Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 20 dokumen yang sesuai dengan query
cover
Iksal
"Bagan Tancap merupakan salah satu jaring angkat yang dioperasikan di perairan pantai pada malam hari dengan menggunakan jaring angkat sebagai media penangkap ikan dan cahaya lampu sebagai faktor penarik ikan. Namun untuk mengefesiensi pekerjaan nelayan, maka diperlukan sebuah alat kendali yang bisa mengendalikan jaring angkat dan cahaya lampu agar dapat membantu kegiatan nelayan dalam mencari ikan di malam hari. Penelitian ini menggunakan Mikrokontroler Arduino Uno dan terdapat lampu LED sebagai penerangan dan Motor DC Gear Box sebagai kontrol naik turun jala/jaring. Penelitian ini dirancang menggunakan Flowchart untuk rancangan program pada mikrokontroler serta UML digunakan untuk rancangan pada aplikasi kendali bagan tancap dan dibangun menggunakan bahasa pemrograman Arduino IDE, serta Android.
Dari hasil penelitian ini tercipta sebuah prototype system pada bagan tancap yang dapat mengendalikan lampu dan naik turun jala/jaring. Berdasarkan hasil pengendalian lampu dan naik turun jala/jaring tersebut akan diproses dengan Mikrokontroler Arduino Uno, sehingga menghasilkan keluaran yang sesuai dengan perintah yang di inginkan pada alat prototype pada bagan tancap."
Bandung: Unisba Pusat Penerbitan Universitas (P2U-LPPM), 2017
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Yoga Purna Tama
"Perkembangan teknologi sensor terus meningkat pesat seiring dengan kebutuhan aplikasinya. Salah satunya adalah sensor berbasis MEMS seperti mikrokantilever, yaitu sensor yang menggunakan pendeteksi perubahan sifat mekanis sebagai transducer. Penelitian terhadap penggunaan sensor mikrokantilever relatif luas seperti di bidang kimia, fisika, biologi, lingkungan, dan kedokteran. Terdapat dua metode pengukuran deteksi objek pada sensor mikrokantilever, yaitu mode statis yang mengukur langsung defleksi yang terjadi, dan ada pula mode dinamis yang mengukur pergeseran frekuensi resonansi karena deteksi objek tertentu. Pada mode dinamis, proses menentukan frekuensi resonansi dilakukan dengan cara mengatur function generator secara manual dan mengamati pergeseran frekuensi resonansi dengan menggunakan Oscilloscope. Tujuan riset ini adalah untuk membuat sistem yang mampu secara otomatis menggeser frekuensi yang diberikan ke mikrokantilever dan mempermudah pengambilan data sehingga data dapat langsung terkomputerisasi. Sistem antarmuka menggunakan mikrokontroller Arduino Uno yang digunakan sebagai Digital to Analog Converter (DAC) sekaligus menjadi Analog to Digital Converter (ADC). Sebagai DAC, mikrokontroller akan memberikan tegangan PWM yang dikonversi menjadi tegangan analog dan dihubungkan dengan rangkaian Voltage Control Oscillator (VCO) sehingga mampu menggetarkan mikrokantilever. Sebagai ADC, Arduino akan mengolah data hasil konversi frekuensi yang dilakukan oleh IC LM2907 dan hasil konversi amplitudo yang dilakukan oleh rangkaian dengan prinsip penyearah. Nilai tegangan hasil konversi tersebut akan menjadi nilai masukan pada pin input analog Arduino Uno. Untuk tampilan grafik digunakan perangkat lunak Processing dan Labview. Sistem ini telah diujicobakan untuk pendeteksian gas, yang hasilnya dapat mendeteksi perubahan frekuensi resonansi secara otomatis serta mampu menampilkan data secara realtime. Perbandingan data dengan metode manual menunjukkan bahwa sistem yang dikembangkan telah bekerja dengan normal.

