Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Nova Susiana S.
Abstrak :
Proses Termal Desorpsi adalah salah satu cara pengolahan limbah padat dengan menggunakan pemanasan, dalam sistem ini material kontaminan tidak dihancurkan tetapi tetap utuh dan tidak mengalami kerusakan sehingga tidak menghasilkan gas-gas pencemar udara, misalnya oksida nitrogen atau oksida sulfur penyebab hujan asam dan karbon monoksida yang beracun. Pada penelitian ini dilakukan proses termal desorpsi skala laboratorium yang menggunakan alat-alat yang sangat sederhana. Disini dilakukan dua jenis proses termal desorpsi yaitu Low Temperature Thermal Desorption (LTTD) dengan suhu 90-320OC dan High Temperature Thermal Desorption (HTTD) dengan suhu 350-650OC. Limbah padat yang digunakan adalah kompos yang diberi perlakuan tertentu. Dari hasil penelitian dapat disimpulkan bahwa dari keempat logam yang terdesorpsi menunjukkan bahwa logam Zn mempunyai persentase terdesorpsi paling besar yaitu 28,81 % dengan suhu optimum 3200C untuk hasil LTTD sedangkan logam Cd mempunyai persentase terdesorpsi paling besar yaitu 66,22 % dengan suhu optimum 6500C untuk hasil HTTD.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Indonesia, 2006
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Luthfi
Abstrak :
Karena kurangnya kuantitas dan kualitas dari sumber air eksisting UI, PDAM Tirta Asasta, UI berencana untuk membangun SPAM untuk memenuhi kebutuhan lingkungan kampus UI sendiri. Salah satu parameter kualitas air yang diatur pada PP No. 82 Tahun 2001 sebagai baku mutu untuk air baku Instalasi Pengolahan Air Minum adalah logam berat, salah satunya yaitu tembaga. Keberadaan logam ini tinggi pada kandungan sedimen, dan dapat terlepas menuju air. Oleh karenanya, eksperimen ini dilaksanakan untuk mengetahui pengaruh/dampak parameter fisik-lingkungan danau berupa pH, temperatur, dan konsentrasi amonia terhadap terjadinya desorpsi logam tembaga di sedimen Danau Salam UI. Eksperimen awalnya dilakukan dengan pengambilan sampel sedimen dan sampel air. Sampel sedimen dan air dikumpulkan dari 3 titik di dekat posisi inlet IPAM yang direncanakan berdasarkan Rencana Induk Sistem Penyediaan Air Minum UI (RISPAM UI). Dari hasil dari pengujian, didapat konsentrasi tembaga di sedimen, dari 83.1 mg/Kg hingga 92.7 mg/Kg. Selanjutnya, dilakukan eksperimen desorpsi dan dianalisa menggunakan metode regresi linear. Diketahui bahwa pH merupakan parameter yang paling berpengaruh dalam terjadinya proses desorpsi tembaga pada sedimen Danau Salam. Hasil regresi linear, nilai koefisien pH, temperatur, dan konsentrasi amonia adalah -0.0072, -0.0042, dan 0.0003. Nilai pH menunjukkan kemiringan (slope) tertinggi, diikuti dengan temperatur, lalu konsentrasi amonia. ......Due to the lack of quantity and quality from UI's existing water source, PDAM Tirta Asasta, UI plans to build SPAM to meet the needs of the UI campus environment itself. One of the water quality parameters regulated in PP. 82 of 2001 as the quality standard for raw water for Drinking Water Treatment Plants is heavy metals, including copper, cobalt and lead. The presence of these metal is high in sediment content, and could be released into water. Therefore, this experiment was conducted to determine the effect / impact of the physical parameters of the lake environment in the form of pH, temperature and ammonia concentration on the occurrence of copper desorption in the sediments of Lake Salam UI. Initial experiments were carried out by taking sediment samples and water samples. Sediment and water samples were collected from 3 points near the IPAM inlet position which was planned based on the Master Plan for Drinking Water Supply System UI (RISPAM UI). From the test results, the copper concentration in the sediment was obtained, from 83.1 mg / Kg to 92.7 mg / Kg. Furthermore, a desorption experiment was carried out and analyzed using linear regression methods. It is known that pH is the most influential parameter in the process of copper desorption in the Salam Lake sediments. The results of linear regression, the coefficient values for pH, temperature, and ammonia concentration are -0.0072, -0.0042, and 0.0003. The pH value shows the highest slope, followed by temperature, then the ammonia concentration.