Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Hendrik Maulana
"Stylometry merupakan teknik analisa terhadap kepengarangan menggunakan statistik. Melalui stylometry, identitas kepengarangan dari suatu dokumen dapat dianalisis dengan tingkat akurasi yang tinggi. Hal ini menyebabkan adanya ancaman terhadap privasi penulis. Namun terdapat salah satu jenis metode dari stylometry yaitu penghapusan identitas kepengarangan yang dapat memberikan perlindungan privasi bagi penulis. Penelitian ini menggunakan metode penghapusan identitas kepengarangan yang diterapkan pada korpus Federalist Paper. Federalist Paper merupakan korpus terkenal yang telah banyak diteliti terutama pada metode identifikasi kepengarangan karena di dalam korpus tersebut terdapat 12 artikel yang tidak diketahui identitas penulisnya, salah satu metode identifikasinya adalah menggunakan algoritma Support Vector Machine. Melalui algoritma tersebut didapatkan identitas penulis dari artikel yang tidak diketahui pengarangnya dengan tingkat akurasi sebesar 86%. Tantangan dari metode penghapusan identitas kepengarangan adalah harus mampu mengubah gaya penulisan dengan tetap mempertahankan makna. Long-Short Term Memory (LSTM) merupakan algoritma berbasis Deep Learning yang mampu melakukan prediksi kata secara baik. Melalui model yang dibentuk dari algoritma LSTM, artikel-artikel dalam Federalist Paper diubah gaya penulisannya. Hasilnya, 30% dari artikel yang diklasifikasi dapat diubah identitas kepengarangannya dari satu penulis menjadi penulis lainnya. Tingkat kemiripan dokumen hasil ubahan berkisar antara 40-57% menandakan perubahan makna yang tidak signifikan dari dokumen aslinya. Hasil tersebut menyimpulkan bahwa metode yang diajukan mampu melakukan penghapusan identitas kepengarangan dengan baik.

Stylometry is an authorship analysis technique using statistics. Through stylometry, authorship identity of a document can be analyzed with a high degree of accuracy. This causes a threat to the privacy of the author. But there is one type of method of stylometry, namely the elimination of authorship identity which can provide privacy protection for writers. This study uses the authorship method of eliminating the method applied to the Federalist Paper corpus. Federalist Paper is a well-known corpus that has been extensively studied especially in authorship identification methods because there are 12 disputed texts in the corpus, one of the identification
methods is using the Support Vector Machine algorithm. Through this algorithm the author's identity of disputed text is obtained with an accuracy of 86%. The challenge of the authorship identity elimination method is that it must be able to change the writing style while maintaining its meaning. Long-Short Term Memory (LSTM) is a Deep Learning based algorithm that is able to predict words well.
Through a model formed from the LSTM algorithm, the disputed articles in the Federalist Paper are changed in their writing style. As a result, 30% of classified articles can be changed from one author identity to another identity. The level of similarity of the changed documents ranges from 40-57%, which indicates a change in meaning that is not significant from the original document. These results conclude that the proposed method is able to perform authorship identity deletion properly.
"
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sulthan Ali Pasha
"Saham merupakan salah satu surat berharga yang diterbitkan dan dijual oleh perusahaan,
yang telah memenuhi syarat, di Bursa Efek Indonesia. Prinsip dasar yang dimiliki oleh
saham adalah High Risk High Reward, yang menggambarkan bahwa saham memang
dapat memiliki hasil yang besar, namun memiliki risiko yang tinggi pula. Dengan
prinsip High Risk High Reward, tentunya para investor harus lebih hati-hati dalam
menentukan langkah yang akan mereka lakukan. Salah satu cara yang dapat digunakan
untuk mengurangi risiko, yaitu melakukan prediksi tren harga saham menggunakan
Machine Learning. Menggunakan data historis saham pada Bursa Efek Indonesia,
yaitu open, high, low, dan close price, algoritma Machine Learning dapat melakukan
prediksi tren harga saham yang selanjutnya akan digunakan sebagai strategi investasi
para investor. Terdapat banyak metode Machine Learning yang dapat digunakan untuk
melakukan prediksi, salah satu metode yang dapat digunakan adalah Recurrent Neural
Network yaitu Long Short Term Memory (LSTM). Pada metode LSTM, data historis
harga saham akan dibawa ke depan melalui seluruh gerbang LSTM yaitu: Forget
Gate, Input Gate, dan Output Gate. Selanjutnya akan dicari nilai loss dari model,
setelah didapat nilai loss, model akan ditinjau kembali setiap tahapannya, dimulai dari
belakang. Langkah pengulangan tesebut dilakukan agar mendapat variabel Weight dan
Bias yang optimal. Kemudian, tingkat akurasi dari metode tersebut akan ditentukan
menggunakan: Root Mean Square Error (RMSE) dan Mean Absolute Error (MAE).
Penelitian ini menggunakan data historis perusahaan yang termasuk pada Indeks LQ45
dan dapat diambil melalui website, finance.yahoo.com. Dari penelitian ini, diketahui
bahwa, masing-masing masalah memiliki model terbaiknya, untuk penyelesaian masalah
tersebut.

