Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 12 dokumen yang sesuai dengan query
cover
Ade Azurat
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1999
S26970
UI - Skripsi Membership  Universitas Indonesia Library
cover
Daryi N. Wirakartakusumah
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1999
S26953
UI - Skripsi Membership  Universitas Indonesia Library
cover
Joshua Kurniawan Djafar
"Penerapan dari pengolahan bahasa alami ini telah banyak dilaksanakan dengan tujuan tertentu. Salah satu tujuannya adalah aplikasi basis data yang dikembangkan oleh program ini. Pada dasarnya program ini akan mengolah bentuk dari kalimat-kalimat query dalam bahasa Indonesia dan merubahnya menjadi bentuk SQL standar. SQL standar inilah yang akan diinterpretasikan oleh suatu RDBMS (Oracle, Informix,dan sebagainya). Kelemahan utama dari pengolahan bahasa alami ini adalah keterbatasan dari semantik kalimat yang disebabkan oleh keterbatasan yang ada pada SQL ini sendiri. Suatu kalimat membutuhkan suatu bentuk tata bahasa. Bagaimanapun alaminya suatu kalimat bahasa, kalimat tersebut pasti akan mengikuti kaidah umum yang ada pada suatu struktur tata bahasa. Penyusunan dari tata bahasa inilah yang merupakan hal yang terpenting dalam pengolahan bahasa alami. Tata bahasa semantik adalah tata bahasa yang disusun bukan berdasarkan pada sintak kalimat, tetapi disusun berdasarkan pada arti kata penyusun kalimat. Kebutuhan akan pembentukan tata bahasa semantic ini membutuhkan penelitian tersendiri untuk memperoleh struktur umum dari kalimat-kalimat yang akan digunakan oleh pemakai."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1992
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Query becomes one of the most decisive factor on documents searching. A query contains several words, where one of them will become a key term. Key term is a word that has higher information and value than the others in query. It can be used in any kind of text documents, including Arabic Fiqh documents. Using key term in term weighting process could led to an improvement on result?s relevancy. In Arabic Fiqh document searching, not using the proper method in term weighting will relieve important value of key term. In this paper, we propose a new term weighting method based on Positive Impact Factor Query (PIFQ) for Arabic Fiqh documents ranking. PIFQ calculated using key term?s frequency on each category (mazhab) on Fiqh. The key term that frequently appear on a certain mazhab will get higher score on that mazhab, and vice versa. After PIFQ values are acquired, TF.IDF calculation will be done to each words. Then, PIFQ weight will be combine with the result from TF.IDF so that the new weight values for each words will be produced. Experimental result performed on a number of queries using 143 Arabic Fiqh documents show that the proposed method is better than traditional TF.IDF, with 77.9%, 83.1%, and 80.1% of precision, recall, and F-measure respectivel.

Query menjadi salah satu faktor penentu dalam pencarian dokumen. Dalam sebuah query terdiri dari beberapa kata, dimana salah satunya menjadi key term. Key term adalah kata yang memiliki nilai informasi dan bobot lebih tinggi dibandingkan kata lain. Hal tersebut berlaku untuk semua jenis dokumen teks, termasuk dokumen fiqih berbahasa Arab. Penitik beratan pada key term dalam proses pembobotan kata memungkinkan terjadinya peningkatan relevansi pencarian. Di dalam pencarian dokumen fiqih berbahasa Arab, jika metode pembobotan kata yang digunakan tidak tepat, key term tidak akan memberikan pengaruh berarti. Oleh karena itu diusulkanlah sebuah metode pembobotan baru pada kata berbasis Positive Impact Factor Query (PIFQ) untuk perangkingan dokumen fiqih berbahasa arab. PIFQ dihitung menggunakan frekuensi kemunculan key term pada setiap kategori (mazhab) dalam fiqih. Semakin tinggi frekuensi key term tersebut pada suatu mazhab semakin tinggi pula nilainya pada mazhab tersebut, begitu pula sebaliknya. Setelah didapat nilai PIFQ, kemudian dilakukan perhitungan TF.IDF untuk setiap kata. Selanjutnya bobot PIFQ akan dikom-binasikan dengan TF.IDF sehingga menghasilkan bobot baru untuk masing-masing kata. Hasil dari pengujian yang dil-akukan pada sejumlah query dengan 143 dokumen fiqih berbahasa Arab menunjukan bahwa metode usulan dapat lebih unggul jika dibandingkan metode TF.IDF, dengan nilai precision, recall, dan F-measure masing-masing sebesar 77,9%, 83,1%, dan 80,1%."