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Restianny Hanindya
Abstrak :
ABSTRAK
Metil-Dietanol-Amina MDEA - 2-Amino-2-Metil-1-Propanol AMP - Trietilena-Tetramina TETA adalah campuran alkanolamina yang menjanjikan untuk menangkap karbon dioksida CO2 . Kemampuan absorpsi dan desorpsi MDEA-AMP-TETA dengan menggunakan campuran alkanolamina diketahui dari hasil studi eksperimental ini. Eksperimen absorpsi dilakukan pada 1 atm dan 40 C dengan menggunakan 15 v/v CO2. Pada proses absorpsi CO2, konsentrasi alkanolamina memiliki peranan penting pada kemampuan absorpsi. Konsentrasi masing-masing alkanolamina sebesar 1 mol/L M MDEA-2M AMP-1,5M TETA, 1,5M MDEA-1,5M AMP-1,5M TETA, 2M MDEA-1M AMP-1,5M TETA, dengan total konsentrasi dibuat konstan pada 4,5M. Eksperimen desorpsi CO2, temperatur desorpsi memiliki peranan penting, sehingga dilakukan variasi temperatur desorpsi 70 -90 C. Didapatkan 1,5M MDEA-1,5M AMP-1,5M TETA memiliki kapasitas CO2 loading terbesar. 2M MDEA-1M AMP-1,5M TETA dengan temperatur desorpsi 90 C dapat mendesorpsi CO2 terbesar.
ABSTRACT
Methyl Diethanol Amine MDEA 2 Amino 2 Methyl 1 Propanol AMP Triethylene Tetramine TETA is a promising aqueous alkanolamina blends for carbon dioxide CO2 capture. The absorption and desorption performance of MDEA AMP TETA using alkanolamina blends solutions were investigated. The absorption experiment were carried out at 1 atm and 40 C using 15 v v CO2. In the process of CO2 absorption, alkanolamina concentration played important effects on the absorption performance. Concentration of each alkanolamina were varied into 1 mol L M MDEA 2M AMP 1,5M TETA, 1,5M MDEA 1,5M AMP 1,5M TETA, 2M MDEA 1M AMP 1,5M TETA, total alkanolamina solutions concentration were kept constant at 4.5M. In the process of CO2 desorption from the used absorbent, desorption temperature played an important role on the desorption behavior. It will be varied into 70 90 C. It was discovered 1,5M MDEA 1,5M AMP 1,5M TETA has the greatest CO2 loading capacity. 2M MDEA 1M AMP 1,5M TETA with temperature desorption at 90 C has the greatest CO2 desorption.
2018
T49766
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Zikri
Abstrak :
Berbagai model pengeringan telah dikaji guna memperoleh kesesuaian analisa perpindahan panas dan massa pada laju pengeringan dalam skema dehumidifikasi udara menggunakan suatu material, salah satunya silica gel. Dalam hal ini peneliti mengkaji pengaruh tingkat kelembaban, temperatur, dan laju aliran udara terhadapa konstanta laju pengeringan dan energi aktivasi desorpsi air pada silica gel menggunakan alat packed bed dryer yang telah termodifikasi dengan sistem refrigerasi. Hasilnya mendemonstrasikan bahwa konstanta laju desorpsi air pada silica gel, seiring meningkatnya kelembaban udara menyebabkan penurunan nilai konstanta laju desorpsi air pada silica gel. Akan tetapi pengaruh kenaikan temperatur dan aliran udara menyebabkan kenaikan nilai konstanta laju pengeringan untuk desorpsi air pada silica gel. Dimana, ketika temperatur mencapai 90C dan laju aliran udara yang maksimum 750 lpm, hal ini menyebabkan peningkatan yang cepat pada konstanta laju desorpsi air pada silica gel karena terjadinya evaporasi kapiler