Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Asep Rinaldo
Abstrak :
ABSTRAK<>br> Dalam beberapa tahun terakhir, masalah pengukuran kredibilitas informasi di jaringan sosial mendapat perhatian yang cukup besar terutama di bawah situasi darurat. Hal itu merupakan konsekuensi dari membeludaknya informasi, terlebih ketika semua orang bebas berperan sebagai sumber informasi.Penelitian ini menyoroti buramnya dinding pembatas antara fakta dan hoax di Indonesia, sehingga hal itu menyebabkan banyaknya kasus penyebaran hoax di media. Jika dibiarkan hal tersebut dapat berdampak buruk bagi seorang pribadi ataupun organisasi yang diserang isu hoax. Survei yang dilakukan Intelligence Media Management IMM menyatakan terdapat peningkatan tajam di tahun 2016 dari 1572 menjadi 7311 pemberitaan media. Dan berdasarkan hasil survei yang dilakukan masyarakat telematika mastel Indonesia hampir dari seluruh responden 84,5 menyatakan terganggu dengan maraknya berita hoax yang dapat mengganggu kerukunan masyarakat dan menghambat pembangunan nasional.Menurut Menteri Komunikasi dan Informatika Rudiantara, langkah nyata yang bisa dilakukan adalah menyaring informasi menjadi lebih cepat dan tegas. Untuk itu diperlukan tindakan sehingga penyebaran hoax di media dapat diturunkan. Tujuan dilakukannya penelitian ini adalah untuk mengidentifikasi konten di media sosial merupakan suatu hoax atau tidak pada saat konten tersebut beredar. Metodologi yang digunakan di dalam penelitian ini dimulai dengan mengumpulkan tweets yang terindikasi hoax lalu dilakukan proses pengolahan data dengan membuat suatu model text mining yang dapat memprediksi suatu konten berpotensi hoax atau tidak.Hasil dari penelitian ini yaitu didapatkan sebuah model berbasis pembelajaran sendiri menggunakan algoritma LinearSVC dengan akurasi 91 yang dapat memprediksi apakah suatu tweet merupakan berpotensi hoax atau tidak sehingga membantu dalam menyaring suatu informasi yang diharapkan dapat mengurangi penyebaran hoax di Indonesia.
ABSTRACT<>br> In recent years, the problem of measuring the credibility of information on the social network received considerable attention, especially under emergency situations. This is the consequence of too many information, especially when everyone is free to act as a source of information.The study highlights the blurring of the dividing wall between fact and hoax in Indonesia, so it causes many cases of spread of hoaxes in the media. If left unchecked it can be bad for a person or organization that attacked the issue of hoaxes. Surveys conducted by Intelligence Media Management IMM said there is a sharp increase in 2016 from 1572 content into 7311 content spread in media. And based on the results of a survey conducted by telematics community Mastel Indonesia almost of all respondents 84.5 declared disturbed by the rise of the hoax news that could disturb social harmony and impede national development.According to the Minister of Communications and Information Rudiantara, concrete steps that can be done is to filter information faster and firmer. It required the action so that the spread of hoax in the media can be derived. The purpose of this research is to identify content in social media is a hoax or not when the content is spreading. The methodology used in this research begins with collecting tweets that indicated hoax and then performed data processing by creating a text mining model that can predict a potentially hoax content or not.The result of this research is a machine learning model using LinearSVC algorithm with 91 accuracy which can predict whether tweet potentially hoax or not, thus helping the filtering of information expected to reduce the spread of hoax in Indonesia.
