Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 26 dokumen yang sesuai dengan query
cover
Rifa Satria
"ABSTRAK
Senyawa Li4Ti5O12 atau yang biasa disingkat dengan LTO, adalah salah satu jenis senyawa yang sering digunakan untuk komponen anoda dalam baterai. Kelebihan yang dimiliki adalah usia pakai yang panjang akibat sifat zero strain yang dimiliki saat material mengalami insersi dan ekstraksi ion lithium. Namun kapasitas yang dimiliki masih tergolong rendah, yaitu bernilai 175 mAh/g. Oleh karena itu, untuk dapat meningkatkan kapasitas anoda LTO dilakukan pembuatan komposit LTO. Doping element yang digunakan adalah nano Si, dimana dengan penggunaan partikel berskala nano diharapkan dapat meningkatkan performa baterai lebih jauh sebagai efek dari luas permukaan partikel yang lebih besar. Dalam penelitian ini LTO disintesis dengan metode hidrothermal-mekanokimia sebelum dilakukan pencampuran dengan nano Si. Variasi persentase massa Si yang digunakan adalah 1 , 5 , dan 10 . Karakterisasi yang digunakan adalah XRD, SEM, serta TEM. Sementara untuk pengujian performa baterai dilakukan pengujian EIS, CV, serta CD. Penelitian ini akan membahas efek dari mixing Si pada performa komposit LTO/Si. Hasil pengujian CV menunjukkan bahwa kapasitas terbesar diperoleh pada sampel LTO/Si-10 dengan kapasitas sebesar 216.15 mAh/g.

ABSTRACT
Li4Ti5O12 or LTO is one of many compounds that could be used as anode in lithium battery. One of the main advantages of using LTO as an anode is its long cycle life which is affected by its zero strain property during insertion and extraction of lithium ions. Despite its advantages, LTO still has problems such as limited capacity on 175 mAh g. Researchers have tried many methods to increasing the capcaity of LTO, such as making a composite from LTO host. In this composite, nano Si is used as doping element because its high theoritical capacity could increase the overall capacity of the LTO composite. In this research, LTO was synthesized by hydrothermal mechanochemical methods before we combine it with nano Si. The mass variation of nano Si was 1 , 5 , and 10 in wt. XRD, SEM, and TEM were used for material characterization. For the battery performance testing we used EIS, CV, and CD. This research will explain the effect of Si on the LTO Si composite performance. From the CV testing, it is known that the highest capacity was obtained from LTO Si 10 sample with 216.15 mAh g."
2017
S66667
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laksamana Zakiy Ramadhan
"Lititum Titanat Oksida Li4Ti5O12 dipertimbangkan menjadi elektroda anoda pada baterai Litium Ion. LTO adalah kandidat yang menjanjikan untuk menggantikan Grafit. Grafit memiliki kapasitas yang tinggi, namun disamping itu, keamanan dari material ini dipertanyakan, pembentukan struktur dendritik yang dapat menyebabkan hubungan arus pendek atau konslet akhir-akhir ini banyak di diskusikan. Oleh karena itu LTO dengan properti lsquo;zero strain rsquo;, dimana tidak ada perubahan volume selama interkalasi adalah kandidat yang menjajikan. Dibandingkan dengan grafit, LTO memiliki kapasitas yang kecil, oleh karena itu penambahan elemen lain untuk meningkatkan kapasitas dari LTO dibutuhkan. Dalam penelitian ini, penambahan Sn dalam LTO telah dilakukan, penambahan Sn bertujuan untuk meningkatkan kapasitas dan konduktifitas. Menggunakan metode sol-gel untuk mensintesis LTO, dan diikuti oleh metode solid-state, LTO di campur dengan Sn menggunakan HEBM High energy Ball Mill , beberapa penambahan konsentrasi Sn dilakukan, yaitu 10 , 20 , 30. Karakterisasi material telah dilakukan menggunakan SEM-EDS, BET, XRD.