The development of sensor technology increases rapidly in line with the needs of the application. One is a mechanical sensor such as microcantilever sensor, which uses change in its mechanical properties as a transducer. Research in the use of microcantilever sensors is relatively broad in fields such as chemistry, physics, biology, environment and medicine. There are two methods of measuring object detection, i.e., static mode which measures the deflection that occurs immediately, and dynamic mode which measures the shift in the resonance frequency due to the detection of a specific object. So far, resonance frequency shift is generally monitored by using the oscilloscope and function generator manually. The purpose of this research is to design a system which is capable to sweep the frequency given to microcantilever automatically and also facilitate the retrieval of data in digital form, so that the data can be directly computerized. In this research the system interface uses an Arduino microcontroller. The microcontroller is used as a Digital to Analog Converter (DAC) as well as a Analog to Digital Conveter (ADC). The DAC function is used to sweep the frequency automatically. The PWM output from Microcontroller is connected to a Voltage Control Oscillator (VCO) which will oscillate the microcantilever. In the other hand, the ADC function is used to read sensor output. The principle, the value of the frequency of an electronic circuit sensor system is converted into a voltage value using the IC LM2907, while the amplitude value will be converted using an Amplitude to Voltage Converter circuit. These voltage values become the value entered in the analog pin Arduino Uno. In programming, the voltage value is converted into a frequency and amplitude value. To display the data in graphical form, we use software named Processing and Labview. The system has been tested for gas detection. The result shows that the system successfully detect resonance frequency shift automatically and display the data in realtime. The data comparison with manual method also suggest that the system works normally.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59867
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Andini
"Penelitian ini menganalisis sistem pemantauan dan pengendalian IoT berbasis Arduino Uno, Thingspeak Web-service dan Aplikasi Twitter OAuth yang diimplementasikan untuk konsep Green Building berbasis sosial media. Sistem ini menggunakan modul wifi ESP8266-01 yang terhubung dengan jaringan wifi yang sama pada web-server untuk mengirim dan menerima data secara real-time. Penggunaan Aplikasi Twitter OAuth menggunakan berkas PHP dilakukan untuk mengatasi ketidakmampuan resource yang dimiliki oleh Arduino Uno untuk berkomunikasi dengan Twitter melalui koneksi SSL. Latency yang dihasikan pada system ini sebesar 3,33 % dengan rentang waktu update 2-3 detik. Rata-rata waktu update ke Twtter sebesar 36,2 detik melalui pengujian sebanyak 10 kali dengan response time untuk mengaktifkan aktuator sebesar 4,5 detik dan secara garis besar berdasarkan tabel checklist fungsi didapatkan tingkat fungsionalitas sistem sebesar 92%.

This research proposes a monitoring and controlling system using Arduino Uno, Thingspeak Web-service and Twitter OAuth Application in implementing the Green Building Program based on social media. The system processed received and sent data from ESP8266-01 that connected through same connection with web-server for real-rime cases. Using Twitter OAuth Application for this system came along with PHP script is done to addressed the lack of Arduino?s resource that unable to connect to the Twitter servers through SSL. The evaluation was verified by experiments, latency average scored 3,33 % with range of 2-3 seconds update time. Average of time updates to Twitter was 36,2 seconds through testing as many as 10 times. Response time to activated the actuator by 4,5 seconds and the checklist table parameters valued the system functionality as 92%. Based on the experiments, the system was stated as satisfying and worked well."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63222
