklamanto
"Komponen otomotif, terutama casing dan mounting umumnya memiliki bentuk yang sangat rumit. Perancangan dari awal akan memakan banyak waktu, namun dapat dihindari dengan proses rekayasa balik. Komponen yang direkayasa balik pada penelitian ini adalah casing transmisi Nissan March. Metode yang digunakan adalah pemindaian tiga dimensi dengan menggunakan Faro Arm dan Geomagic Studio. Permukaan komponen dipindai untuk mendapatkan titik - titik koordinat x, y, z persatuan jarak tertentu. Data titik ini dibentuk menjadi model polygon dengan proses triangulasi. Model polygon disempurnakan dan dijadikan dasar untuk pemodelan permukaan CAD dengan metode parametrik dan NURBS. Model CAD kemudian digunakan untuk pembuatan cetakan, estimasi kebutuhan material, dan berbagai simulasi.

Automotive components, especially casing and mounting, have very complex geometry. Normal design procedure will take too much time, but it can be avoided by doing reverse engineering process. Component that is reverse engineered in this research is Nissan March transmission’s case. The method is 3D scanning using Faro Arm and Geomagic Studio. Component’s surfaces are scanned to get x, y, z coordinate points at every certain distance. This point clouds are used to make a polygon model with triangulation process. Polygon model is refined and used as a base for CAD surface modeling with parametric and NURBS methods. Then the CAD model is used for dies modeling, raw materials needs estimation, and many kinds of simulations.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53809
UI - Skripsi Membership  Universitas Indonesia Library
cover
Satrio Utama Manggalaputra
"ABSTRACT
The goal of this study is to design a wing construction of a flying car before continuing to make the prototype of the wing. In this preliminary process of engineering consist of calculating and designing the wing that capable to work under certain parameter. In the designing process we use computer aided design software of INVENTOR 2017. After determining the initial design of the wing, we need to simulate the design itself. In order to know whether the design is survivable without making the prototype yet, we simulate a structural load on the design. Using an engineering software consist of running a finite element analysis which in this case we use PATRAN 2012 with a solver NASTRAN 2012. The output of this study is to know that the design of the wing could hold the given load that are simulated through the finite element analysis software. The result output is a design of a wing construction with a combined wing span of 8.2 meters that made with tubular spar. The wing should sustain a given load of the vehicle which referenced to the flight envelope of Cessna 172 calculated at 3000 kg of the whole wing and considered as the maximum load to the structure in condition of 3G.

ABSTRAK
Tujuan dari penelitian ini adalah untuk merancang konstruksi sayap mobil terbang sebelum melanjutkan membuat prototipe sayap. Dalam proses pendahuluan ini teknik terdiri dari menghitung dan merancang sayap yang mampu bekerja di bawah parameter tertentu. Dalam proses perancangan kami menggunakan perangkat lunak desain berbantuan komputer dari INVENTOR 2017. Setelah menentukan desain awal sayap, kami perlu mensimulasikan desain itu sendiri. Untuk mengetahui apakah desain dapat bertahan tanpa membuat prototipe, kami mensimulasikan beban struktural pada desain. Menggunakan perangkat lunak teknik terdiri dari menjalankan analisis elemen hingga dalam hal ini kami menggunakan PATRAN 2012 dengan NASTRAN pemecah 2012. Elemen analisis perangkat lunak output. Hasilnya adalah konstruksi sayap dengan gabungan 8,2 meter yang dibuat dengan tubular spar. Sayap harus dipertahankan pada amplop penerbangan Cessna 172 yang dihitung pada 3000 kg seluruh sayap dan dianggap sebagai beban maksimum untuk struktur dalam kondisi 3G."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifat Dzaka Fajriansyah Mulyono
"ABSTRAK
Salah satu solusi yang diberikan oleh industri yang bergerak di bidang otomotif untuk mengatasi kemacetan adalah mobil terbang. Salah satu tahap dalam perancangan mobil terbang adalah menentukan titik pusat gravitasi. Titik pusat gravitasi pada pesawat harus berada pada rentang 15-25 dari mean aerodynamic chord sayap agar pesawat dapat terbang dengan stabil. Pada kendaraan terbang, penentuan titik pusat gravitasi dilakukan dengan cara menyusun komponen-komponen kendaraan sehingga titik pusat gravitasi masuk dalam rentang tersebut. Pada penelitian kali ini, dilakukan penyusunan komponen dengan dua konfigurasi yaitu tangki bahan bakar berada di tengah (konfigurasi pertama) dan tangki bahan bakar berada di belakang (konfigurasi kedua). Didapatkan hasil bahwa titik pusat gravitasi pada konfigurasi pertama terletak pada 444.7 mm dan konfigurasi kedua terletak pada 366.05 mm di depan garis batas terdekat. Konfigurasi kedua akan cenderung lebih stabil. Akan tetapi, kedua konfigurasi tersebut akan menyebabkan pesawat mengalami berat pada hidung. Penelitian ini juga menghitung sudut canard. Pada saat keadaan terbang lurus, sudut canard berada pada 2,4 derajat. Sedangkan pada saat sesaat sebelum stall, canard membutuhkan 𝐶𝐿 sebesar-1,724 sedangkan airfoil canard hanya mampu memberikan 𝐶𝐿 sebesar-1,5977. Sehingga, canard tidak mampu untuk menyeimbangkan gaya angkat pesawat pada keadaan stall.