Dari hasil BET, penambahan Sn mengakibatkan berkurangnya surface area. Pada hasil SEM-EDS dari lembaran anoda, memperlihatkan aglomerasi dan distribusi yang buruk dari partikel, dari hasil XRD menunujukan adanya pengotor berupa TiO2 Rutile. Pembuatan baterai sel setengah telah dilakukan, dengan Litium logam sebagai Anoda, LTO dan Sn sebagai Katoda. Diikuti dengan pengujian performa electrokimia, yaitu EIS, CV, CD. EIS dilakukan sebelum dan sesudah tes CV, EIS sebelum tes CV menunjukan LTO dengan 30 kandungan Sn memiliki konduktifitas yang paling tinggi, sementara untuk EIS setelah CV, menunjukkan LTO dengan 20 kandungan Sn memiliki konduktifitas paling tinggi, Sn yang berlebih akan mengakibatkan penurunan performa karena fenomena Pulverisasi. Hasil CV menunjukan adanya dua peak pada masing-masing elemen, menunjukan reversibilitas dari reaksi. Pada hasil CD, LTO dengan 20 kandungan Sn memiliki kapasitas paling baik, oleh karena itu penambahan Sn yang optimum ialah 20.

Lithium Titanate Oxide Li4Ti5O12 has been considered as anode electrode in Lithium Ion Batteries. LTO is a promising candidate to replace Graphite. Graphite has high capacity, but despite their superiority, safety concern of this material is questioned, formation of dendritic structure which leads to short circuit is commonly discussed. Thus, LTO with zero strain property, where there is no volume change during intercalation is a promising candidate. Compared with graphite, LTO has small capacity, thus addition of other elements to increase its capacity is required. In this experiment, addition of Sn in LTO was done, addition of Sn purposed to increase its capacity and conductivity. Using sol gel method to synthesis LTO, and followed by solid state method, LTO is mixed with Sn using HEBM High energy Ball Mill . Various Sn concentration was added, which are 10 , 20 , 30. Material characterization in this experiment was using SEM EDS, BET, XRD.
From BET result, addition of Sn decrease its surface area, SEM EDS result of layered anode shows agglomeration for Sn element and poor particle distribution in layered anode, XRD result shows impurities which is TiO2 Rutile. Half cell battery fabrication was done using Lithium metal as anode and LTO Sn as cathode. Followed by electrochemical performance test, which are EIS, CV, CD. EIS performed before and after CV test, from EIS before CV results, LTO with 30 of Sn has highest conductivity, for EIS after CV, LTO with 20 of Sn has highest conductivity, excessive Sn concentration leads to performance decrease because of pulverization. From CV result, two anodic and two cathodic peaks are shown, which indicates reversible reaction of LTO and Sn, also from CV test, highest capacity is attribute to LTO with 20 of Sn with 168,9 mAh g. From CD result, LTO with 20 of Sn has the most stable performance, 30 of Sn considered as excessive addition of Sn, thus LTO with 30 of Sn has poor electrochemical performance.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Guntur Tri Setiadanu
"Telah dilakukan sintesis LiFePO4/C sebagai material katoda baterai lithium ion dengan menggunakan metode hidrotermal dari bahan LiOH, NH4H2PO4, FeSO4.7H2O, carbon black dan sukrosa. Proses hidrotermal dilakukan pada suhu reaktor 180⁰C dengan lama waktu penahanan 20 jam. Penambahan karbon dilakukan dengan 2 cara. Pertama menggunakan sukrosa sebagai sumber karbon yang dilarutkan bersama prekusor dan kedua menggunakan carbon black yang ditambahkan setelah proses hidrotermal sebelum proses kalsinasi. Temperatur kalsinasi divariasikan pada 500, 600 dan 750⁰C selama 5 jam. Proses dekomposisi termal dianalisis menggunakan DTA-TGA analyzer, karakterisasi fasa dilakukan dengan XRD, morfologi dengan SEM/EDX, nilai konduktifitas dan kapasitansi material dengan LCR-EIS, dan performa baterai dengan pengujian charge-discharge menggunakan baterai analyzer. Hasil LiFePO4/C yang murni berbentuk flake berhasil disintesis dengan penambahan carbon black 5 wt%, sedangkan untuk penambahan karbon melalui pelarutan sukrosa masih terdapat pengotor Fe3(PO4)2 pada hasil kalsinasi. Temperatur kalsinasi optimal adalah 750⁰C dengan ukuran kristalit 39,7 nm, tebal butiran flake 80 nm dan besar butiran rata-rata 427 nm. Konduktifitas LiFePO4 murni terukur 5 x 10-7 S/cm dan konduktifitas LiFePO4/C adalah 2,23 x 10-4 S/cm yang dihasilkan dari sampel dengan tambahan carbon black 5wt% kalsinasi 750⁰C. Dari pengujian charge/discharge didapatkan siklus terbaik dihasilkan oleh sampel LiFePO4/C yang dikalsinasi 750⁰C yang stabil dengan tegangan 3,3-3,4 V, kapasitas spesifik dihasilkan pada 0,1 C = 11,6 mAh/g ; 0,3C = 10,78 mAh./g dan 0,5 C = 9,45 mAh/g.