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Apriyanto
"ABSTRAK
Penerangan Jalan Umum PJU ternyata membawa dampak besar dalam masalah biaya maupun energi listrik. Jika tidak diperhatikan dan dikelola dengan baik, PJU konvensional berpeluang besar menyumbang pemborosan energi. Selain itu, fungsinya sebagai penerangan jalan umum pun terkadang tidak berjalan sebagaimana mestinya. Sehingga perlu dibangun sebuah sistem agar PJU tersebut dapat berjalan dengan efektif. Pada penelitian kali ini dibuat sebuah sistem PJU pintar dengan menggunakan Arduino Uno sebagai kontroller utamanya. Arduino Uno ini dihubungkan dengan berbagai sensor dan perangkat tambahan lainnya seperti realtime clock dan Ethernet Shield untuk menunjang otomasi sistem. Sensor yang digunakan pada penelitian ini adalah sensor LDR, sensor PIR, dan sensor arus INA219. Selain terhubung dengan berbagai sensor, Arduino Uno juga terhubung ke server agar dapat dilakukan monitoring dari jarak jauh

ABSTRACT
Public Street Lighting has a major impact on the cost of electricity. If not properly managed, conventional streetlight has a great chance to energy wasting. In addition, its function as a street lighting sometimes not running properly. So it is necessary to build a system so that make streetlight can run effectively. In this research, a smart streetligt system is created using Arduino Uno as its main controller. The Arduino Uno is connected with various sensors and other components such as realtime clock and Ethernet Shield. Sensors used in this project are LDR sensor, PIR sensor, and INA219 current sensor. In addition, besides connected to various sensors, Arduino Uno also connected to the server for remote monitoring."
2017
S69772
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alfredo Oliver Batu
"Energi Surya merupakan salah satu energi alternatif yang dapat digunakan sebagai pengganti energi berbasis bahan bakar fosil. Energi listrik diperoleh dari mengonversi energi cahaya dari matahari menggunakan panel surya fotovoltaik. Salah satu kendala yang dihadapi dari energi surya menggunakan modul fotovoltaik ialah perubahan iradiasi matahari yang menyebabkan pergeseran titik daya maksimum pada kurva P-V sehingga daya yang dihasilkan menjadi kurang maksimal. Metode untuk memperoleh daya maksimum dari sebuah sumber daya yang berubah-ubah seperti pada panel surya fotovoltaik dikenal sebagai Maximum Power-Point Tracking (MPPT). Salah satu teknik MPPT yaitu menggunakan algoritma Perturb and Observe yang memberikan gangguan pada sistem dengan mengetahui nilai dari selisih daya dan selisih tegangan yang dihasilkan panel lalu menggeser tegangan kerja sistem ke tegangan tempat adanya titik daya maksimum. Daya maksimum diperoleh saat nilai dari selisih daya dibagi selisih tegangan panel sama dengan nol. Arduino Uno digunakan sebagai mikrokontroller yang memroses data dari sensor tegangan maupun arus dan mengendalikan DC-DC Booster yang berperan dalam menggeser tegangan kerja dari sistem. Hasil eksperimen menunjukkan daya yang dihasilkan lebih besar dibandingkan daya dari modul PV tanpa menggunakan MPPT dikarenakan sistem berada dalam tegangan kerja yang menghasilkan daya maksimum.

