Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Didik Bani Unggul
"Non-arteritic Anterior Ischemic Optic Neuropathy (NAION) merupakan suatu penyakit yang timbul akibat insufisiensi alirah darah pada arteri yang mensuplai optic disc. Faktor risiko yang diduga berperan penting dalam terjadinya NAION diantaranya adalah hipertensi, obesitas, diabetes, dislipidemia, merokok, kondisi hiperkoagulasi, penyakit kardiovaskular dan stroke. Penelitian ini akan berfokus pada identifikasi faktor-faktor yang dapat menjadi karakteristik pembeda antara kondisi unilateral dan bilateral serta menganalisis peran masing-masing faktor tersebut. Metode random forest akan diaplikasikan untuk mendapatkan faktor-faktor yang secara konsisten dapat menjadi karakteristik pembeda antar kondisi lateralitas. Metode decision tree dan regresi logistik disertakan untuk memeroleh gambaran peran masing-masing faktor dalam bentuk pohon keputusan dan perbandingan risiko yang diformulasikan oleh rasio odds. Faktor penting berdasarkan model random forest adalah onset, GDP, HDL, usia, GD2PP, dan LDL. Berdasarkan rasio odds peningkatan usia, onset, LDL, GDP, dan GD2PP, akan berdampak pada peningkatan risiko pasien mengalami kondisi bilateral. Sedangkan semakin tinggi kadar HDL, risiko mengalami kondisi bilateral akan menurun. Pada penelitian ini juga dilakukan simulasi penanganan missing value dengan tiga skema penanganan yang berbeda. Hasil simulasi menunjukan bahwa imputasi regresi memberikan performa yang lebih bagus dibandingkan dengan imputas atau ketika hanya menggunakan observasi kompletArteritic
Anterior Ischemic Optic Neuropathy (NAION) is a disease that arise because of blood insufficiency in the artery that supply optic disc. Risc factors which are considered to inflict NAION are hypertention, obesity, diabetes, dislipidemia, smoking, hypercoagulable state, cardiovascular disease, and stroke. NAION could happen either unilateral or bilateral condition. This study will focus on the identification of important factors that could be distinguishing characteristics between unilateral and bilateral patients. Random forest method is applied to obtain factors that can consistently be distinguishing characteristics between laterality conditions. Decision tree and logistic regression method are included to obtain the visualization of the role of each important factors by using decision rule and odds ratio. The important factors based on random forest are onset, GDP, HDL, age, GD2PP, and LDL. Based on odds ratio, escalation of age, onset, LDL, GDP, and GD2PP, will have an impact on increasing the patients risk experiencing bilateral condition. Whereas the enhancement of HDL level, the risk of experiencing bilateral condition will decrease. This study also simulated a missing value handling with three different handling schemes. Simulation results show that regression imputation provides better performance when compared to mean imputation or when we only used complete observation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yoel Zabarro
"Credit scoring adalah suatu proses dalam mengevaluasi kelayakan kredit dari suatu individu. Credit Scoring perlu dilakukan perusahaan keuangan untuk meminimalisir risiko kredit, karena credit scoring dapat menentukan kelayakan debitur. Salah satu perusahaan keuangan yang menyediakan jasa pinjaman berbasis P2P (Peer-to-Peer) yang menerapkan credit scoring dalam evaluasi debitur adalah LendingClub. Pada skripsi ini dilakukan klasifikasi multikelas credit scoring berdasarkan status pinjaman (loan status) yang terdiri dari 3 kelas, yaitu default, fully paid, dan late. Klasifikasi multikelas credit scoring dapat dilakukan dengan salah satu pendekatan machine learning, yaitu supervised learning. Metode supervised learning yang digunakan yaitu random forest. Random forest adalah suatu metode pencarian informasi berbasis tree dengan setiap tree memuat kumpulan variabel acak. Implementasi model random forest dilakukan dengan menggunakan tiga skenario strategy sampling SMOTE yang berbeda. Implementasi model pada tiap skenario dilakuan sebanyak 5 kali percobaan dan dievaluasi menggunakan precision, recall, f1-score, accuracy, dan AUC one vs all. Rata-rata accuracy terbaik adalah sebesar 0,78; dan rata-rata AUC one vs all terbaik adalah sebesar 0,679179. Sedangkan untuk hasil evaluasi berdasarkan tiap kelas, pada kelas default, precision terbaik adalah sebesar 0,39; recall terbaik adalah sebesar 0,27; dan f1-score terbaik adalah sebesar 0,28. Pada kelas fully paid, precision terbaik adalah sebesar 0,82; recall terbaik adalah sebesar 0,95; dan f1-score terbaik adalah sebesar 0,88. Pada kelas late, precision terbaik adalah sebesar 0,02; recall terbaik adalah sebesar 0,02; dan f1-score terbaik adalah sebesar 0,02. Secara keseluruhan, hasil evaluasi model pada ketiga skenario hanya baik dalam memprediksi kelas 1 (fully paid), tetapi kurang baik dalam memprediksi kelas 0 (default) dan kelas 2 (late). Hal tersebut diduga terjadi akibat dataset yang terdapat imbalance data dan class overlap.