......LiFePO4/C has been succesfully synthesized through hydrothermal method from LiOH, NH4H2PO4, and FeSO4.7H2O as starting materials and either carbon black or sucrose as carbon source used as cathode material for lithium ion batteries. In this work, hydrothermal reaction temperature was at 180C for 20 hours.Carbon sources were added in two routes. Firstly, sucrose solution was mixed with precursor solution before hydrothermal reaction. Secondly carbon black was added after hydrothermal reaction before calcination process. Calcination temperatures were performed at 500, 600, and 750C each for 5 hours. Thermal decomposition process was analyzed using DTA-TGA analyzer, phases and morphological were characterized by using XRD and SEM/EDX measurement, conductivity and electrical capacity were characterized by EIS measurement, and batteries performance were tested with charge discharge testing by battery analyzer. Pure LiFePO4/C flake shaped was successfully synthesized with the addition of 5 wt% carbon black, while the addition of carbon through the dissolution of sucrose still contained impurity from Fe3(PO4)2 in calcination product. Optimal calcination temperature was obtained at 750⁰C with crytallite size of 39.7 nm, flake particles diameter of 80 nm with particles average length of 427 nm. Pure LiFePO4 conductivity was measured to be 5 x 10-7 S/cm and conductivity LiFePO4/C was 2.23 x 10-4 S/cm produced from samples with carbon black addition of 5 wt% and calcined at 750⁰C. Charge/discharge cycles test showed that best battery performance was obtained from the sample with carbon black of 5wt% calcined at 750⁰C, with a stable voltage 3.3 to 3.4 V, specific capacity of 0.1 C = 11.6 mAh/g ; 0.3C = 10.78 mAh./g dan 0.5 C = 9.45 mAh/g."
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43933
UI - Tesis Membership  Universitas Indonesia Library
cover
Ma'Arif Hasan
"Penelitian ini bertujuan untuk menganalisis kinerja Hybrid Energy Storage System (HESS) yang merupakan kombinasi hibridisasi antara baterai jenis Lithium-Ion dan super kapasitor dalam aplikasi kendaraan listrik. Penelitian ini menggunakan tiga varian baterai dan tiga varian superkapasitor sesuai dengan spesifikasi yang telah ada di pasaran. Adapun kriteria yang digunakan untuk menentukan kinerja HESS adalah pengujian kombinasi baterai dan superkapasitor terhadap 3 (tiga) kondisi mobilitas kendaraan listrik yang sangat bergantung pada kondisi riil dijalan dan behavior pengemudi. Tiga kondisi mobilitas itu adalah mode akselerasi yaitu saat kendaraan listrik sedang membutuhkan daya puncak, mode stabil dan deselerasi atau pengereman mendadak. Selain kinerja HESS, penelitian ini juga menganalisis pengaruh pemasangan superkapasitor terhadap kriteria yang digunakan serta memberikan rekomendasi kombinasi terbaik dari varian baterai dan superkapasitor yang diuji. Metode yang digunakan dalam penelitian ini adalah analisis simulasi parameter berdasarkan pembebanan riil di jalan dengan menggunakan Simulink Matlab R2022a dengan menghitung daya referensi kendaraan listrik berdasarkan kecepatan dalam Km/Jam, Torsi dan diameter roda merujuk pada spesifikasi manufaktur. Hasil penelitian menunjukkan bahwa dari 9 (Sembilan) kombinasi HESS yang diujikan, seluruhnya telah mampu memenuhi tiga kondisi mobilitas kendaraan listrik berdasarkan kondisi riil dijalan. Namun, dari 9 kombinasi HESS yang diujikan, rangkaian terbaik yang menjadi rekomendasi adalah rangkaian baterai dengan kapasitas 2.700 Wh dan superkapasitor dengan kapasitas 500 F.