pada temperatur yang lebih tinggi ataupun laju aliran udara besar. Sedangkan, untuk energi aktivasi desorpsi air pada silica gel meningkat seiring dengan penurunan laju aliran udara, serta seiring dengan kenaikan kelembaban udara inletnya. Singkatnya, semakin kecil laju aliran udara atau semakin besar kelembaban udara maka semakin tinggi pula energi aktivasi desorpsi air pada silica gel tersebut. Hal ini dikarenakan gaya tarik yang bekerja pada molekul air dari medan gaya permukaan pada dinding sekitarnya menjadi lebih kuat jika laju aliran udara lebih kecil atau kelembaban udara yang lebih besar. Dari hasil dan analisa menpresentasikan bahwa energi aktivasi desorpsi air pada silica gel dengan kelembaban udara yang besar dan atau laju aliran yang rendah yaitu pada 0,013 kg/kg d.a. (450 lpm) merupakan paling tinggi sebesar 35,16 kJ/mol, sedangkan pada silica gel dengan kelembaban udara 0,007 kg/kg d.a. (750 lpm) paling rendah sebesar 22,92 kJ/mol. ......Analysis of heat and mass transfer at drying rates in an air dehumidification scheme using a material, one of which is silica gel. In this case, the researchers examined the effect of humidity, temperature, and airflow rate on the drying rate constants and the activation energy of water desorption in silica gel using a packed bed dryer that has been modified with a refrigeration system. The results demonstrate that the water desorption rate constant is the silica gel, as the air's humidity increases, it causes a decrease in the value of the water desorption rate constants in the silica gel. However, increasing temperature and airflow causes a rise in the drying rate constants' value for water desorption in silica gel. Where, when the temperature reaches 90C and the maximum airflow rate is 750 lpm, this causes a rapid increase in the water desorption rate constant in the silica gel due to capillary evaporation at higher temperatures or large airflow rates. Meanwhile, the activation energy of water desorption in silica gel increases with decreasing air flow rate and the increase in inlet air humidity. Briefly, if the lower the airflow rate or the greater the humidity, then this causes the higher the water desorption activation energy in the silica gel. It is due to the attractive force acting on the water molecules from the surface force field on the surrounding walls becomes more robust if the airflow rate is lower or the air humidity is upper. The results and analysis show that the activation energy of water desorption in silica gel with higher air humidity and or low flow rate is at 0.013 kg/kg d.a. (450 lpm) is the highest at 35.16 kJ/mol, while in silica gel with an air humidity of 0.007 kg/kg d.a. (750 lpm) the lowest is 22.92 kJ/mol.
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Gustian Jaya
Abstrak :
Studi oksidasi parsial metana ini dilakukan untuk mempelajari karakterisasi dan kinerja katalis Cu3(PW12040)2 (CuPW) dan Cu (II) zeolit alam yang diaktifkan (Cu-Z). Kedua katalis tersebut dipreparasi dengan metode pertukaran ion. Percobaan ini menggunakan reaktor unggun tetap dengan melihat pengaruh suhu (400-700°C), rasio umpan CH4/O2, dan rasio berat katalis terhadap laju alit umpan (W/F) pada tekanan atmosferik. Hasil karakterisasi menunjukkan bahwa CuPW mempunyai luas permukaan (3,38 m²/gram) yang jauh lebih kecil dari Cu-Z (62,67 m²/gram) akan tetapi kandungan Cu (II) di CuPW (4,2%) jauh lebih besar dari Cu-Z (0,5%). Kekuatan adsorpsi Cu-Z terhadap metana lebih besar dari CuPW yang ditunjukkan oleh suhu desorpsi maksimum metana pada hasil Temperatur Program Desorpsi (TPD) 570 °C untuk Cu-Z dan 420 °C untuk CuPW, dan sebaliknya terhadap oksigen. Sedangkan Cu-Z mempunyai kekuatan asam lebih tinggi dari CuPW, yang