Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Leonardus Kevin
Abstrak :
ABSTRAK: Iridologi adalah studi tentang pola dan warna pada iris mata untuk menentukan informasi tentang kesehatan pasien secara keseluruhan. Salah satu pola yang dapat dilihat adalah Lymphatic Rosary yang terlihat seperti bintik – bintik kecil berwarna putih seperti awan yang mengililingi iris mata membentuk menyerupai untaian mutiara atau rosario. Lymphatic Rosary mengindikasikan adanya penyumbatan pada saluran limfa, yang dapat menyebabkan daya tahan tubuh terhadap stress dan penyakit melemah, menjadi rentan terhadap penyakit. Telah banyak penilitian yang dilakukan menggunakan Deep Learning ataupun Machine Learning terkait Iridologi untuk melakukan pengenalan pada pola dan warna pada iris mata secara otomatis untuk mendeteksi berbagai penyakit, seperti diabetes dan kolestrol yang tinggi. Tetapi belum ada penelitian yang mengaplikasikan Deep Learning ataupun Machine Learning untuk melakukan pengenalan otomatis pada Lymphatic Rosary. Penelitian ini akan mengevaluasi performa model Deep Learning dalam melakukan pengenalan otomatis pada Lymphatic Rosary untuk melakukan klasifikasi pada gambar mata normal dan gambar mata dengan Lymphatic Rosary menggunakan algoritma SVM, KNN dan CNN. Dari algoritma yang diuji, algoritma CNN tidak berhasil dalam mengklasifikasikan gambar mata normal dengan gambar mata dengan Lymphatic Rosary. Hasil dari algoritma SVM mendapatkan tingkat akurasi yang paling tinggi, sampai 98,62%. ......Abstract : Iridology is the study of the pattern and color of the iris of the eyes to determine information about the patient's overall health. One of the patterns that can be seen is the Lymphatic Rosary which looks like small white spots like clouds that surround the irises to form like a string of pearls or a rosary. Lymphatic Rosary is an obstruction in the lymph channels, which can cause the body's resistance to stress and disease to weaken, making it susceptible to disease. Many studies have been carried out using Deep Learning or Machine Learning related to Iridology to automatically recognize patterns and colors in the iris to detect various disease, such as diabetes and high cholesterol. But there is no research that applies Deep Learning or Machine Learning to perform automatic recognition of the Lymphatic Rosary. This study will analyze the performance of the Deep Learning model in performing automatic recognition on the Lymphatic Rosary to classify images of normal eyes and images of eyes with the Lymphatic Rosary using the SVM, KNN and CNN algorithms. Of the algorithms tested, the CNN algorithm was not successful in classifying normal eye images with eye images with the Lymphatic Rosary. The results of the SVM algorithm get the highest level of accuracy, up to 98.62%
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Aminah
Abstrak :
ABSTRAK
<

Diabetes merupakan penyakit kronis yang terjadi ketika terdapat peningkatan kadar glukosa dalam darah karena tubuh tidak dapat atau tidak cukup menghasilkan hormon insulin atau tidak dapat menggunakan insulin secara efektif. Umumnya untuk mendeteksi penyakit diabetes adalah dengan tes kadar gula darah atau hemoglobin HbA1c yang dilakukan oleh praktisi medis. Pada penelitian ini, dibangun sistem prediksi penyakit diabetes berbasis iridologi atau melalui citra mata, menggunakan machine learning. Sistem yang dikembangkan terdiri dari instrumen akuisisi citra mata dan algoritma pengolahan citra. Metode GLCM (Gray Level Co-Occurence Matrix) digunakan untuk proses ekstraksi ciri, dengan tujuan untuk mendapatkan ciri tekstur pada citra. Metode SVM (Support Vector Machine) dan kNN (k Nearest Neighbor) digunakan untuk proses klasifikasi kelas diabetes dan non-diabetes. Hasil klasifikasi kemudian dilakukan proses validasi dengan menggunakan metode k-fold cross validation. Hasil yang diperoleh menunjukkan bahwa metode kNN memiliki performa yang lebih baik dibandingkan dengan metode SVM. Performa terbaik didapatkan saat variasi kombinasi ukuran area segmentasi 30×360 dengan jarak antar tetangga 30 pixel. Tingkat akurasi yang diapatkan dari pengujian sebesar 79,6%, dengan nilai misclassification rate (MR) 20,4%, false positive rate (FPR) 20,6%, false negative rate (FNR) 20%, sensitivity 87,1%, dan specificity 70,0%.

 


ABSTRACT

Diabetes is a chronic disease that occurs when there is an increase in glucose levels in the blood because the body cannot produce enough of the hormone insulin or cannot use insulin effectively. Generally, to detect diabetes is by pengujian blood sugar levels or hemoglobin HbA1c carried out by medical practitioners. In this study, a diabetes prediction system based on iridology or through eye images was constructed using machine learning. The developed system consists of eye image acquisition instruments and image processing algorithms. The GLCM (Gray Level Co-Occurence Matrix) method is used for feature extraction processes, with the aim of obtaining texture characteristics in the image. The SVM (Support Vector Machine) and kNN (k Nearest Neighbor) methods are used to classify diabetic and non-diabetic classes. The classification results are then validated by using the k-fold cross validation method. The results show that kNN method has better performance compared to the SVM method. The best performance is when size of the segmentation area 30×360 pixel with the distance between neighbors 20 pixel. The results show that the accuracy from pengujian is 79.6%, misclassification rate (MR) 20.4%, false positive rate (FPR) 20.6%, false negative rate (FNR) 20.0%, sensitivity 87.1%, and specificity 70.0%.