...... This study aims to analyze the performance of the Hybrid Energy Storage System (HESS), which is a combination of hybridization between Lithium-Ion batteries and supercapacitors in electric vehicle applications. This study uses three battery variants and three supercapacitor variants according to the specifications that are already on the market. The criteria used to determine HESS performance are testing a combination of batteries and supercapacitors against 3 (three) conditions for electric vehicle mobility which are very dependent on real conditions on the road and driver behavior. The three mobility conditions are acceleration mode, which is when an electric vehicle is in need of peak power, stable mode and deceleration or sudden braking. In addition to HESS performance, this study also analyzes the effect of supercapacitor installation on the criteria used and provides recommendations for the best combination of battery and supercapacitor variants tested. The method used in this research is parameter simulation analysis based on real conditions on the road using Simulink Matlab R2022a by calculating the reference power of electric vehicles based on speed in km/hour, torque and wheel diameter referring to manufacturer specifications. The results of the study show that the 9 (nine) HESS combinations that have been tested, all of them have been able to fulfill the three conditions of electric vehicle mobility based on real conditions on the road. However, based on the 9 HESS combinations tested, there is one best combination circuit that is recommended, namely a battery with a capacity of 2.700 Wh and a supercapacitor with a capacity of 500 F."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahadhim Dary Ismaya
"Lithium-ion batteries (LIBs) are a popular energy storage system, it has high energy density and high specific energy. This characteristic of LIB making it to become a proper energy storage system in electric vehicle, and as the increasing use of electric vehicle, in-depth research about LIB become a trend lately. The aim of this project is to review degradation mechanisms for LIB system that are used in electric vehicles. This is due to the concern of LIB application in electric vehicle as the degradation of LIB can affecting the performance of it, whether its capacity fade or power fade. An extensive literature review has been conducted to gain the performance data of LIB that installed in electric vehicle and to see the past studies that related to degradation mechanisms in LIB.The data collecting of LIB is focusing on its capacity, operating condition, and number of cycles. From there, degradation rate can be calculated and presented in several graphs. These graphs compare the performance of different type LIB that available for electric vehicle. From the result, the two-outstanding performance are shown in Lithium Iron Phosphate (LFP) and Nickel Cobalt Aluminium (NCA) batteries as both of batteries have almost similar in capacity to degradation rate ratio. Each of battery have a slight advantage between another, with LFP battery good at operating under different current rates (c-rates) and NCA battery good at operating under different temperature. The degradation mechanisms that happen to these LIBs that are used in electric vehicle will mostly correlates to temperature. EV batteries have high potential risk to be exposed to environment, and temperature change can accelerate the degradation process in LIB.