ditunjukkan oleh suhu desorpsi maksimum piridin pada hasil TPD 680 °C untuk CuPW dan 780 ° C untuk Cu-Z. Konversi metana pada katalis CuPW dua kali (2K) Cu-Z pada W/F dan CH4/02 yang sama, meskipun luas permukaan keduanya berbeda. Fenomena ini disebabkan oleh pengaruh berperannya beberapa besaran (luas permukaan, kandungan inti aktif Cu+2 dan keasaman) secara simultan. Reaksi oksidasi tanpa umpan oksigen menunjukkan bahwa oksigen kisi kedua katalis berperan pada parsial oksidasi ini. Perbedaan kekuatan ikatan oksigen kisi pada kedua katalis memberikan selektivitas yang berbeda terhadap metanol/formaldehida. Cu-Z dengan kekuatan asam yang lebih tinggi dari CuPW mempunyai kapasitas adsorpsi terhadap metana lebih besar, sehingga konsentrasi metana yang besar di permukaan ini meningkatkan konversinya lebih besar dibanding terhadap CuPW. Pada katalis Cu-Z, selektivitas metanol yang terbesar (sekitar 7,5%) didapat pada 600 °C, CH4/02 = 17,3 dan W/F =-0,2 gr-kat.menit/ml. Selektivitas optimum formaldehid (sekitar 9%) pada W/F = 0,3 gr-kat.menit/ml, CH4/02 = 3, 600 °C. Sedangkan pada katalis" CuPW, metanol tidak terbentuk. Selektivitas formaldehida optimum adalah sekitar 18%, pada 500 °C, CH4/02 = 3 dan W/F = 0,3 grkat.menit/ml.
Depok: Fakultas Teknik Universitas Indonesia, 1996
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Prolessara Prasodjo
Abstrak :
Adsorpsi gas hidrogen dalam material berpori seperti karbon merupakan teknik penyimpanan hidrogen bertekanan yang efektif dan sangat menjanjikan untuk diaplikasikan pada sistem penyimpanan hidrogen sebagai bahan bakar terutama pada kendaraan. Nanotube karbon (NTC) merupakan salah satu material karbon yang sangat berpotensi untuk digunakan dalam penyimpanan hidrogen selain karbon aktif. Potensi penyerapan gas hidrogen pada nanotube karbon yang dihasilkan dari produksi lokal diuji kemampuannya pada penelitian ini. Pengujiannya meliputi penentuan kapasitas adsorpsi gas hidrogen serta dinamika adsorpsi dan desorpsinya dari nanotube karbon produksi lokal pada temperatur isotermal 25 ºC dan tekanan 0-1000 Psia. Sebagai pembanding hasil percobaan, dilakukan juga uji yang sama terhadap nanotube karbon komersial yang diproduksi dari Chinese Academy of Sciences. Dari hasil pengujian adsorpsi gas hidrogen dengan kedua NTC menunjukkan bahwa kapasitas adsorpsi hidrogen terus meningkat secara seiring dengan meningkatnya tekanan pada temperatur isotermal 25 ºC. NTC lokal mempunyai kapasitas adsorpsi yang lebih rendah dibandingkan dengan kapasitas adsorpsi NTC komersial. Pada tekanan sekitar 960 psia, kapasitas adsorpsi NTC lokal dan NTC komersial berturut-turut 0,09 % dan 0,13 % berat. Mekanisme adsorpsi yang terjadi pada kedua NTC didasarkan pada interaksi fisik. Secara umum, data adsorpsi hidrogen dari kedua adsorben dapat direpresentasikan dengan baik oleh permodelan Langmuir, dengan % AAD di bawah 5. Dari hasil data dinamika dapat diketahui bahwa proses adsorpsi dan desorpsi pada kedua NTC berlangsung sangat cepat. Pada tekanan tertinggi (960 Psia), kesetimbangan adsorpsi dan desorpsi tercapai mendekati waktu 30 detik, sedangkan pada NTC lokal tercapai pada waktu 2 detik. Waktu pencapaian kesetimbangan pada proses adsorpsi baik pada NTC lokal maupun komersial pada tekanan tinggi lebih cepat dibandingkan pada tekanan rendah. Waktu pencapaian kesetimbangan pada proses desorpsi sedikit lebih cepat pada tekanan tinggi pada NTC komersial sedangkan pada NTC komersial hampir sama pada tekanan tinggi dan rendah. Secara keseluruhan dinamika adsorpsi dan desorpsi yang terjadi pada NTC lokal dan komersial baik pada tekanan rendah sampai tekanan tinggi dapat direpresentasikan dengan baik oleh model dinamika Gasem dan Robinson dengan % AAD di bawah 2.