Solar energy is one of alternative energy which can be used as replacements for fossil fuel-based energy. Using photovoltaic module, electrical energy obtained by converting energy from the irradiation of the sun. One of its disadvantages using photovoltaic module is when irradiation from the sun changes which moves the maximum power point in P-V curve resulting in output power obtained become not at its maximum power. The method to extract maximum power available from changing energy source in example solar photovoltaic module are known as Maximum Power Point Tracking (MPPT). One of MPPT techniques is called Perturb and Observe which giving perturbation to the system by knowing the difference between power and voltage generated by photovoltaic module and moves operating voltage of the sistem to the voltage at maximum power by knowing the derivative of power and voltage. Maximum power achieved when the derivative of power over the derivative of voltage results in zero. Arduino Uno used as microcontroller which process the readings from voltage and current sensor while also controlling DC-DC Booster which able to move the operating voltage of the sistem. Experimental results yielding the output power from system greater than output power from photovoltaic module without using MPPT as result from the sistem working at operating voltage which also at the point when the voltage of maximum power exists."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darwis A. R
"ABSTRAK
Ketersediaan pakan ayam harus terpenuhi agar ayam tumbuh dan berkembang dengan baik. Pemberian makan ayam dilakukan berdasarkan umur ayam. Pada alat pemberi makan ayam ini, ayam yang digunakan adalah yang berumur 51-57 hari sebanyak lima ekor ayam dengan jumlah kebutuhan pakan perekor 160 gram sehinggan yang dibutuhkan 800 gram per hari. Alat ini juga menggunakan solar panel sebagai sumber tenaga dengan energi matahari yang diubah menjadi energi listrik. Energi listrik diteruskan ke Solar Charge Controller untuk mengatur pengecasan baterai. Ketika tombol ditekan, maka solenoid pertama mengaktifkan motor dc untuk menggerakkan tempat pakan bergerak dan membuka solenoid kedua pada tempat pakan bergerak dan menjatuhkan pakan ke wadah makan ayam. LCD dan pilot lamp digunakan sebagai indikator alat. Ketika pakan akan habis, lomit switch akan mendeteksi untuk kemudian meneruskan informasi ini ke transmitor modul RF. Informasi ini kemudian akan diterima di receiver modul RF lalu mengaktifkan buzzer sehingga pemilik ayam tahu bahwa pakan akan habis. Pada tegangan 25 V, motor berputar selama 107 detik untuk menggerakkan tempat pakan, dan 97 detik untuk menggerakkan tempat pakan kembali tempat semula. Solenoid pertama terbuka sembilan detik dan menjatuhkan pakan sebanyak 400 gram. Solenoid kedua terbuka empat kali, pertama selama tiga detik menjatuhkan pakan sebanyak 100 gram, kedua selama empat detik menjatuhkan pakan sebanyak 90 gram, ketiga selama lima detik menjatuhkan pakan sebanyak 90 gram, dan keempat selama enam detik menjatuhkan pakan sebanyak 120 gram."
Medan: Politeknik Negeri Medan, 2019
338 PLMD 22:3 (2019)
Artikel Jurnal  Universitas Indonesia Library
cover
Angga Davida
"Negative Pressure Wound Therapy (NPWT) merupakan sistem terapi yang menggunakan tekanan negatif untuk membersihkan luka dari cairan eksudat serta bakteri yang mungkin masih ada di dalam bagian luka, serta juga meningkatkan aliran darah ke dalam bagian luka dan meningkatkan proliferasi sel untuk mempercepat pemulihan. Oleh karena itu, terapi ini berpotensi lebih efektif dalam membantu mengobati berbagai jenis luka, seperti luka ulkus yang disebabkan oleh diabetes daripada teknik konvensional. Tujuan dari penelitian skripsi ini adalah untuk membuat rangkaian kontrol purwarupa alat NPWT menggunakan Arduino UNO sebagai mikrokontroler. Hal tersebut dilakukan dengan menulis kode dalam bahasa C++ pada software Arduino IDE yang kemudian di-upload ke dalam board Arduino UNO, yang kemudian dihubungkan kepada perangkat pendukung seperti push button, LCD, Motor driver L298N, pompa tekanan negatif, dan sensor MPXV4115VC6U. Pengujian purwarupa dilakukan dengan menyalakan alat selama 30 menit dalam tekanan negatif 85, 75, dan 125 mmHg. Hasil dari penelitian adalah purwarupa alat NPWT mampu menjalankan terapi selama 30 menit dan mencapai ketiga tekanan setting tersebut secara konsisten dengan error output tekanan negatif rata-rata 0,45% untuk mode continuous dan 0,96% untuk mode intermittent pada setting 85 mmHg, -0,22% untuk mode continuous dan -0,59% untuk mode intermittent pada setting 75 mmHg, serta -0,20% untuk mode continuous dan -1,50% untuk mode intermittent pada setting 125 mmHg. Pengujian menggunakan alat wound phantom dengan tekanan 85 mmHg memperlihatkan error output tekanan negatif rata-rata -0,56% untuk mode continuous dan -0,20% untuk mode intermittent. Melalui sensor MPXV4115VC6U, alat juga mampu mendeteksi tekanan dengan akurasi 99,46%, dan fungsi timer yang menggunakan internal clock mikrokontroler mampu menjalani terapi tepat waktu dengan deviasi rata-rata 0,05% dari setting waktu yang ditetapkan. Melalui penelitian ini, dibuktikan bahwa Arduino UNO mampu digunakan sebagai mikrokontroler untuk menjalankan alat NPWT dengan efektif.