2017
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Satria Agung
Abstrak :
Investasi berbasis Crowdfunding merupakan Platform yang mengembangkan berbagai macam keunggulan yang mereka miliki untuk memikat masyarakat agar mau melakukan investasi digital, seperti menyediakan fitur berbagai aneka ragam instrumen investasi dan memberikan kemudahan seperti menawarkan biaya minimum untuk melakukan investasi sebagai modal awal. Penelitian ini bertujuan untuk mengetahui dan menganalisis ulasan pada aplikasi Crowdfunding Land X dan Santara dengan menggunakan metode Text Mining yang berbasis Sentiment Analysis Data yang digunakan dalam penelitian ini merupakan data sekunder yang didapat dengan cara mengambil data yang berupa text review pada aplikasi Crowdfunding Land X dan Santara. Data review yang berhasil diambil untuk aplikasi Santara sebesar 14.991 review, dan data pada aplikasi Land X, data yang berhasil berjumlah 2.241 review. Alat analisis yang digunakan dalam penelitian ini adalah software R dengan metode Text Mining berbasis Sentiment Analysis. Dengan menggunakan Text Mining berbasis Sentiment Analysis, dapat menjadi salah satu indicator analisis untuk melihat pandangan pengguna aplikasi terhadap aplikasi Land X dan Santara. ......Crowdfunding-based investments are platforms that develop many various advantages to entice the public to make digital investments, such as providing features for a wide variety of investment instruments and giving conveniences such as offering minimum fees for investing as initial capital. This study aims to find out and analyze reviews on Crowdfunding Land X and Santara applications using the Sentiment Analysisbased Text Mining method. The data used in this study is secondary data obtained by taking data in the form of text reviews on the Land X and Santara Crowdfunding applications. The successful review data was taken for the Santara application amounted to 14,991 reviews, and the data on the Land X application, the successful data amounted to 2,241 reviews. . The analytical tool used in this study is R software with the Text Mining method based on Sentiment Analysis. By using Text Mining based on Sentiment Analysis, it can be an indicator of analysis to see the views of application users on Land X and Santara applications.
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ardian Wahyu Yusufi
Abstrak :
Penerapan Teknologi Informasi dan Komunikasi (TIK) untuk meningkatkan keunggulan kompetitif.tidak hanya dimanfaatkan oleh sektor industri, namun juga sektor pemerintahan. Pemerintah Indonesia sendiri di dalam kaitannya dengan pemanfaatan TIK, telah membangun suatu sistem yang memungkinkan masyarakat untuk melaporkan keluhan dan aspirasinya melalui sistem LAPOR!. Sistem LAPOR! ciptaan pemerintah ini ternyata ditanggapi dengan antusias oleh masyarakat, terbukti dengan banyaknya laporan yang masuk ke pemerintah. Guna membantu kinerja pemerintah, dilakukan penelitian untuk menganalisis data tekstual laporan masyarakat dengan text mining untuk kemudian dilakukan disposisi otomatis ke dalam dua kategori utama LAPOR! yaitu topik dan instansi terkait. Disposisi otomatis dilakukan menggunakan teknik problem transformation pada multilabel classification melalui algoritma klasifikasi support vector machine dan naïve bayes. Hasil penelitian menunjukkan bahwa disposisi otomatis dapat diterapkan ke dalam sistem LAPOR! dan dapat meningkatkan kinerja disposisi laporan. Algoritma yang menghasilkan performa terbaik di dalam penerapannya adalah algoritma support vector machine ......The application of Information Technology and Communication (ICT) to escalate the competitive advantage is not only used in the industrial sector, but also in the government as well. The government of the Republic of Indonesia itsef, in the use of ICT, has built a system that enable its citizen to report their grievance and aspiration through LAPOR! system. This system turned out to be accepted with great enthusiasm by the public, as evidenced by the many reports to the government. In order to support the government’s performance, research is conducted to analyze the textual data using text mining, for later automatic disposition into two groups of LAPOR!'s category which is topik and instansi terkait. disposition is done using problem transformation technique in multilabel classification through support vector machine and naïve bayes classification algorithm. The result showed that automatic disposition can be applied into LAPOR! system and improves the report disposition’s performance. Algorithm that produces the best performance in the application is support vector machine.