Adsorption of hydrogen gas in porous material such as carbon is a effective pressurized hydrogen storage technique and very promising for application in hydrogen storage system for fuel, especially in vehicles. Carbon nanotubes (CNT) is one of the most potential of carbon materials for use in hydrogen storage beside activated carbon. Potential of hydrogen gas adsorption in carbon nanotubes generated from local production was tested in this study. The test includes the determination of hydrogen gas adsorption capacity and dynamics of adsorption and desorption of carbon nanotubes local production at isothermal temperature 25 ºC and pressure 0- 1000 Psia. As a comparison the results of the experiment, also conducted similar tests on commercially produced carbon nanotubes of the Chinese Academy of Sciences. From the test results of hydrogen gas adsorption with both CNT show that the hydrogen adsorption capacity increased with increasing pressure at isothermal temperature of 25ºC. Local CNT has a lower adsorption capacity compared with the adsorption capacity of commercial CNT. At pressures around 960 psia, the adsorption capacity of local and commercial CNT is 0.09% and 0.13% weight respectively. Adsorption mechanism that occurs at both the CNT based on physical interactions. In general, the hydrogen adsorption data of both the adsorbent can be represented well by the Langmuir model, with % AAD of less than 5. From the data, it is known that the dynamics of adsorption and desorption processes at both the CNT happened very quickly. At highest pressure (960 Psia), adsorption and desorption equilibrium of local CNT is reached approximately in 30 seconds, while commercial CNT is reached in 2 seconds. The rate of adsorption equilibrium at both local and commercial CNT at high pressure more rapidly than at low pressures. At process of desorption, the time of equilibrium is reached slightly faster at high pressure than low pressure in the commercial CNT, but almost similar in local CNT. Overall dynamics of adsorption and desorption that occurred at both CNT at low pressure to high pressure can be presented well by the model Gasem and Robinson with % AAD below 2.
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27896
UI - Tesis Open  Universitas Indonesia Library
cover
Ghilandy Ramadhan
Abstrak :
Karbon aktif adalah jenis adsorben yang paling banyak digunakan pada Adosrbed Natural Gas (ANG).. Karbon aktif dapat dibuat dari berbagai bahan baku dan salah satunya Eceng Gondok (Eichornia crassipes). Proses pembuatan karbon aktif berbahan dasar Eceng gondok melalui tahap preparasi, karbonasi, dan aktivasi kimia. Activating agent yang digunakan dalam preparasi karbon aktif adalah ZnCl2. Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi aktivator ZnCl2 yang digunakan untuk pembuatan karbon aktif dari eceng gondok, pengaruh tekanan saat pengisian terhadap kapasitas penyimpanan gas metana pada tabung ANG, serta membandingkan kemampuan adsorpsi dan desorpsi karbon aktif . Variasi konsentrasi ZnCl2 yang digunakan adalah 0,25 N, 1 N, 4 N dan 7 N. Variasi tekanan saat pengiasian gas metana adalah 10 bar, 24 bar dan 35 bar. Metode bilangan Iod dan Uji SEM-EDX digunakan dalam proses karakterisasi. Pada pengujian kapasitas penyimpanan dilakukan pada suhu tetap (isothermal) yaitu 27°C. Karbon aktif komersial jenis EnerG2 digunakan sebagai pembanding. Hasil paling baik didapatkan pada konsentrasi ZnCl2 1 N dengan luas permukaan 365,7 m2/g dan kapasitas penyimpanan gas metana pada 36 bar sebesar 0,29 kg/kg dengan efisiensi 54,9 %.