Baterai lithium-ion (LIB) adalah system penyimpanan energi yang popular, ia memiliki kepadatan energi dan energi spesifik yang tinggi. Karakteristik LIB ini membuatnya menjadi system penyimpanan energi yang tepat dalam kendaraan listrik, dan seiring dengan meningkatnya penggunaan LIB pada kendaraan listrik, penelitian tentang LIB menjadi tren belakangan ini. Tujuan proyek ini adalah untuk meninjau mekanisme degradasi untuk system LIB yang digunakan pada kendaraan listrik. Hal ini disebabkan oleh kekhawatiran penggunaan LIB pada kendaraan listrik karena degradasi LIB dapat mempengaruhi kinerja kendaraan, baik penurunan kapasitas maupun daya yang diperoleh dari LIB. Tinjauan literature telah dilakukanuntuk mendapat data kinerja LIB yang dipasang pada kendaraan listrik dan untuk melihat kembali studi yang telah dilakukan oleh peneliti sebelumnya yang terkait dengan mekanisme degradasi pada LIB. Pengumpulan data LIB berfokus pada kapasitas, kondisi operasi, dan jumlah siklusnya. Selanjutnya, laju degradasi dapat dihitung dan disajikan dalam beberapa grafik. Grafik ini membandingkan kinerja berbagai jenis LIB yang tersedia untuk kendaraan listrik. Hasilnya, terdapat dua tipe LIB yang memiliki kinerja luar biasa yang ditunjukkan dalam baterai Lithium Iron Phosphate (LFP) dan Nickel Cobalt Aluminium (NCA) karena kedua baterai memiliki kapasitas yang hampir sama dengan rasio laju degradasi. Masing-masing baterai memiliki sedikit keunggulan di antara yang lain, dengan baterai LFP bagus untuk beroperasi di bawah laju arus yang berbeda (c-rates) dan baterai NCA bagus untuk beroperasi di bawah suhu yang berbeda. Mekanisme degradasi yang terjadi pada LIB ini yang digunakan dalam kendaraan listrik sebagian besar akan berkorelasi dengan suhu. Baterai kendaraan listrik memiliki potensi risiko tinggi untuk terpapar lingkungan, dan perubahan suhu dapat mempercepat proses degradasi di LIB. "
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Narayana Yuliandono Radiawan
"Optimalisasi kinerja untuk anoda baterai lithium-ion LIBs dapat dilakukan dengan menambahkan ZnO melalui reaksi sol-gel solid-state. Dalam penelitian ini, Li4Ti5O12 LTO yang digunakan disintesis melalui proses sol-gel solid-state dan langsung ditambahkan dengan ZnO-nanorods yang diperoleh dari proses penuaan dan annealing. LTO-ZnO yang diperoleh ditandai untuk menentukan fase utama dan komposisi kimia oleh XRD dan SEM-EDS masing-masing. Kinerja elektrokimia dari LTO-ZnO diuji oleh EIS, CV, dan CD.
Karakterisasi ZnO-nanorods dengan hasil SEM-EDS menunjukkan bahwa ZnO di dalam LTO terdispersi secara homogen. Karakterisasi menggunakan XRD mengungkapkan bahwa ZnO berhasil memasuki LTO dengan variasi jumlah 4, 7, dan 10 berat ZnO. Uji konduktivitas listrik menunjukkan peningkatan pada penambahan jumlah ZnO optimum pada 4 berat, meskipun hasil BET menunjukkan pada jumlah optimum luas permukaan dengan 96,459 m2/g. Hasil kinerja elektrokimia menunjukkan kinerja yang optimal dalam ZnO pada 4 berat karena kemampuannya untuk menahan tes EIS pada 20C dibandingkan dengan 7 berat dan 10 berat. Juga kapasitas 4 berat yang ditambahkan adalah 150,8 mAh/g dibandingkan dengan 7 berat dengan 134,1 mAh/g dan 10 berat dengan 118,3 mAh/g.

Performance optimization for anode of lithium ion batteries LIBs can be conducted by adding ZnO through sol gel solid state reaction. In this research, the Li4Ti5O12 LTO used was synthesized through sol gel solid state process and directly added with ZnO nanorods obtained from aging and annealing process. LTO ZnO obtained was characterized to determine the main phase and chemical composition by XRD and SEM EDS respectively. Electrochemical performance of LTO ZnO was tested by EIS, CV, and CD.