Stock is a part of ownership of a company, that have fulfill the requirement to be sold at
Bursa Efek Indonesia. The basic principal of stock market is High Risk High Reward,
which describe that stock market indeed have a chance to get a great profit, but it also
come with a high risk. This principal is the reason that all investor must be cautious in
deciding their move. There’s many method to do this, with one of the being, forecasting
the stock market trend with machine learning. With the historical data, that include
open, high, low, dan close price, the machine learning algorithm, could forecast the stock
market direction for the next days, which will be one of the deciding factor for investor to
choose their move. Nowadays, there’s many machine learning method that can be used to
forecast, one of them is the branch method of Recurrent Neural Network, which is, Long
Short Term Memory (LSTM). LSTM use the historical data, and bring them forward to,
Forget Gate, Input Gate, Memory State, Output Gate. Then the loss value of the model
will be calculated. After all the process the model will be re-evaluated. The re-evaluation
step is to update all the weights and biases in the model. Then the accuracy of the model
will be evaluated with Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE). This study uses the historical data of the companys that’s included in the index
LQ45, and the data is taken from the website, finance.yahoo.com. From this research, it
is known that every problem has their own preference model to solve.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Oemar Syarief Wibisono
"Beras merupakan makanan pokok mayoritas masyarakat Indonesia. Jika dibandingkan dengan konsumsi tahun 2019, konsumsi beras nasional meningkat sekitar 4,67 persen pada tahun 2021. Hal ini menunjukan bahwa setiap tahun konsumsi beras nasional akan meningkat karena seiring dengan pertumbuhan jumlah penduduk Indonesia. Sehingga dibutuhkan data produksi beras yang akurat dan tepat waktu untuk dapat menjaga ketersediaan stok beras nasional. Data citra satelit bisa menjadi alternatif untuk memprediksi produksi padi dikarenakan kekurangan yang dimiliki oleh metode survei yang dilakukan oleh BPS yaitu biaya yang cukup tinggi dan terdapat tenggang waktu diseminasi data. Gabungan citra SAR dan Optik dapat meningkatkan akurasi dari model yang dibangun. Selain itu penggunaan model deep learning memiliki akurasi yang lebih baik jika dibandingkan metode machine learning konvensional salah satunya kombinasi CNN dan Bi-LSTM yang mampu mengekstraksi fitur serta memiliki kemampuan untuk memodelkan data temporal dengan baik. Output yang diperoleh dengan menggunakan metode CNNBiLSTM untuk mengklasifikasikan fase pertumbuhan padi, menghasilkan akurasi yang terbaik dengan nilai akurasi 79,57 pada data testing dan 98,20 pada data training serta F1-score 79,78. Dengan menggunakan kombinasi data citra sentinel 1 dan 2 akurasi dari model LSTM dapat ditingkatkan. Selanjutnya akurasi yang didapatkan untuk model regresi produktivitas padi masih kurang baik. Akurasi terbaik dihasilkan oleh model random forest dengan nilai MAPE 0.1336, dan RSME 0,6871.