ABSTRACT
One solution provided by the industry engaged in the automotive sector to overcome congestion is flying cars. One of the stages in designing a flying car is to determine the center of gravity. The center of gravity of the aircraft must be in the range of 15-25 of the mean aerodynamic wing chord so that the aircraft can fly stably. In flying vehicles, the determination of the center of gravity is done by arranging the components of the vehicle so that the center of gravity falls within that range. In this study, the compilation of components with two configurations was carried out, the fuel tank was in the middle (first configuration) and the fuel tank was in the back (second configuration). The results obtained that the center of gravity in the first configuration is located at 444.7 mm and the second configuration is located at 366.05 mm in front of the forwards center of gravity limits. The second configuration will tend to be more stable. However, both configurations will cause the aircraft to get nose heavy. This study also calculates the canard angle. When the aircraft cruising, the canard angle is at 2.4 degrees. Whereas at the moment just before stalling, 𝐶𝐿 requirement of the canard is-1,724, but the canard airfoil is only able to give-1,5977. Thus, the canard is unable to balance the aircrafts lift force in a stall condition.
"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bintang Samodro Wartojo
"ABSTRAK
Selama beberapa dekade, trasportasi digunakan untuk memindahkan orang atau barang dari titik A ke B. Ada beberapa jenis transportasi yang digunakan hingga sekarang, dan salah satunya adalah mobil. Kendaraan ini adalah salah satu yang paling populer karena simple, efisien, dan cukup untuk berpergian dengan jarak yang jauh. Angka populasi mobil terus meningkat setaip tahunya sehingga tidak ada ruang yang cukup untuk bias menampung banyaknya mobil dengan situasi jalanan yang sudah ada, dan dari masalah itu meciptakan kemacetan. Kendaraan mobil ini terus berkembang setiap tahunya dan selalu menambahkan fitur serta teknologi yang terbaru yang membuat pengunanya merasa lebih nyaman, tetapi tidak memecahkan masalah kemacetan, kecuali mobil ini bias terbang. Mengkaitkan ilmu kerdirgantaraan dan otomotif adalah ruang yang cukup besar untuk di satukan, dan memiliki keterbatasan, tetapi tidak menutup kemungkinan untuk membuat mobil terbang. Mekanisme pelipatan bias digunakan sebelum mobil terbang bias digunakan di jalanan umum. Stuktur dasar sepanjang 4m dari sayap mobil terbang dibagi menjadi tiga bagian yang berbeda untuk mencapai posisi terakhir pelipatan di bodi mobil. Total berat mekanisme pelipatan sayap beserta struktur dasar sayap dengan material AL707T6 adalah 53,11 kg dan berat kosong pada bodi adalah 700kg.
ABSTRACT
Over the decades, transportation was used in order to move a person or an object from point A to B. There are few types of transportation has been used until now, one of them is Car. Is one of the most popular transportation because is simple, efficient, and enough to travel with distance. Over the year the number of cars is keep increasing, according to the population of car, there is no more room on the road to line up the car while driving and simply create a traffic jam. By the time goes, the car itself is keep improving with new technology and features that makes the user more comfortable while riding it, but it does not solve the traffic jam problem unless the car is flying. Involving the aerospace engineering into the automotive industry is one big gap and has many limitations, but it does not rule out the possibility to make a flying car. The mechanism can be used to fold the wing before the car is used on the regular street. The basic wing structure with 4m length has been divided into three different section in order to achieve a final position on the fuselage. The total weight of folding mechanism including the basic wing structure using AL707T6 material is 53,11kg and the empty weight of the fuselage is 700kg."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nugroho Supriyadi
"Pesawat udara yang sedang beroperasi mengalami beberapa gaya yang menghasilkan momen dan gaya net pesawat. salah satu faktor yang paling berkontribusi adalah berat pesawat. Pusat gravitasi merupakan fungsi penting dari berat dan keseimbangan pesawat karena, dalam kaitannya dengan gaya lain, ini menentukan stabilitas statis yang akan menjadi faktor pengatur pengendalian pesawat baik di darat maupun di penerbangan [2] [3]. Skripsi ini bertujuan untuk membahas analisis prediksi pusat gravitasi sebuah mobil terbang dari proyek yang dipimpin oleh Dr.-Ing. Mohammad Adhitya, ST, M.Sc. Oleh karena itu, perhitungan CG berguna untuk menghitung perhitungan kinerja untuk langkah sukses dan berkelanjutan proyek ini. Analisis CG menggunakan perangkat lunak CAD untuk menemukan properti bobot dan penempatan komponen mobil terbang dalam konfigurasi taxiingnya. Analisis yang dihasilkan menunjukkan bahwa pesawat memiliki lokasi CG yang diperkirakan sebelum analisis ini, dimana lokasinya berfluktuasi tidak lebih dari 500 mm pada x-axis dari EWCG. Proyek pengembangan mobil terbang tersebut saat ini sedang dalam proses perancangan konseptual, penyelesaian makalah ini diharapkan dapat menjadi kemajuan menuju pengembangan mobil terbang ini.

Aircraft in operation is subjected to multiple forces which results in net moment and force of the aircraft. One of the most contributing factors which is the weight of the aircraft. The center of gravity is an important function of the weight and balance of the aircraft as, in relation to other forces, it determines the statical stability which would become the governing factor of the controllability of the aircraft both on land and in flight [1] [2]. This thesis aims to discuss the analysis to predict the center of gravity of a flying car from the project led by Dr.-Ing. Mohammad Adhitya, ST, M.Sc. Therefore, the calculation regarding CG is useful for calculating the performance calculations for the succeeding and ongoing steps of this project. The analysis of the CG utilizes CAD software to find the weight properties and placement for the components of the flying car under its taxiing configuration. The resulting analysis shows that the aircraft does have the CG location that is predicted before this analysis, in which its location fluctuates no more than 500 mm away from the EWCG on x-axis. The project of the aforementioned flying car development is currently in the conceptual design process, completion of this paper would hopefully serve as a progress towards the development of the flying car.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>