ZnO nanorods characterization with SEM EDS results shows that the ZnO inside the LTO dispersed homogenously. Characterization using XRD revealed that the ZnO successfully enter the LTO with the variation of amount of 4, 7, and 10 wt of ZnO. Electric conductivity test shows improvement at an optimum addition amount of ZnO at 4 wt , although BET result shows at the optimum amount of surface area with 96.459 m2 g. Electrochemical performance result shows optimum performance in ZnO at 4 wt for its ability to withstand EIS test at 20C compared to 7 wt and 10 wt . Also, capacity of 4 wt added is 150.8 mAh g compared to 7 wt with 134.1 mAh g and 10 wt with 118.3 mAh g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Luthfi
"ABSTRAK
Energi terbarukan berpotensi tidak hanya dapat mengurangi pencemaran lingkungan tetapi juga dapat mengurangi biaya operasional dalam menggunakannya. Umumnya, penggunaan energi khususnya energi listrik terbarukan memerlukan piranti penyimpanan yang dapat menyimpan energi tersebut dalam kurun waktu tertentu, terlebih lagi dapat digunakan kapan saja bahkan dalam krisis pun, yang dikenal sebagai baterai. Lithium-ion merupakan jenis baterai yang paling banyak digunakan sebagai energy storage. Sekalipun Lithium-ion memiliki kelebihan tertentu, saat ini diperlukanya tempat penyimpanan energi yang memiliki karakteristik energi dan daya densitas yang tinggi dimana hal tersebut dapat dipenuhi oleh sebuah hibrid kapasitor seperti kapasitor lithium-ion (KLI). Ketergantungan nilai kapasitansi dari sebuah kapasitor lithium-ion terdapat pada luasan permukaan elektroda sehingga penelitian ini mempelajari pengaruh perbandingan massa pada tahapan aktivasi terhadap luaran karbon aktif yang terbuat dari eceng gondok. Eceng gondok diolah dari bahan mentah menjadi bahan karbon aktif dengan menggunakan aktivasi KOH dimana dilakukan variasi perbandingan berat karbon terhadap berat aktivator KOH. berdasarkan hasil pengujian BET, luas permukaan karbon aktif eceng gondok mencapai 791,8 m²/g dan juga berdasarkan pengujian elektrokimia Cyclic Voltammetry dan Galvanostatic Charge-discharge, kapasitansi spesifik dan energi spesifik dari KLI yang dibuat memberikan hasil sebesar 1,121 F/g dan 4,484 Wh/kg.

ABSTRACT
Renewable energy has the potential to not only reduce environmental pollution but also reduce operational costs in using it. Generally, energy use, especially renewable electricity, requires storage devices that can store that energy in a certain period of time, moreover it can be used at any time even in a crisis, known as a battery. Lithium-ion is the type of battery that is most widely used as energy storage. Even though Lithium-ion has certain advantages, it currently requires energy storage that has high energy and density characteristics where it can be fulfilled by a hybrid capacitor such as a lithium-ion capacitor (KLI). The dependence of the capacitance value of a lithium-ion capacitor is on the electrode surface area so that this study studies the effect of mass comparison on the activation stage of the activated carbon output made from water hyacinth. Water hyacinth is processed from raw materials into activated carbon by using KOH activation where variations in the weight of carbon against the weight of KOH activator are carried out. Based on the results of the BET test, the surface area of ​​water hyacinth activated carbon reached 791,8 m²/g and also based on the electrochemical testing of Cyclic Voltammetry and Galvanostatic Charge-discharge, the specific capacitance and specific energy from KLI produced yielded 1,121 F/g and 4,484 Wh/kg."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Said Firdaus
"Litium Titanat (LTO) merupakan salah satu material anoda dengan performa yang baik karena sifatnya yang zero - strain. Pada penelitian ini sintesis LTO dilakukan dengan menggunakan metode solid-state dimana menggunakan serbuk LiOH dan TiO2 sebagai prekursor. Akan tetapi, LTO memiliki kapasitas yang cukup rendah. Penambahan Silikon Karbida (SiC) dilakukan untuk meningkatkan kapasitas dan stabilitas kapasitas pelepasan pada LTO. Penambahan SiC dilakukan setelah proses sintesis LTO selesai menggunakan metode wet ball mill.