Activated carbon is a type of adsorbents which most widely used in the Natural Gas (ANG) technology. Activated carbon can be manufactured from a variety of raw materials included water hyacinth (Eichornia crassipes). The process of making an activated carbon from Eichornia crassipe through preparation, carbonation stage, and chemical activation.. This study aims to determine the effect of concentration of Activating agent ZnCl2, effect of pressure of the methane storage , and to compare the ability of activated carbon from water hyacinth and commercial activated carbon. Variations ZnCl2 concentration used was 0.25 N, 1 N, 4 N and 7 N. While variations of gas pressure is 10 bar, 24 bar and 35 bar. Iodine Number test and SEM-EDX is used in the characterization process. In this test, the storage capacity of methane performed at a constant temperature (isothermal) at 27 ° C. EnerG2 types of commercial activated carbon is used as a comparison. The best results obtained at a concentration of ZnCl2 1 N with a surface area of ​​365.7 m2/g and the storage capacity of methane gas at 36 bar of 0.29 kg/kg with an efficiency of 54.9 %.
Depok: Universitas Indonesia, 2016
S63413
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hizba Ilmi Naf An
Abstrak :
Gas alam merupakan bahan bakar alternatif yang cadangannya masih terdapat banyak di bumi, khususnya di Indonesia. Penggunaan optimal dari gas alam mampu menggantikan peran bahan bakar minyak yang ketersediaannya mulai terbatas. Salah satu pemanfaatannya ialah dengan teknologi ANG yang berdasar pada prinsip adsorpsi menggunakan material berpori. Teknologi ANG mampu menampung gas alam dalam konsentrasi tinggi dengan tekanan yang rendah dalam temperatur kamar. Material berpori yang dapat digunakan untuk menampung gas alam salah satunya karbon aktif yang memiliki luas permukaan yang cukup tinggi karena memiliki porositas yang tinggi. Karbon aktif dapat dibuat dari bahan yang memiliki rantai hidrokarbon yang cukup tinggi, salah satunya dari limbah pertanian yang mengandung selulosa yang tinggi. Pembuatan karbon aktif dilakukan dengan aktivasi kimia dan fisika. Pembuatan karbon aktif menggunakan aktivator KOH dilakukan dengan variasi perbandingan berat 1:0,25 hingga 1:1. Pembuatan karbon aktif dengan konsentrasi KOH 1:1 menghasilkan karakteristik terbaik dengan bilangan iod 1337 mg/mg dan luas permukaan 1190,8 m2/g. Kapasitas penyimpanan tertinggi dari karbon aktif ini mencapai 0,0397 kg/kg pada tekanan 9 bar dan suhu 27 C dengan efisiensi pelepasan sebesar 43,82 . Karbon aktif yang disintesis dari limbah mahkota nanas dibandingkan dengan karbon aktif komersil dimana karbon aktif komersil memiliki kapasitas penyimpanan sebesar 0,0429 kg/kg pada tekanan 9 bar dan suhu 27 C serta efisiensi pelepasam sebesar 43,82. ......Natural gas is considered as alternative fuel that still has the sufficent availability in the earth, particularly in Indonesia. The optimal use of natural gas is able to replace the role of fuel oil that its capacity is started to decrease in the world. One of the utilization of natural gas is ANG technology which based on the adsorption principle of the porous material. ANG technology is capable to store the natural gas in high concentration with low pressure in room temperature. One of the porous material that can be use to store the natural gas is activated carbon which has a fairly high surface area due to its good porosity. Activated carbon can be made from the material that consist of hydrocarbon chains, referring agricultural waste with high cellullose as one of its example. Pineapple crown as a agricultural waste has an abundant source but has not been utilized maximally, is able to be used in this research. Activated carbon using KOH activator is done with variation of weight ratio 1 0,25 to 1 1. Activated carbon with KOH concentration of 1 1 produced the best characteristic with iod number 1337 mg mg and surface area 1190,8 m2 g. The highest storage capacity of this activated carbon reached 0.0397 kg kg at a pressure of 9 bar and a temperature of 27 C with desorption efficiency of 43.82 . Activated carbon synthesized from pineapple crown waste compared with commercial activated carbon in which commercial activated carbon has a storage capacity of 0.0429 kg kg at a pressure of 9 bar and a temperature of 27 C and a desorption efficiency of 43.82.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Martha Indah R.L.
