Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Muhammad Yogi Ilham
"ABSTRAK
Kecelakaan lalu lintas adalah peristiwa yang terjadi secara tidak sengaja dan di luar dugaan. Di Indonesia, angka kecelakaan terus mengalami peningkatan setiap tahun dan merugikan lebih dari satu milyar per tahun serta memakan korban lebih dari 800.000 jiwa dalam periode 2014-2018. Jalan Tol Cikopo-Palimanan adalah ruas terpanjang dari jaringan tol Trans-Jawa yang mengkoneksikan pulau Jawa dari Pelabuhan Merak, Banten hingga Pelabuhan Ketapang, Jawa Timur. Dalam langkah pencegahan dan penurunan kecelakaan, diperlukan strategi untuk mengidentifikasi faktor-faktor kecelakaan. Data mining adalah metode pencarian informasi untuk data berjumlah besar. Metode data mining yang digunakan adalah clustering untuk mengurangi heterogenitas data dan association untuk mengidentifikasi hubungan antara faktor kecelakaan. Penelitian ini menemukan ada tiga belas cluster kecelakaan yang kemudian setiap cluster dianalisis menggunakan metode apriori algorithm dengan parameter minimum support 20% dan nilai lift 1.

ABSTRACT
Traffic accidents are events that occur accidentally and unexpectedly. In Indonesia, the number of accidents continues to increase every year and costs more than one billion per year and claimed more than 800,000 lives in the 2014-2018. Cikopo-Palimanan Toll Road is the longest section of the Tol Trans-Jawa road network that connects Pelabuhan Merak, Banten Pelabuhan Ketapang, East Java. In order to prevent and decrease number of accidents, a strategy is needed to identify accident factors. Data mining is a method of finding information from large amounts of data. Data mining methods used in this study are clustering to reduce data heterogeneity and association to identify the relationship between accident factors. This study found thirteen accident clusters and each cluster was analyzed using apriori algorithm method with a minimum support parameter of 20% and a lift value of 1."
2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eduardus Hardika Sandy Atmaja
"ABSTRACT
Criminality is a social problem causing negative impacts on society welfare. Police as law enforcement officer was required to take actions to prevent criminality which was increasingly widespread. Such efforts could be realized by analizing criminal data to obtain useful information for the preparation of criminal prevention strategies. However, extracting knowledge from criminal data effectively was a problematique for them. In this study, data mining was used to solve knowledge extraction problem from the dataset. The technique was aimed to get information about crime patternsby analyzing criminal activity habits. Association rule mining and apriori algorithm were used to find crime patterns. Generating crime patterns in data mining was difficult to understand when there were too many rules. Graph based visualization of association rules designed to solve that problem. Generated visualization showed relationship between crimes. That visualization was expected to help the police to understand the crime pattern so they could do prevention efforts more effectively. The results showed that the visualization of association rules could present association rules in more interesting way and described the crime pattern.
"
Yogyakarta: Media Teknika, 2017
620 MT 12:1 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Teguh Winarto
"ABSTRAK
Kartu kredit sebagai kartu pembayaran adalah produk yang dikeluarkan oleh bank dan menjadi pilihan favorit nasabah bank dalam melakukan transaksi secara offline dan online. Berbagai program promosi yang dilakukan oleh bank untuk meningkatkan penerbitan kartu untuk nasabah baru dan untuk menarik penggunaan kartu bagi para pemegang kartu kredit saat ini. Bank XYZ, sebagai salah satu penerbit kartu kredit, secara intensif menawarkan promosi kepada pelanggannya untuk bertransaksi menggunakan kartu kredit melalui berbagai media seperti SMS Blast maupun email notifikasi. Konten promosi yang dikirimkan ke pelanggan dapat mempengaruhi keputusan pelanggan untuk melakukan transaksi di merchant manapun menggunakan kartu kredit Bank XYZ. Dengan memanfaatkan analisa Big Data dengan Recency, Frequency dan Monetary (RFM) dan Association Rules, Bank XYZ dapat mengirimkan konten promosi kartu kredit yang sesuai dengan profile pelanggan. Mengirimkan konten promosi yang sesuai dengan profil pelanggan akan meningkatkan transaksi pelanggan menggunakan kartu kredit mereka. Peningkatan transaksi ini akan berkontribusi terhadap pendapatan Bank XYZ.

ABSTRACT
Credit cards as a payment card are products issued by banks and become favorite customer`s choice to pay multiple transactions offline and online. Many promotion programs are done by banks to raise card issuances for new customer and to attract card usage for current credit card holders. Bank XYZ, as one of credit card issuer in Indonesia, is intensively offering promotions to its customer to use their credit cards through communication media such as SMS blast and email notifications. Media content may affect customer decision to purchase in any merchant using Bank XYZ credit card. By utilizing Big Data analysis with Recency, Frequency and Monetary(RFM), and Association Rules, Bank XYZ may send credit card promotional content fit with a customer profile. Sending proper promotional content fit with a customer profile will raise customer spending using their credit cards. Transactions rising contribute to Bank XYZ revenue.