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Nababan, Arif Hamied
Abstrak :
Pembentukan RUU Cipta Kerja memunculkan berbagai macam polemik di Indonesia. Penolakan terhadap RUU tersebut ditunjukkan oleh masyarakat Indonesia dengan berbagai cara. Mulai dari diskusi dengar pendapat dengan DPR, membahas dan mengangkat isu-isu kontroversial dalam RUU tersebut di berbagai media sosial, bahkan sampai melakukan demonstrasi besar-besaran yang tidak jarang berakhir dengan kericuhan. Penelitian ini bertujuan untuk mengidentifikasi stance masyarakat terhadap RUU Cipta kerja pada media sosial Twitter. Dataset diambil dari Twitter menggunakan kata kunci terkait RUU Cipta Kerja sebanyak 9440 data Tweet dalam periode 25 Oktober 2019 sampai pada 25 Oktober 2020. Anotasi dilakukan menggunakan label PRO, ANTI, ABS, dan IRR. Eksperimen yang dilakukan mengguanakan fitur unigram, bigram, dan unigram+bigram, dengan algoritma Multinomial Naïve Bayes, Support Vector Machine, dan Logistic Regression. Model terbaik dari eksperimen tersebut adalah model yang menggunakan fitur unigram dengan menggunakan algoritma klasifikasi logistic regression yang dapat mencapai nilai micro f-1 score sebanyak 72,3%. ......The formation of RUU Cipta Kerja (Job creation law) gave rise to various kinds of polemics in Indonesia. The Indonesian people have shown rejection of the law in various ways. Starting from hearing discussions with the DPR, discussing and raising controversial issues in the law on various social media, even holding large demonstrations that often end in chaos. This study aims to identify the public's stance on the job creation law on Twitter social media. The dataset was taken from Twitter using keywords related to the job creation law, totaling 9440 Tweets from 25 October 2019 to 25 October 2020. Annotations were carried out using the PRO, ANTI, ABS, and IRR labels. The experiments were carried out using unigram, bigram, and unigram + bigram features, with the Naïve Bayes Multinomial algorithm, Support Vector Machine, and Logistic Regression. The best model of the experiment is a model that uses the unigram feature using the logistic regression classification algorithm which can achieve a micro f-1 score of 72,3%.
Jakarta: Fakultas Ilmu Komputer Universita Indonesia, 2021
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rino Supriadi Putra
Abstrak :
ABSTRAK

Pariwisata Indonesia adalah salah satu penyumbang terbesar devisa negara. Pada 2015 devisa yang dihasilkan sektor pariwisata adalah sebesar $ 12,23 miliar dan diproyeksikan bahwa pada tahun 2020 akan memberikan kontribusi devisa negara sebesar $ 20 miliar. Kemajuan teknologi secara fundamental telah mengubah cara informasi diproduksi dan digunakan untuk banyak hal termasuk di sektor pariwisata. Dalam industri pariwisata, pengalaman pelanggan penting untuk pengembangan dan reputasi industri. Diperlukan pendekatan baru untuk mengukur tingkat kepuasan pelanggan dan persepsi wisatawan melalui analisis sentimen. Dalam penelitian ini permasalahan yang menjadi perhatian adalah bagaimana memanfaatkan analisis sentimen untuk menentukan persepsi wisatawan mengenai 3A (atraksi, amenitas, dan aksesibilitas) di destinasi wisata dan mengukur korelasi antara persepsi wisatawan dengan tingkat pertumbuhan wisatawan, menggunakan metode text mining NLP (Natural Language Processing) untuk mengembangkan strategi peningkatan kunjungan wisatawan dan pengembangan destinasi wisata. Hasil dari penelitian yang dilakukan didapatkan hasil terdapat korelasi negatif yang kuat antara sentimen negatif dengan tingkat pertumbuhan kunjungan wisatawan. Tingkat pertumbuhan wisatawan akan menurun ketika sentimen negatif dari wisatawan meningkat. Penurunan tingkat pertumbuhan wisatawan berdampak pada potensi hilangnya pendapatan negara. Analisis sentimen dapat memberikan gambaran persepsi wisatawan secara lengkap terkait aspek amenitas, aksesibilitas, dan atraksi di destinasi pariwisata.


ABSTRACT


Indonesian tourism is one of the biggest contributors to the countrys foreign exchange. In 2015 the foreign exchange generated by the tourism sector was $ 12:23 billion and it is projected that in 2020 will Contribute to the countrys foreign exchange of $ 20 billion. Technological advances have fundamentally changed the way information is produced and used for many things Including in the tourism sector. In the tourism industry, customer experience is important for the development and reputation of the industry. A new approach is needed to measure customer satisfaction and tourist perceptions through sentiment analysis. In this study the goal is how to use sentiment analysis to Determine the perceptions of tourists regarding 3A (attractions, amenities and accessibility) in tourist destinations and measure the correlation between perceptions with tourist tourist growth rates, using the NLP (Natural Language Processing) text mining method to develop strategies for increasing tourist visits and developing tourist destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. using the NLP (Natural Language Processing) text mining method to develop strategies for increasing tourist visits and developing tourist destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. using the NLP (Natural Language Processing) text mining method to develop strategies for increasing tourist visits and developing tourist destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations.