Institut Teknologi Sepuluh Nopember, Faculty of Information and Technology, Informatics Department, 2017
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Theresia Veronika Rampisela
"

Penelitian ini mencari dosen pakar di Fakultas Ilmu Komputer Universitas Indonesia (Fasilkom UI) dengan menggunakan data abstrak dan metadata tugas akhir mahasiswa Fasilkom UI menggunakan teknik information retrieval. Pencarian pakar dilakukan tanpa query expansion dan dengan query expansion. Metode yang digunakan untuk mencari dosen pakar adalah metode berbasis BM25 serta kombinasi antara word2vec dan doc2vec, yang merupakan word embedding dan document embedding. Teknik yang digunakan untuk mengatasi masalah vocabulary mismatch adalah teknik query expansion dengan pendekatan statistik, semantik, serta hybrid. Kontribusi penelitian ini adalah 2 metode baru untuk pencarian pakar tanpa query expansion, 6 jenis kombinasi relasi ontologi berdasarkan concept hierarchy ACM CCS 2012 untuk mengekspansi kueri, serta 14 jenis kombinasi antara metode query expansion berbasis embedding dan ontologi. Evaluasi dari hasil pencarian pakar dilakukan dengan menghitung binary relevance berdasarkan human judgment. Pada penelitian ini, metode pencarian pakar tanpa query expansion dengan hasil yang paling baik adalah metode BM25-sum dengan nilai AP@5 sebesar 0.648. Pencarian pakar dengan berbagai macam jenis query expansion tidak dapat meningkatkan performa retrieval tanpa query expansion secara signifikan, tetapi pencarian dengan query expansion menggunakan metode berbasis embedding, yaitu w2v-w2v memiliki nilai AP@5 sebesar 0.696, yang lebih tinggi dari skor AP@5 dari BM25-sum tanpa query expansion. Pencarian pakar dengan query expansion berbasis ontologi serta hybrid mampu menghasilkan skor AP@5 setinggi 0.664. Skor tersebut tidak setinggi pencarian dengan query expansion dengan w2v-w2v, namun hasilnya lebih baik dari pencarian tanpa query expansion.


This research searches for expert lecturers in the Faculty of Computer Science, Universitas Indonesia (Fasilkom UI) with information retrieval techniques using students’ thesis abstract and metadata. The retrieval process is done without and with query expansion. The methods used to find expert lecturers are BM25-based methods as well as combinations between word2vec and doc2vec, which are word embedding and document embedding. We performed query expansion using statistical, semantic, and hybrid approaches to solve vocabulary mismatch problems. This research’s contributions are 2 new methods to retrieve experts without query expansion, 6 types of ontological relations based on the ACM CCS 2012 concept hierarchy to expand queries, and 14 types of combinations between embedding-based and ontology-based query expansion methods. The expert retrieval result is evaluated by calculating binary relevance based on human judgment. Expert search method without query expansion that produces the best result in this research is the BM25-sum method, with an AP@5 score of 0.648. Even though expert retrieval with various query expansion methods does not increase the performance of retrieval without query expansion significantly, the expert search method with embedding-based query expansion method, i.e. w2v-w2v, achieved an AP@5 score of 0.696, which is higher than that of BM25-sum without query expansion. Ontology-based and hybrid query expansion expert search methods managed to score 0.664 for AP@5. This score is not as high as that of w2v-w2v, but the result is still better than that of retrieval without query expansion.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia , 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adi Wahyu Pribadi
"Setiap dokumen pada koleksi menjelaskan suatu konsep berdasarkan topik yang dibahasnya Konsep tersebut didapat dengan teknik pengindeksan konseptual atau Latenl Semantic Indexing. Teknik tersebut mengakibatkan jumlah dokumen yang terambil lebih banyak karena adanya perluasan kueri (c/uery expansion) secara konseptual. Seiring berjalannya waktu, teijadi penambahan dokumen sehingga indeks menjadi tidak lengkap. Digunakan metode penambahan dokumen secara dinamis pada indeks konseptual yang ada dengan metode folding-in dan SVD- Update. Ujicoba dilakukan pada kumpulan hasil penelitian lembaga BATAN sebanyak 1162 abstrak dokumen. Berdasarkan ujicoba, pada model pengindeksan konseptual dokumen yang terambil lebih banyak yaitu rata-rata 12,63% dibandingkan dengan penggunaan pengindeksan biasa sebanyak 10,37%, Pada ujicoba penambahan dokumen, terjadi penurunan kinerja yang tidak signifikan yaitu 0,5% hingga 2% saja.