Negative Pressure Wound Therapy (NPWT) is a wound therapy system which utilizes negative pressure to clean wound areas from exudate and bacteria, as well as to increase blood flow in order to induce cell proliferation and accelerate healing. This therapy is potentially more effective at assisting the regeneration of wounds, such as diabetic ulcers, compared to other conventional methods. The purpose of this research is to create a control circuit for an NPWT prototype using Arduino UNO as its microcontroller. This is done by writing code into the Arduino IDE software and uploading it into the Arduino UNO board, which has been connected to various supporting components such as push buttons, LCD, Motor Driver L298N, a negative pressure pump, and the pressure sensor MPXV4115VC6U. Testing of the prototype is done by turning the device on for 30 minutes with the negative pressure setting 85, 75, and 125 mmHg. Result of this test is that the NPWT prototype is capable of performing therapy with the aforementioned settings very well, with an average pressure error of 0.45% for the continuous mode and 0.96% for the intermittent mode at 85 mmHg, -0.22% for the continuous mode and -0.59% for the intermittent mode at 75 mmHg, as well as -0.20% for the continuous mode and -1.50% for the intermittent mode at 125 mmHg. Simulation by using a wound phantom resulted in the average pressure errors -0.56% for the continuous mode and -0.20% for the intermittent mode. Using the sensor MPXV4115VC6U, the prototype is able to detect pressure with an average of 99.46% accuracy, and the timer function, which uses the microcontrollers internal clock, is able to keep the timing of the therapy session with a 0.05% average deviation from the intended time setting. From these findings, it can be concluded that Arduino UNO is a microcontroller which is perfectly suitable to run an NPWT device effectively."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Angga Davida
"Negative Pressure Wound Therapy (NPWT) merupakan sistem terapi yang menggunakan tekanan negatif untuk membersihkan luka dari cairan eksudat serta bakteri yang mungkin masih ada di dalam bagian luka, serta juga meningkatkan aliran darah ke dalam bagian luka dan meningkatkan proliferasi sel untuk mempercepat pemulihan. Oleh karena itu, terapi ini berpotensi lebih efektif dalam membantu mengobati berbagai jenis luka, seperti luka ulkus yang disebabkan oleh diabetes daripada teknik konvensional. Tujuan dari penelitian skripsi ini adalah untuk membuat rangkaian kontrol purwarupa alat NPWT menggunakan Arduino UNO sebagai mikrokontroler. Hal tersebut dilakukan dengan menulis kode dalam bahasa C++ pada software Arduino IDE yang kemudian di-upload ke dalam board Arduino UNO, yang kemudian dihubungkan kepada perangkat pendukung seperti push button, LCD, Motor driver L298N, pompa tekanan negatif, dan sensor MPXV4115VC6U. Pengujian purwarupa dilakukan dengan menyalakan alat selama 30 menit dalam tekanan negatif 85, 75, dan 125 mmHg. Hasil dari penelitian adalah purwarupa alat NPWT mampu menjalankan terapi selama 30 menit dan mencapai ketiga tekanan setting tersebut secara konsisten dengan error output tekanan negatif rata-rata 0,45% untuk mode continuous dan 0,96% untuk mode intermittent pada setting 85 mmHg, -0,22% untuk mode continuous dan -0,59% untuk mode intermittent pada setting 75 mmHg, serta -0,20% untuk mode continuous dan -1,50% untuk mode intermittent pada setting 125 mmHg. Pengujian menggunakan alat wound phantom dengan tekanan 85 mmHg memperlihatkan error output tekanan negatif rata-rata -0,56% untuk mode continuous dan -0,20% untuk mode intermittent. Melalui sensor MPXV4115VC6U, alat juga mampu mendeteksi tekanan dengan akurasi 99,46%, dan fungsi timer yang menggunakan internal clock mikrokontroler mampu menjalani terapi tepat waktu dengan deviasi rata-rata 0,05% dari setting waktu yang ditetapkan. Melalui penelitian ini, dibuktikan bahwa Arduino UNO mampu digunakan sebagai mikrokontroler untuk menjalankan alat NPWT dengan efektif.