 

2020
T55380
UI - Tesis Membership  Universitas Indonesia Library
cover
Ryan Randy Suryono
Abstrak :
Penelitian ini bertujuan untuk membangun proses bisnis pengawasan Fintech P2P Lending di Indonesia berbasis Berita Daring, Twitter, dan Ulasan Google Playstore. Usulan pengawasan yang baru digambarkan dengan Business Process Modeling Notation (BPMN). Selanjutnya diimplementasikan dengan membuat prototipe. Pendekatan yang digunakan adalah pendekatan Text Mining seperti ekstraksi informasi dengan Named Entity Recognition (NER), Analisis Sentimen dan Pemodelan Topik dengan Latent Dirichlet Allocation (LDA). Hasil eksperimen pada pendekatan NER menunjukan Algoritma Multinomial Naïve Bayes mendapatkan F1-score tertinggi sebesar 90%, sedangkan pada pendekatan analisis sentiment model Naïve Bayes dan Random Forest terbukti memiliki akurasi tinggi yaitu diatas 91%. Hasil NER membuktikan bahwa platform Cashless, Yokke, Digital Artha Media, Koinworks, Moka, Privy id, PT Tunaiku Fintech Indonesia, PT Relasi Perdana Indonesia, PT Dynamic Credit Asia dan PT Progo Puncak Group tidak ada dalam daftar Fintech di Otoritas Jasa Keuangan (OJK). Sedangkan hasil Persentase positif untuk aplikasi Adakami, Easycash, Danamas, Dompetkilat, dan Indodana berturut-turut adalah 47%, 59%, 28%, 24%, dan 29%. Penelitian ini dapat digunakan oleh OJK untuk pengawasan Fintech dan meningkatkan perlindungan konsumen. ......This research aims to build a business process to supervise Fintech P2P Lending in Indonesia based on Online News, Twitter, and Google Playstore Reviews. The proposed new supervision is described by the Business Process Modeling Notation (BPMN), then implemented by making a prototype. The Text Mining approach uses information extraction with Named Entity Recognition (NER), Sentiment Analysis, and Topic Modeling with Latent Dirichlet Allocation (LDA). Experimental results on the NER approach show that the Naïve Bayes Multinomial Algorithm gets the highest F1-score of 90%. In contrast, the Naïve Bayes and Random Forest model sentiment analysis approaches are proven to have high accuracy, above 91%. The NER results demonstrate that the platforms Cashless, Yokke, Digital Artha Media, Koinworks, Moka, Privy id, PT Tunaiku Fintech Indonesia, PT Relasi Perdana Indonesia, PT Dynamic Credit Asia, and PT Progo Puncak Group are not on the Fintech list at the Financial Services Authority (OJK). While the positive percentage results for the Adakami, Easycash, Danamas, Dompetkilat, and Indodana applications were 47%, 59%, 28%, 24%, and 29%, respectively. This research can be used by OJK for Fintech supervision and improving consumer protection.