"
2019
T53698
UI - Tesis Membership  Universitas Indonesia Library
cover
Amiruddin
"Persaingan dalam dunia bisnis khususnya perbankan yang semakin ketat membuat para pelakunya harus selalu memikirkan strategi-strategi terobosan yang dapat menjamin keberlangsungan bisnis mereka. Kepuasan pelanggan merupakan salah satu faktor yang sangat perlu diperhatikan untuk mengikat pelanggan agar tetap setia pada produk atau layanan yang ditawarkan. Salah satu aset utama yang dimiliki oleh perusahaan perbankan dewasa ini adalah data transaksi bisnis dalam jumlah yang sangat besar. Hal ini menciptakan sebuah kebutuhan akan adanya teknologi yang dapat memanfaatkannya untuk menggali pengetahuan-pengetahuan baru, yang dapat membantu dalam perencanaan strategi bisnis di masa depan. Dalam hal tersebut teknologi data mining hadir sebagai sebuah solusi yang dapat diterapkan.
Dalam tulisan ini akan dibahas implementasi data mining untuk menemukan model berupa association rules yang bisa diinterpretasikan menjadi pengetahuan baru mengenai karakteristik beberapa obyek layanan perbankan Bank XYZ. Pengetahuan baru tersebut nantinya bisa digunakan sebagai bahan analisis untuk menentukan rencana strategis ke depan khususnya dalam rangka meningkatkan kinerja layanan sehingga pelanggan tetap setia terhadap produk dan layanan Bank XYZ.

The tighter competition in banking industry motivates the actors to always think of new strategies to ensure their business sustainability. Customer satisfaction must be maintained to make customers remain loyal to the offered products or services. One of the main assets of banking organization or corporate is a large number of business transaction data. This creates a need of new technologies to mine new knowledges, which can assist management in making future business strategy plans. Data mining technology is one applicable solution.
This thesis describes the implementation of data mining in order to find association rules model which can be further interpreted as new knowledges on banking service characteristic of Bank XYZ. The new knowledges will be useful to determine strategic plans in the future, especially in increasing the performance of products or services. They finally can make the customers loyal to products or services of Bank XYZ.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nurfitriana Tri Utami
"ABSTRAK
Dalam rangka memperluas pasar konsumen, perusahaan perlu memperhatikan kepuasan konsumen yang akan berdampak pada keberlanjutan kegiatan pembelian produk. Market basket analysis dilakukan untuk melihat pola pembelian konsumen dengan cara mengidentifikasi asosiasi dari berbagai produk yang diletakkan konsumen pada keranjang belanja. Penelitian ini dilakukan untuk melihat pengaruh jenis gerai terhadap pola pembelian konsumen. Data yang digunakan pada penelitian ini merupakan basis transaksi pelanggan. Data tersebut diolah menggunakan teknik data mining dan salah satu algoritma association rule, yaitu apriori. Hasil dari penelitian ini menunjukkan adanya perbedaan pola pembelian konsumen pada setiap jenis gerai.

ABSTRACT
In order to expand the current market, companies need to pay attention to customer satisfaction that will affect the sustainability of product purchasing activities. Market basket analysis is done to extract consumer buying behavior by identifying the associations of various products that consumers put on the shopping cart. This research was conducted to see whether outlet type affects consumer buying behavior. The data used in this study was taken from customer transactions database. The data was processed using data mining techniques and association rule algorithm, which is apriori. The results of this study show that there are differences in consumer buying behavior on each type of outlet."
2017
S68238
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sely Yoanda
"ABSTRAK
Library X is an academic library in Jakarta, Indonesia. Library X has provided Online Public Access Catalog (OPAC) as a tool to provide information related to the collection. However, sometimes the information appears does not show high relevancy. One way to solve this problem is to develop user need based-book recommendation system. The purpose of this study is to create personalization model of book recommendations in Library X.Data Collection Method. The method used in this study was association rule mining using Apriori algorithm. Results and Discussions. The results showed that the book relationships for the minimum support was 0.1% and the minimum confidence was 10% and generated 42 association rules. It is noted that 657 (Accounting) and 658 (Management) are found to support for 2.6% with the confidence level for 14%.Conclusions. Book recommendation is formulated by selecting the rule with maximum support and confidence. The recommendation system is designed to be integrated to web application and users e-mail."
Yogyakarta: Perpustakaan Universitas Gajah Mada, 2018
BIPI 14:2 (2018)
Artikel Jurnal  Universitas Indonesia Library