 

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sayyidah Hanifah Putri
Abstrak :
Kolesterol merupakan zat lilin mengandung lemak yang dibutuhkan untuk memproduksi hormon dan substansi lainnya dalam tubuh. Apabila jumlahnya berlebih, maka akan tercampur dengan subtansi lain dan membentuk plak pada dinding pembuluh darah. Kolesterol yang tertimbun pada pembuluh darah biasanya disebut kolesterol jahat atau Low Density Liporpotein (LDL) yang merupakan penyebab timbulnya risiko penyakit jantug koroner dan stroke. Untuk mengukur kadar LDL biasanya dilakukan dengan pengambilan sampel darah (invasif) dengan metode lipid profile test. Selain itu metode secara non-invasif berbasis iridologi saat ini juga dikembangkan. Penelitian ini dilakukan untuk membentuk suatu sistem deteksi kadar LDL secara non-invasif berbasis iridologi yaitu dengan citra mata serta menggunakan deep learning sebagai model klasifikasi. Salah satu indikator berlebihnya kadar LDL dalam tubuh ialah adanya cincin yang berwarna putih keabuan yang mengelilingi bagian iris atau biasa disebut corneal arcus. Sistem yang dirancang terdiri dari instrumen akuisisi citra, algoritma pemrosesan citra dan model klasifikasi deep learning. Pemrosesan yang dilakukan ialah menggunakan algoritma Circular Hough Transform (CHT) untuk proses lokalisasi dan Rubber-Sheet Normalization untuk menormalisasi bagian iris. Untuk mendapatkan bagian corneal arcus maka dilakukan segmentasi pada citra iris mata kanan dan kiri. Model CNN digunakan sebagai model klasifikasi kelas LDL tinggi dan normal sehingga menghasilkan akurasi sebesar 97%. Sehingga sistem dapat dikatakan bekerja dengan baik dalam prediksi status kadar LDL dalam tubuh.
Cholesterol is a waxy substance contains fat that required to produce hormones and other substances in the body. If the amount of cholesterol is excessive, it can be mixed with other substances and formed plaque on blood vessels. Cholesterol that builds up in blood vessels is usually called bad cholesterol or Low Density Liporpotein (LDL) which is the cause of the risk of coronary heart disease and stroke. Measuring LDL levels is usually done by taking blood samples (invasive) with the lipid profile test method. Other than that, a non-invasive method based on iridology was also developed. This research was focus to develop a non-invasive detection system for LDL levels status prediction based on eye image (iridology) using Convolutional Neural Network (CNN) as a classification model. One indicator of excess LDL levels in the body is the presence of a grayish white ring that surrounds the iris which is called corneal arcus. The system designed consists of image acquisition instruments, image processing algorithms and deep learning classification models which is CNN. The image processing is done using Circular Hough Transform (CHT) algorithm for the localization process and Rubber-Sheet Normalization for normalize the iris region. Segmentation is conducted to get the corneal arcus located at the outer of the iris region. This LDL levels status prediction system that used CNN as a classification model  with 5-fold cross validation results an accuracy of 97%. Those result show that the system worked in LDL levels prediction.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dyla Velia
Abstrak :
Diabetes mellitus merupakan salah satu penyakit tidak menular dengan angka kematian tertinggi di dunia. Hal ini terjadi karena tingginya resiko komplikasi yang disebabkan pernyakit tersebut. Salah satu cara pencegahan yang dapat dilakukan adalah dengan melakukan pendeteksian lebih awal, salah satunya dengan menggunakan metode iridologi. Metode ini dapat mendeteksi kerusakan organ tubuh melalui tanda-tanda yang muncul pada iris. Dengan menggunakan metode tersebut penelitian ini dilakukan untuk mengklasifikasi penyakit diabetes menggunakan Convolutional Neural Network. Sistem ini mengevaluasi sebanyak 35 subjek normal dan 14 subjek diabetes. Adapun beberapa tahapan yang dilakukan untuk mengelola citra, di antaranya filtering, grayscaling, normalisasi, segmentasi, dan klasifikasi. Selain itu, sistem ini juga melakukan berbagai variasi untuk memperoleh konfigurasi terbaik, seperti variasi citra segmentasi dan tanpa segmentasi, variasi lebar iris, variasi bagian-bagian pankreas, variasi jumlah k-fold, dan variasi algoritma pengoptimalan menggunakan SGDM, Adam dan RMSProp. Sistem ini memperoleh akurasi sebesar 96,43% dengan variasi citra tanpa segmentasi berukuran  piksel menggunakan algoritma Adam dengan learning rate 0,001.
Diabetes mellitus is one of the uncontagious diseases with the highest mortality rate in the world. This happens because of the high risk of complications caused by this disease. One of the preventative ways is to do early detection, one of which is by using the iridology method. This method detects damage to the body's organs through the signs that appear on the iris. Using that method, this study was conducted to classify diabetes using Convolutional Neural Network. This system evaluates 35 normal subjects and 14 diabetes subjects. Several steps are taken to process the image, such as filtering, grayscaling, normalization, segmentation, and classification. Other than that, this system also performs various variations to obtain the best configuration, such as variations in image segmentation and without segmentation, variations in iris width, variations in parts of the pancreas, variations in the number of k-fold, and variations in optimization algorithms using SGDM, Adam and RMSProp. This system obtained an accuracy of 96.43% with variations image without segmentation size pixel using Adam's algorithm with a learning rate of 0.001.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library