Abstrak :
Penggunaan bahan bakar minyak (BBM), seperti bensin, solar, minyak tanah, mengakibatkan peningkatan produksi untuk bahan bakar minyak, sehingga ketersediaan minyak bumi yang ada semakin menipis, selain itu hasil pembakaran pada kendaraan bermotor menghasilkan polusi udara yang menjadi salah satu faktor pemanasan global. Masalah tersebut perlu dipecahkan dengan cara mencari energi alternatif yang lebih bersih dengan nilai oktan tinggi serta ketersediaanya di alam masih banyak yaitu gas alam dengan komposisi utama gas metana (CH4). Sebagai tempat penyimpanan digunakan compressed natural gas (CNG) dengan tabung bertekanan 20 MPa. Adsorbed natural gas (ANG) merupakan solusi untuk mengurangi tekanan dalam tabung sekitar 3,5 - 4 MPa memanfaatkan proses adsorpsi menggunakan karbon aktif. Adsorpsi adalah fenomena fisik yang terjadi antara molekul-molekul gas atau cair dikontakkan dengan suatu permukaan padatan. Dalam penelitian ini, dirancang tabung alat uji adsorpsi metana serta sistem adsorpsi dan desorpsi yang diaplikasikan untuk tabung tersebut. ......The consumption of oil fuel, such as gasoline, solar and kerosene demand an increasing production of the oil fuel itself, so its availability are getting decreased every moment. Beside that, the combustion waste in motor vehicle produce air pollution which is one of the main factor in global warming. To overcome this problem, we should find a cleaner alternative energy with a higher octane value and still much available in the nature. One of this alternative energy is a natural gas with the main composition consist of methane (CH4). But to store this compressed natural gas (CNG), a 20 MPa of pressure vessel is needed. Adsorbed natural gas (ANG) is a solution to reduce the pressure in the tube of about 3.5 to 4 MPa by utilizing the process of adsorption using activated carbon. Adsorption is a physical phenomenon that occurs between the molecules of gas or liquid contacted with a solid surface. In this study it will be designed an adsorption and desorption system for methane as well as the pressure vessel used for testing it.
Depok: Fakultas Teknik Universitas Indonesia, 2010
S50998
UI - Skripsi Open  Universitas Indonesia Library
cover
Ameria Eviany
Abstrak :
Limbah katalis dari proses steam reforming dimana menggunakan katalis berbasis nikel yaitu NiO/Al2O3 memiliki kandungan berbahaya karena dapat mencemarkan lingkungan dan juga bersifat karsinogenik. Oleh sebab itu, diperlukan solusi untuk menanggulangi limbah tersebut agar keberadaan kandungan nikel dalam katalis dapat diserap dan dipergunakan kembali dalam bentuk logam murni. Penelitian ini bertujuan untuk melakukan pengambilan kembali logam nikel dari spent catalyst NiO/Al2O3 dengan menggunakan kitosan sebagai adsorben. Hasil penelitian menunjukkan kondisi optimum proses leaching diperoleh pada konsentrasi H2SO4 1M, waktu kontak 90 menit dan temperatur 80°C. Optimum dari proses adsorpsi dengan kitosan diperoleh pada pH 4,3, waktu adsorpsi 90 menit, dan perbandingan solid-liquid 1:100. Pada desorpsi penggunaan asam H2SO4 1,5 M sebagai stripping agent dalam waktu 90 menit mampu mengekstrak logam nikel dari kitosan secara optimum. Kondisi optimum proses electrowinning diperoleh pada rapat arus 140,8 mA dalam waktu 90 menit.
Catalyst wastes from steam reforming process which use catalyst with nickel base, NiO/Al2O3, has dangerous contents which are carcinogenic and could pollutes the environment. Thus, the environment needs solutions to overcome the problems which could turn the existing of nickel from wastes to be reused as a pure nickel metals. The purpose of this research is to recovery nickel from spent catalyst NiO/Al2O3 using chitosan as the adsorbent. The results show the optimum conditions of leaching process are at concentration of H2SO4 1M, operation time 90 minutes and temperature at 80°C. Meanwhile, the optimum of adsorption process using chitosan are at pH 4.3, adsorption time 90 minutes, and ratio of solid and liquid 1:100. For stripping process, the using of sulfate acid 1.5 M as the stripping agent could optimally extract nickel metal from chitosan. The electro winning optimum conditions are at 140.8 mA and in 90 minutes as the operation time.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52231
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2   >>