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Kukuh Lolana
Abstrak :
ABSTRACT
Pelayanan publik berperan penting untuk meningkatkan kesejahteraan masyarakat. Kepolisian Republik Indonesia merupakan lembaga pelayanan publik yang memiliki peranan penting di masyarakat. Namun, penilaian kinerja Polri yang berhubungan langsung dengan masyarakat masih rendah dan perlu ditingkatkan. Peningkatan kinerja layanan Polri dilakukan dengan memahami aduan dan masukan dari masyarakat. Aduan merupakan informasi penting untuk penyedia layanan untuk mengetahui arah perbaikan dan pengembangan layanan ke depannya. Perkembangan teknologi membuat sistem penyampaian pengaduan dapat disampaikan secara online sehingga lebih mudah. Kemudahan ini sejalan dengan banyaknya jumlah aduan yang disampaikan masyarakat kepada Polri. Aduan masyarakat merupakan data teks yang tidak terstruktur dengan penggunaan kosa kata yang bervariasi. Maka dari itu, pendekatan text miningpenting untuk dilakukan. Penelitian ini bertujuan untuk mengklasifikasi dan melakukan clustering dari aduan masyarakat kepada Polri untuk topik permasalahan yang sering disampaikan masyarakat. Untuk klasifikasi, algoritme yang digunakan adalah Support Vector Machine SVM dan Random Forest Classifier RFC karena kedua algoritme bekerja dengan baik untuk mengklasifikasi data teks dalam jumlah besar. Hasilnya algoritme RFC bekerja lebih baik pada kasus ini dengan akurasi 72 . Untuk clustering, algoritme yang digunakan adalah Self-Organizing Maps. Hasil penelitian menunjukkan aduan terbanyak masyarakat terdapat di Kelas Pelayanan Buruk dengan topik yang sering dibahas berkaitan dengan satuan kerja Korps Lalu-Lintas Polri.
ABSTRACT
Public services take a major role to improve the welfare of society. Indonesia National Police is one of public service institution which have an important role. Unfortunately, assessment of Police performance related to the public service quality is still low. Police needs to improvetheirservice quality. For improving the performance, by analyzing inputs and complaints from public. Complaint is an valuable information for service provider in order to know the service improvement and development in the future. Technology advances make the online complaint handling system easy to access. This is allign with the number of public complaints for Police. Public complaints is unstructured text data with varying vocabulary. Hence, this research is using text mining approach. This research aims to classify and cluster the public complaints to Indonesia National Police to get the specific topic of the complaint. Support Vector Machine and Random Forest Classification RFC algorithms are used for classification. RFC works better on this research with 72 accuracy. Self Organizing Maps algorithm is used for clustering. The result is the highest public complaints are in poor service quality class with topics related to National Police rsquo s Traffic Corps.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dita Anggraeni Kusumaningrum
Abstrak :
Kepuasan pelanggan merupakan salah satu faktor penting bagi keberhasilan suatu bisnis, termasuk pada industri jasa penerbangan yang mengalami peningkatan dari tahun ke tahun. Salah satu cara untuk mengukur tingkat kepuasan pelanggan adalah dengan cara penyampaian opini atau ulasan. Opini atau ulasan disampaikan melalui pesan singkat, kotak saran, media sosial maupun halaman web sehingga data yang tersedia berjumlah banyak. Pendekatan text mining tepat digunakan untuk mengekstrak informasi dari data ulasan yang berjumlah banyak secara otomatis. Penelitian ini mengevaluasi dan menganalisis ulasan pelanggan terhadap layanan dan fasilitas Bandara Soekarno-Hatta yang merupakan bandara terbesar di Indonesia. Penelitian ini mengombinasikan pendekatan text mining berupa analisis sentimen dan text summarization. Teknik klasifikasi digunakan untuk mengidentifikasi sentimen positif atau negatif yang terkandung dalam kalimat ulasan. Teknik klasifikasi yang digunakan adalah support vector machine yang cocok digunakan untuk data yang berjumlah besar dan na ve bayes classifier yang hanya membutuhkan jumlah data latihan yang kecil untuk menentukan estimasi parameter dalam proses pengklasifikasian. Text summarization dengan teknik k-medoids clustering digunakan untuk memperoleh kalimat representatif yang menggambarkan keseluruhan isi ulasan. Hasil dari teknik klasifikasi pada penelitian ini menunjukkan bahwa algoritme support vector machine menghasilkan nilai akurasi yang lebih tinggi dibandingkan algoritme na ve bayes classifier dalam menganalisis sentimen. Tahap text summarization dengan teknik k-medoids clustering menghasilkan nilai Davies-Bouldin Index yang mendekati nol. Luaran dari penelitian ini berupa identifikasi aspek layanan dan fasilitas bandara yang menjadi kekuatan dan kelemahan serta penentuan prioritas perbaikan dan peningkatan kualitas aspek layanan dan fasilitas yang masih menjadi kelemahan. ...... Customer