......Each document in the collection describes a concept based on particular topics. The concept is obtained with the technique of conceptual or latent Semantic Indexing. The technique resulting in the number of documents fetched more because of the conceptual queiy expansion. Over time, Ihere was the addition of documents so that the indexes are not complete. Using Folding-in and SVD- Update to update the index of document collection conceptually. We use BATAN research collection of 1162 document abstracts. Based on testing, on the conceptual model of the document fetched more with the average of 12.63% compared with the normal indexing of 10.37%. On testing of adding documents, a decline of performance that is not significant, namely 0.5% to 2% only."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T25887
UI - Tesis Open  Universitas Indonesia Library
cover
Anggi Harumanto
"Injeksi SQL adalah salah satu dari 10 besar bentuk penyerangan terhadap kerentan website yang paling berbahaya. SQL Injection memiliki 3 tipe bentuk penyerangan, yaitu Union-Based, Error-Based, dan Blind SQL Injection. Pada skripsi ini akan menganalisis bagaimana tipe-tipe serangan tersebut dilakukan baik melalui proses penyisipan query maupun melalui aplikasi, yaitu SQLMAP. Hasil dari pengujian didapatkan bahwa melaui PHP, 4 dari 5 pengujian dapat diinjeksi karena penggunaan statement input yang standard. Sedangkan pada pengujian SQLMAP 6 dari 7 website dapat diinjeksi yang disebabkan karena penulisan statement input yang begitu standard, tidak adanya web application firewall (WAF) dan celah pada versi teknologi yang digunakan. Berdasarkan skripsi ini, injeksi SQL dapat dicegah dengan menerapkan bind parameter dan menggunakan WAF sebagai bentuk perlindungan."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"SMS- Academic information system at computer science postgraduate program has been design and implementated using SMS Gateway sofware and visual basic sofware and it has been tasted succesfully. ...."
Artikel Jurnal  Universitas Indonesia Library
cover
Sitohang, R. Vensya
"Divide Query (Q) to primitive as much as we can do, and alocated sup-query (sQ) to every sQ on exact location where data found, as integrated Query Management System (Parallel Execution Control of Sub-Query of Database on Distributed System) based. In this paper will be explained the result of evaluation some Qs become sQ, and observe the rate of concurent excecution that may be done on IQMS, according to system configuration distribution data base used (3 computer: 1 system controlles and executionlocation, and 2 execution locations), by obsserving data location. "
Penelitian Akademik Sekolah Tinggi Manajemen Informatika & Teknik Komputer Surabaya, 2007
001 GJMI 9:1 (2007)
Artikel Jurnal  Universitas Indonesia Library
cover
Heidi Renata Halim
"Seiring dengan majunya teknologi di Indonesia, banyak layanan kesehatan online yang bermunculan. Pengguna bisa bertanya langsung pada tenaga medis profesional tiap mereka memiliki masalah kesehatan ringan yang tidak membutuhkan janji temu langsung dengan dokter. Sebagai pengguna, tentunya mereka mengharapkan respon yang cepat dari situs yang mereka gunakan, hal ini kedengarannya mustahil dilakukan karena tidak semua tenaga medis profesional yang bekerja pada layanan medis tersebut ada setiap saat memantau semua pertanyaan yang masuk. Namun, hal ini bisa dilakukan dengan cara mencocokan pertanyaan yang baru dimasukkan dan mencari pertanyaan yang sudah pernah ditanyakan di masa lalu yang memiliki persamaan dengan pertanyaan yang baru dimasukkan. Secara singkat, kita bisa mencari duplikat dari pertanyaan yang ditanyakan oleh pengguna dan mengembalikan jawaban dari pertanyaan duplikat tersebut daripada menunggu jawaban langsung dari dokter. Penelitian ini akan menggunakan pendekatan temu balik informasi dalam mendeteksi pertanyaan duplikat yang pernah ditanyakan di masa lalu. Selain itu, penelitian ini juga akan mengkombinasikan ekspansi kata yang dilakukan kepada kueri, dokumen, serta filter kata-kata stopword untuk meningkatkan skor reciprocal-rank dan recall dari model yang digunakan. Hasil penelitian ini menyimpulkan bahwa ekspansi kata yang dilakukan pada kueri serta dokumen tidak menghasilkan skor reciprocal rank dan recall yang lebih baik. Penggunaan word embedding untuk memperbanyak kata stopword yang dihapus dari data mampu menghasilkan skor reciprocal rank yang lebih tinggi meskipun nilainya belum signifikan.
......With the advancement of technology and internet in Indonesia, many online healthcare services have emerged where users can directly consult with medical professionals if they have minor health issues that do not require an in-person appointment with a doctor. As users, they naturally expect quick responses from the sites they use. This seems impossible to do as not all medical professionals working who are working on these services are always available to monitor every incoming question. However, this can be achieved by matching newly submitted questions with previously asked questions that have similarities. In short, we can search for duplicates of the questions asked by users and return answers from those duplicate questions instead of waiting for a direct response from a doctor. This research will use an information retrieval approach to detect duplicate questions that have been asked in the past. Additionally, this study will combine query expansion, document expansion, and stopwords filtering to improve the reciprocal-rank and recall scores of the model used. This research concludes that query and document expansion do not yield better reciprocal rank and recall scores. On the other hand, using
word embedding to expand the stopwords list removed from the data can help achieve higher reciprocal rank scores, although the improvement displays are still not significant enough to be categorized as a major change."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>