Negative Pressure Wound Therapy (NPWT) is a wound therapy system which utilizes negative pressure to clean wound areas from exudate and bacteria, as well as to increase blood flow in order to induce cell proliferation and accelerate healing. This therapy is potentially more effective at assisting the regeneration of wounds, such as diabetic ulcers, compared to other conventional methods. The purpose of this research is to create a control circuit for an NPWT prototype using Arduino UNO as its microcontroller. This is done by writing code into the Arduino IDE software and uploading it into the Arduino UNO board, which has been connected to various supporting components such as push buttons, LCD, Motor Driver L298N, a negative pressure pump, and the pressure sensor MPXV4115VC6U. Testing of the prototype is done by turning the device on for 30 minutes with the negative pressure setting 85, 75, and 125 mmHg. Result of this test is that the NPWT prototype is capable of performing therapy with the aforementioned settings very well, with an average pressure error of 0.45% for the continuous mode and 0.96% for the intermittent mode at 85 mmHg, -0.22% for the continuous mode and -0.59% for the intermittent mode at 75 mmHg, as well as -0.20% for the continuous mode and -1.50% for the intermittent mode at 125 mmHg. Simulation by using a wound phantom resulted in the average pressure errors -0.56% for the continuous mode and -0.20% for the intermittent mode. Using the sensor MPXV4115VC6U, the prototype is able to detect pressure with an average of 99.46% accuracy, and the timer function, which uses the microcontrollers internal clock, is able to keep the timing of the therapy session with a 0.05% average deviation from the intended time setting. From these findings, it can be concluded that Arduino UNO is a microcontroller which is perfectly suitable to run an NPWT device effectively."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitriyanti Nur Aisyah
"Prematuritas merupakan salah satu factor dari kematian bayi. Resiko yang mungkin terjadi akibat prematuritas adalah bradikardia dan takikardia, dimana terjadi kelainan pada frekuensi denyut jantung, oleh karena itu diperlukan pemantauan denyut jantung secara real time. Pada skripsi ini akan dibahas penelitian dalam membangun perangkat pemantau denyut jantung secara real time dan kontinu dengan memanfaatkan stetoskop. Perangkat ini tersusun atas stetoskop, mikrofon kondenser elektret, rangkaian pengkondisi sinyal, dan mikrokontroler Arduino UNO.
Pengujian perangkat dilakukan dengan memasang stetoskop baik pada dada maupun punggung subjek untuk menangkap sinyal denyut jantung. Setelah itu, sinyal denyut jantung dikirim ke mikrofon elektret yang dilengkapi rangkaian pre-amplifier dengan penguatan sebesar 100 kali. Sinyal detak jantung yang masih terdapat noise selanjutnya diproses oleh pengkondisi sinyal yang terdiri dari buffer, filter frekuensi cut-off sebesar 0,48Hz dan 1,59Hz dan amplifier. Sinyal denyut jantung yang keluar dari rangkaian pengkondisi sinyal diproses dengan mikrokontroler Arduino UNO R3 dan ditampilkan pada LCD dalam beat per minute BPM.