Hasil sintesis menghasilkan serbu berwarna keabuan. Serbuk LTO/SiC dikarakterisasi menggunakan difraksi sinar-X (XRD), SEM-EDS dan EIS. Hasil XRD menunjukkan LTO/SiC telah berhasil terbentuk sebagai produk utama. Selain itu, hasil pengujian performa EIS menunjukkan bahwa LTO/SiC 4% memiliki konduktivitas tertinggi dimana ditunjukkan dengan resistivitasnya yang paling rendah dibanding yang lain. Selain pengujian tersebut, untuk menguji performa LTO/SiC dilakukan pengujian CV dan CD.

Lithium Titanate (LTO) is one of the anode materials which possess very good electrochemical performance because of its zero-strain characteristic. In this study, Solid-state synthesis method was used to synthesize LTO using LiOH and TiO2 powder as precursors. However, LTO performance is limited by its low capacity. Addition of Silicon Carbide (SiC) was done using wet ball mill method to enhance its capacity and stability of discharge capacity.
As a result, the powder has greyish color. LTO/SiC powder was characterized using X-Ray Diffraction (XRD), SEM-EDS and EIS. The result of XRD characterization exhibits the formation of LTO/SiC as a major products. Moreover, EIS performance testing showed that LTO/SiC 4% possess highes electrical conductivity which is indicated by its lowest resistivity compared to other sample. Furthermore, to find out performaces of LTO/SiC, CV and CV test was performed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajar Rifqi Fadhila
"Baterai lithium-ion sebagai platform penyimpanan energi telah dikembangkan dalam 2 dekade terakhir dengan variasi komposisi elektroda. Baterai ini bisa dioptimalkan hingga 80% dari kemampuannya sebagai energy storage. Material anoda yang umum digunakan pada baterai lithium ion adalah grafit, memiliki struktur berlapis yang dapat memaksimalkan proses interkalasi ion lithium. Grafit berhasil disintesis dari green coke yang merupakan produk sampingan dari proses thermal cracking yang digunakan oleh perusahaan minyak bumi untuk mengubah residu bahan bakar minyak. Sintesis grafit (green coke) dilakukan dengan mencampurkan bahan green coke dengan Super P sebagai karbon konduktif, Polyivinylidine Fluoride (PVDF) sebagai pengikat (8: 1: 1), dan N-N Dimetyl Acetamid (DMAC) sebagai pelarut, kemudian digunakan sebagai lembaran anoda pada tahap pelapisan dengan cu-foil menggunakan doctor blade. Grafit (Sigma Aldrich) juga digunakan sebagai lembaran anoda sebagai pembanding. Anoda green coke dikarakterisasi menggunakan FTIR, XRD, SEM-EDS, TEM dan Raman. Kinerja elektrokimia dikarakterisasi menggunakan CV, GCD, dan EIS. Performa siklus anoda green coke dalam baterai Li-ion menghasilkan kapasitas discharge dan efisiensi coulombic masing-masing 202,59 mAh g-1 dan 79,77%. Anoda green coke menghasilkan efisiensi coulomb yang lebih rendah jika dibandingkan dengan anoda grafit (91,51%). Namun, kombinasi penggunaan limbah minyak bumi sebagai bahan baku dan kinerja elektrokimia yang baik akan membuat grafit (green coke) menjadi bahan yang menjanjikan untuk baterai dengan biaya rendah menghasilkan penyimpanan energi berskala besar.