Rice is the staple food of the majority of Indonesian people. When compared to consumption in 2019, national rice consumption will increase by around 4.67 percent in 2021. This shows that every year rice consumption will increase in line with the growth of Indonesia's population. So that accurate and timely rice production data is needed to be able to maintain the availability of national rice stocks. Satellite imagery data can be an alternative for predicting rice production due to the drawbacks of the survey method conducted by BPS, which relatively high cost and the time span for data dissemination. The combination of SAR and Optical images can increase the accuracy of the model built. In addition, the use of deep learning models has better accuracy when compared to classical machine learning methods, one of them is the combination of CNN and Bi-LSTM which are able to extract features and have the ability to model temporal data properly. The output obtained using the CNNBiLSTM method to classify rice growth phases, produces the best accuracy with an accuracy value of 79.57 on testing data and 98.20 on training data and an F1-score of 79.78. By using a combination of sentinel 1 and 2 image data, the accuracy of the LSTM model can be improved. Furthermore, the accuracy obtained for the rice production regression model is still not good. The best accuracy was produced by the random forest model with a MAPE value of 0.1336 and RSME of 0.6871."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Maulana Nurhendronoto
"Emosi adalah perasaan yang muncul dalam diri seseorang sebagai respon dari situasi tertentu. Perasan ini dapat memengaruhi pikiran, perilaku, dan persepsi seseorang terhadap suatu peristiwa. Klasifikasi emosi adalah bagian dari analisis sentimen yang bertujuan untuk menganalisis dan memperoleh emosi dari suatu data. Penelitian klasifikasi emosi berbasis teks perlu dilakukan karena dapat diimplementasikan pada berbagai bidang, seperti kesehatan dan pendidikan. Bahasa Indonesia menduduki peringkat 11 bahasa dengan penutur terbanyak di dunia dengan 200 juta penutur. Namun, penelitian klasifikasi emosi berbasis teks bahasa Indonesia masih sedikit dilakukan. Algoritma machine learning dapat digunakan untuk mengatasi berbagai tantangan dalam penelitian klasifikasi emosi seperti memahami emosi dan menganalisis emosi dari data yang tidak terstruktur. Penelitian ini berfokus pada pengembangan model machine learning dengan teknik convolutional neural network (CNN), long short-term memory (LSTM), dan bidirectional encoder representation from transformer (BERT). Berdasarkan pengujian yang dilakukan, metode convolutional neural network (CNN) mendapatkan F1 score sebesar 84,2%, metode long short term memory mendapatkan F1 score sebesar 82%, metode BERT en uncased mendapatkan F1 score sebesar 22%, dan metode BERT multi cased mendapatkan F1 score sebesar 32%. Hasil pengujian ini menandakan metode CNN merupakan metode dengan hasil pengujian terbaik dan BERT en uncased merupakan metode dengan hasil pengujian terburuk dibanding ketiga metode lainnya.

Emotions are feelings that arise within a person in response to a particular situation. These feelings can affect a person's thoughts, behavior, and perception of an event. Emotion classification is a part of sentiment analysis that aims to analyze and derive emotions from data. Text-based emotion classification research needs to be done because it can be implemented in various fields, such as health and education. Indonesian is ranked the 11th most spoken language in the world with 200 million speakers. However, there is still little research on Indonesian text-based emotion classification. Machine learning algorithms can be used to overcome various challenges in emotion classification research such as understanding emotions and analyzing emotions from unstructured data. This research focuses on developing machine learning models with convolutional neural network (CNN), long short-term memory (LSTM), and bidirectional encoder representation from transformer (BERT) techniques. Based on the tests conducted, the convolutional neural network (CNN) method gets an F1 score of 84,2%, the long short term memroy method gets an F1 score of 82%, the BERT en uncased method gets an F1 score of 22%, and the BERT multi cased method gets an F1 score of 32%. These results indicate that the CNN is the bets method while the BERT en uncased is the worst method compared to the three other methods."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Henry Prayoga
"Penelitian ini menganalisis akurasi peramalan permintaan produk barang konsumsi cepat (FMCG) menggunakan model Machine Learning, yaitu LSTM (Long Short-Term Memory) dan SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors), dengan data sekunder dari April 2021 hingga April 2024 yang terdiri dari 36 observasi bulanan. Variabel dependen adalah total penjualan, sementara variabel eksogen mencakup pengeluaran per kapita, adopsi produk, proporsi penjualan dari promosi, jumlah toko yang menjual produk, dan pangsa pasar produk. Hasil menunjukkan model LSTM memiliki akurasi lebih tinggi dalam memprediksi nilai penjualan dibandingkan SARIMAX, dengan nilai Mean Absolute Percentage Error (MAPE) yang lebih rendah pada sebagian besar sampel. Analisis korelasi mengungkapkan variabel jumlah toko yang menjual produk dan adopsi produk berpengaruh signifikan terhadap nilai penjualan dalam model LSTM, sedangkan SARIMAX unggul dalam menangkap pola musiman namun memiliki MAPE lebih tinggi. Penelitian ini menyarankan penggunaan model LSTM untuk data time series yang kompleks dan tidak stasioner, sementara SARIMAX lebih cocok untuk data dengan komponen musiman yang kuat. Pemilihan model harus mempertimbangkan karakteristik data dan tujuan analisis.

This study analyzes the forecasting accuracy of fast-moving consumer goods (FMCG) demand using Machine Learning models, namely LSTM (Long Short-Term Memory) and SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors), utilizing secondary data from April 2021 to April 2024 with a total of 36 monthly observations. The dependent variable is sales value, while the exogenous variables include spend per buyer, product penetration, promo % of value, the number of stores selling, and market share. The results indicate that the LSTM model has higher accuracy in predicting sales value compared to the SARIMAX model, with a lower Mean Absolute Percentage Error (MAPE) for most samples. Correlation analysis reveals that the variables number of stores selling and product penetration significantly influence sales value in the LSTM model, whereas SARIMAX excels in capturing seasonal patterns but has a higher MAPE. This study recommends using the LSTM model for complex and non-stationary time series data, while SARIMAX is more suitable for data with strong seasonal components. Model selection should consider the characteristics of the data and the objectives of the analysis."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library