satisfaction is an important factor for the business rsquo success, including airline service industry which is increasing from year to year. One way to measure customer satisfaction level is by customer opinions or reviews. Opinions or reviews are conveyed via short messages, suggestion boxes, social media and web pages so customer reviews provided are numerous. Text mining is a right approach to extract information from a large number of review data automatically. This study evaluates and analyzes customer reviews of services and facilities of Soekarno Hatta Airport as the largest airport in Indonesia. This study combines text mining approach of sentimental analysis and text summarization. The classification technique is used to identify the positive or negative sentiments contained in the review sentence. The classification technique used is a support vector machine suitable for large amounts of data and na ve bayes classifier which requires only a small amount of exercise data to determine parameter estimation in the classification process. Text summarization with k medoids clustering technique is used to obtain representative sentences that describe the entire contents of the review. The results of the classification technique in this study indicate that support vector machine algorithm has a higher accuracy value than na ve bayes classifier algorithm in analyzing sentiments. Text summarization stage with k medoids clustering technique yields a near zero Davies Bouldin Index value. The output of this research is identification of service aspect and airport facility which become the strength and weakness as well as the improvement prioritization of aspects that still become weakness.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Epy Ananto Putera Wisana
Abstrak :
Akibat efek dari pandemi COVID-19 yang terjadi di seluruh dunia, industri pariwisata banyak yang mengalami penurunan karena peraturan-peraturan dan upaya yang dilakukan untuk mengurangi penyebaran COVID-19, salah satunya adalah di Indonesia. Namun seiring berjalannya waktu, tempat tujuan pariwisata di Indonesia sudah mulai dibuka sesuai peraturan, misalnya Candi Borobudur. Media sosial dan internet dapat dijadikan sebagai sarana untuk mencari tahu tentang kondisi tujuan pariwisata. Tujuan dari penelitian ini adalah untuk menganalisis atribut-atribut destinasi pariwisata Candi Borobudur yang menjadi alasan wisatawan untuk memberikan ulasan di situs TripAdvisor pada periode 1 Januari 2021 hingga 30 Juni 2022. Data yang digunakan pada penelitian ini diambil dari situs TripAdvisor.com dengan metode text mining sebanyak 624 ulasan berbahasa Inggris. Atribut destinasi yang menjadi mayoritas topik pembicaraan dalam ulasan dengan penilaian positif adalah infrastructure serta physiography & climate. Sementara itu, atribut destinasi yang menjadi mayoritas topik pembicaraan dalam ulasan dengan penilaian negatif adalah infrastructure, cost/value, a mix of activity, dan quality of services. Selanjutnya hasil dari ulasan negatif tersebut dianalisis dan dibuat dalam diagram sebab-akibat untuk pemecahan masalah. ......Due to the effects of the COVID-19 pandemic that is happening all over the world, lots of tourism industry has experienced a decline due to regulations and efforts made to reduce the spread of COVID-19, one of which is in Indonesia. However, over time, tourism destinations in Indonesia have started to open, the Borobudur Temple for example. Social media and internet can be used as a media to gather informations about the tourism destinations. The purpose of this research is to analyze which destination attributes of Borobudur Temple that lead to tourists making review on TripAdvisor site on January 1st, 2021 to June 30th, 2022. The data were 624 reviews in English, taken from the TripAdvisor site using text mining. The majority of destination attributes being the topic of the positive reviews are infrastructure and physiography & climate. On the other hand, the majority of destination attributes being the topic of the negative reviews are infrastructure, cost/value, a mix of activity, and quality of service. Furthermore, the negative review results are made into the fishbone diagram for troubleshooting.
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Jo, Taeho
Abstrak :
This book discusses text mining and different ways this type of data mining can be used to find implicit knowledge from text collections. The author provides the guidelines for implementing text mining systems in Java, as well as concepts and approaches. The book starts by providing detailed text preprocessing techniques and then goes on to provide concepts, the techniques, the implementation, and the evaluation of text categorization. It then goes into more advanced topics including text summarization, text segmentation, topic mapping, and automatic text management.
Switzerland: Springer Cham, 2019
e20501288
eBooks  Universitas Indonesia Library