Lithium-ion battery as an energy storage platform has been developed in the last 2 decades with variations in electrodes composition. This battery could be optimized up to 80% of its ability in storing energy. Anode material that commonly used in lithium ion battery is graphite, having a layered structure that can maximize the intercalation process of lithium ions. Graphite has been successfully synthesized from green coke which is a by-product of thermal cracking process used by petroleum companies to change fuel oil residues. Green coke graphite synthesis was carried out by mixing green coke material with Super P as conductive carbon, Polyivinylidine Fluoride (PVDF) as binder (8:1:1), and N-N Dimetyl Acetamid (DMAC) as solvent, then used as anode sheet on coating stage with copper foil using doctor blade. Commercial graphite were also used as anode sheet as comparison. The green coke anode was characterized using FTIR, XRD and SEM-EDS. Electrochemical performance was characterized using CV, GCD, and EIS. Cycling performance of green coke anode in Li-ion batteries produces reversible capacity and coulombic efficiency of 202.59 mAh g-1 and 79.77 %, respectively. Green coke anode produce lower coulombic efficiency when compared to graphite anode (91.51%). However, the combination of the use of petroleum waste as raw material and good electrochemical performance would make graphite green coke a promising material for a low cost battery for large scale energy storage."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khansa Ammarila Putri Mumpuni
"Teknologi baterai ion litium adalah salah satu teknologi yang berperan besar dalam menunjang usaha elektrifikasi dunia. Agar teknologi tersebut sendiri tidak berkontribusi dalam menambah jumlah waste biopolimer dan bahan ramah lingkungan digunakan. Salah satu komponen baterai yang krusial adalah separator yang secara komersil dibuat dari bahan plastik yang dapat mencemari lingkungan. Karenanya separator dengan bahan biopolimer, pada kesempatan kali ini selulosa asetat, dilakukan. Sayangnya performa mekanis selulosa asetat murni masih buruk sehingga ditambahkan crosslinker asam sitrat. Penambahan crosslinker berhasil memperkuat membran selulosa asetat tetapi masih terdapat parameter yang belum diketahui pengaruhnya secara detil, salah satunya adalah durasi evaporasi. Pada penelitian ini membran separator baterai baterai disintesis dengan bahan selulosa asetat, crosslinker asam sitrat, dan solven DMSO menggunakan proses N-TIPS. Durasi evaporasi 150, 165, 180, 195, dan 210 menit digunakan.  Ditemukan bahwa waktu evaporasi tidak terlalu mempengaruhi sifat mekanik dan morfologi membran, tetapi mempengaruhi performa konduktivitas ion membran dengan drastis. Karenanya dapat diobservasi konduktivitas ion yang berkisar diantara 6,75 x 10-8 hingga 2,48 x 10-6 S/cm, 3-10x lebih besar daripada membran Celgard 2325. Hal ini dapat diatribusikan pada pengaruh durasi evaporasi pada konektivitas pori yang mempengaruhi pembentukan saluran yang ada pada membran.
......Lithium ion battery technology is one of the technology that plays a major role in supporting world electrification efforts. So that the technology itself does not contribute to increasing the amount of waste, biopolymer and other environmentaly friendly base is used. One of the crucial battery components is the separator which is commercially made from plastic which can pollute the environment. Therefore, a separator using biopolymer material, on this occasion cellulose acetate, was carried out. Unfortunately, the mechanical performance of pure cellulose acetate was still poor, so a citric acid crosslinker was added. The addition of crosslinker succeeded in strengthening the cellulose acetate membrane but there are still parameters whose influence is not yet known in detail, one of which is the duration of evaporation. In this research, battery separator membranes were synthesized using cellulose acetate, citric acid crosslinker, and DMSO solvent using the N-TIPS process. Evaporation durations of 150, 165, 180, 195, and 210 minutes were used.. It was found that the evaporation time did not significantly affect the mechanical properties and morphology of the membrane, but majorly affected the ion conductivity performance of the membrane. Because of it, ion conductivity of 6.75 x 10-8 to 2.48 x 10-6 S/cm, about 3-10x higher than Celgard 2325 can be observed. This can be attributed to the influence of evaporation duration on pore connectivity which influences the formation of channels in the membrane."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3   >>