Prematurity is one of the factors of infant mortality. Risks that may occur due to prematurity are bradycardia and tachycardia, where there are abnormalities in the frequency of heart rate. Therefore it is necessary to monitor the heartbeat in real time. In this research is discussed about building a heart rate monitoring device in real time and continuous by utilizing stethoscope. This device is composed of stethoscope, electro condenser microphone, signal conditioning circuit, and Arduino UNO microcontroller.
The experiment is done by installing a stethoscope both on the subject 39 s chest and back to capture the heartbeat signal. After that, the heartbeat signal is sent to an electro microphone equipped with a pre amplifier circuit with a gain of 100 times. The remaining heartbeat signal is then processed by signal conditioners consisting of buffers, filters cut off frequencies of 0.48Hz and 1.59Hz and amplifiers. The heartbeat signal coming out of the signal conditioning circuit is processed by Arduino UNO R3 microcontroller and displayed on the LCD in beat per minute BPM.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Juan Permana
"Ketersediaan sumber daya air bersih saat ini sudah mencapai batas kritis dimana sumber daya yang tersedia tidak dapat memenuhi kebutuhan semua pengguna yang ada. Selain itu tidak terkendalinya penggunaan air dan tidak maksimalnya manajemen penggunaan air yang dilakukan tiap individu semakin memperparah kondisi ketersediaan air bersih tersebut. Penelitian ini mengembangkan penelitian lain yang sudah dilakukan mengenai pengukuran dan pemantauan penggunaan air pada rumah. Selain itu penelitian ini juga menganalisis sistem pemantauan dan pengendalian penggunaan air dengan Arduino Uno dan Perangkat Android yang di implementasikan pada gedung atau rumah.
Sistem yang dikembangkan pada penelitian ini merupakan sistem utuh yang digunakan untuk memantau jumlah penggunaan air dan ketinggian air pada bak penampungan. Selain itu sistem ini juga dapat mengendalikan menggunaan air yang berlebih. Jumlah penggunaan air dan ketinggian air dapat dipantau oleh pengguna melalui aplikasi berbasis Andoid.
Performa sensor water flow YF-S201 dalam mengukur debit air memiliki nilai RMSE (Root Mean Square Error) sebesar 42,09 mL dengan rata-rata tingkat akurasi sebesar 97,13%. Begitu juga dengan sensor ultrasonik HC-SR04 memiliki performa akurasi sebesar 98,95% dengan nilai RMSE 0,24 cm dalam mengukur ketinggian air. Dalam proses pengiriman data rata-rata waktu pengiriman sebesar 900 ± 1~2 detik dibanding waktu rentang pengiriman model yaitu 900 detik.
Konsistensi sistem pengendalian penggunaan air berhasil berjalan 100% dari model yang dirancang. Hasil penilaian responden terhadap aplikasi pemantauan penggunaan air terhadap usability aplikasi memiliki total nilai kepuasan sebesar 84,75 dari 100.

The availability of water nowadays has been on critical limit where is water resource that available can not provide for every user. This research is develope and analyze water usage monitoring and controlling system using Arduino Uno and Android Device which is implemented on the building and home.
System that developed is a complete system which is used for monitoring water usage and water level on the tank. Moreover, this system can controlling excessive water usage. User can monitor values of water usage and water level using Android Application.
Performance of water flow sensor YF-S201 has RMSE value of 42,09 mL with average of accuracy level 97,13% on processing water flow. As well as ultrasonic sensor HC-SR04 has performance of accuracy 98,95% with the RMSE value 0,24 cm on processing water level. Compared with designed sending data time 900 second, average time of system sending data is 900 ± 1~2 second.
Water usage control system consistence work 100% based on the model that created. The result of respondents assessment concerning to the usability of monitoring application has total amount of satisfaction 84,75 of 100.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64526
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>