Credit scoring is a process in evaluating the creditworthiness of an individual. Credit scoring needs to be done by financial companies to minimize credit risk, because credit scoring can determine the eligibility of debtors. One financial company that provides P2P (Peer-to-Peer) based loan services that applies credit scoring in debtor evaluation is LendingClub. In this thesis, a multiclass classification of credit scoring based on loan status was carried out consisting of 3 classes, namely default, fully paid, and late. Multiclass classification of credit scoring can be done with one of the machine learning approaches, namely supervised learning. The supervised learning method used is random forest. Random forest is a tree-based method of retrieving information with each tree containing a random set of variables. The implementation of the random forest model was carried out using three different SMOTE strategy sampling scenarios. Model implementation in each scenario was carried out 5 times and evaluated using precision, recall, f1-score, accuracy, and AUC one vs all. The best average accuracy is 0.78; and the best average AUC of one vs all is 0.679179. As for the evaluation results based on each class, in the default class, the best precision is 0.39; The best recall was 0.27; and the best F1-score is 0.28. In the fully paid class, the best precision is 0.82; The best recall is 0.95; and the best F1-score is 0.88. In the late class, the best precision is 0.02; The best recall is 0.02; and the best F1-score is 0.02. Overall, the results of model evaluation in all three scenarios were only good at predicting class 1 (fully paid), but less good at predicting class 0 (default) and class 2 (late). This is thought to occur due to datasets that contain data imbalances and class overlap"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anindito Izdihardian Wibisono
"Pada tahun 2020, nilai customer satisfaction index (CSI) PT XYZ yang mempresentasi- kan kepuasan konsumen XYZ berjumlah 83.9. Angka ini gagal mencapai target PT XYZ di tahun tersebut yaitu 87, dan turun dari tahun sebelumnya yaitu 86,5 di tahun 2019. Berdasarkan pengambilan data, diketahui bahwa XYZ mengelola aduan konsumen hanya melalui Twitter. Dari ribuan tweet yang diterima akun resmi customer care PT XYZ (@XYZCares) tiap bulan di Twitter, diperkirakan hanya 1-2% yang dideteksi sebagai aduan dengan proses pengawasan manual. Penelitian ini merancang solusi dua langkah berupa implementasi social media listening dalam bentuk sentiment analysis dan topic modelling, untuk mengetahui isu dalam tweet aduan kepada XYZ. Dataset berupa kum- pulan tweet yang menyebutkan @XYZCares pada kurun waktu 1 Januari 2020 - 31 Desember 2020. Data di-scrape dari Twitter menggunakan script Python. Hasil evaluasi secara cross-validation menunjukkan akurasi rerata sentiment analysis dengan algoritme SVM lebih akurat (77%) untuk kasus ini dibandingkan algoritme RF (75%). Untuk task pemodelan topik, algoritme LDA menghasilkan klaster topik sejumlah 4 dengan rerata TPC sebesar 80%. Diketahui bahwa topik yang dominan adalah isu korupsi dan suap di badan PT XYZ. Dengan mempertimbangkan penemuan tersebut, saran yang dapat diberi- kan berdasarkan penelitian ini adalah memberhentikan staf yang diduga terlibat dalam isu-isu tersebut, serta menerapkan good corporate governance berupa aspek pengawasan dan pencegahan korupsi.

The customer satisfaction index (CSI) for the year 2020 is calculated at 83.9. This value fails to reach the company’s target for the year at 87 and is lower than the CSI value for 2019 at 86.5. Data acquired from the company shows that consumer complaints are ac- cepted and processed only through Twitter. It is estimated that of the thousands of tweets processed by PT XYZ’s official customer care account (@XYZCares) each month, only 1-2% of the tweets are considered complaints based on manual searching and classifica- tion. This research proposes a two-step solution by implementing social media listening in the form of sentiment analysis and topic modelling, to detect the most frequent issues addressed to XYZ. The dataset consists of tweets created from January 1st, 2020, to De- cember 31st, 2020 which mentioned @XYZCares. The tweets were scraped from Twitter using Python scripts. The results of cross-validation show that for the task of sentiment analysis, SVM is a more accurate algorithm on average (77%) compared to Random For- est (75%). For the following task of topic modelling, the LDA algorithm model produced 4 topic clusters with an average TPC of 80%. The most dominant topic detected relate to allegations of bribery and corruption within PT XYZ. Taking these finds into considera- tion, this research suggests that PT XYZ immediately dismiss all staff implicated in the aforementioned cases, as well as implementing good corporate governance in the form of tighter supervision and prevention of corrupt dealings."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library