Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14 dokumen yang sesuai dengan query
cover
Anastasya Amalia Oliviani Putri
"Pulau Sulawesi merupakan salah satu pulau dengan deposit nikel laterit terbesar di Indonesia, yang berkaitan erat dengan keberadaan East Sulawesi Ophiolite (ESO). Deposit nikel laterit merupakan hasil dari pelapukan batuan ultramafik yang ditemukan pada sekuen ofiolit, sehingga mengalami pengayaan unsur tertentu pada setiap profil laterit. Penelitian mengenai hubungan antara batuan induk terhadap karakteristik deposit nikel laterit yang dihasilkan masih jarang ditemukan sehingga sangat menarik untuk diteliti lebih lanjut. Penelitian ini bertujuan untuk mengetahui batuan induk serta kaitannya terhadap karakteristik deposit nikel laterit yang terdapat di Kabupaten Konawe, Sulawesi Tenggara tepatnya di lapangan DS. Penelitian diawali dengan klasifikasi batuan induk berdasarkan data geokimia XRF dengan menggunakan pembelajaran mesin tersupervisi yang kemudian dilanjutkan dengan analisis petrografi dan mikro XRF pada setiap tipe batuan dasar yang ditemukan. Berdasarkan hasil penelitian, diketahui bahwa daerah penelitian tersusun atas batuan ultramafik harzburgit tipe 1, 2 dan 3 yang dibedakan berdasarkan komposisi mineral utama. Dari hasil analisis data XRF setiap zona, didapatkan hasil bahwa persentase nikel tertinggi ditemukan pada profil saprolit lunak pada zona harzburgite tipe tiga yang didukung oleh kondisi kemiringan lereng.
......Sulawesi is one of the islands with the largest nickel laterite deposits in Indonesia, which is closely related to the existence of East Sulawesi Ophiolite (ESO). Laterite nickel deposit is the result of weathering of ultramafic rocks found in ophiolite sequences, with certain element enrichment in each laterite profile. Research on the relationship between the source rock and the characteristics of the laterite nickel deposit is still rarely found, so it is very interesting for further research. This study aims to determine the source rock and its relation to the characteristics of laterite nickel deposits in Konawe Regency, Southeast Sulawesi, precisely in the DS field. The study began with the classification of the bedrock based on XRF geochemical data using supervised machine learning which was continued with petrographic and micro XRF analysis for each type of bedrock. Based on the research results, it is known that the research area is consisted of ultramafic harzburgite rocks types 1, 2 and 3 which are differentiated based on the composition of the major minerals. From the analysis of XRF data for each zone, the result shows that the highest percentage of nickel was found in the soft saprolite profile in the Harzburgite zone type three which was supported by morphological conditions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rian Saputra
"Sources nickel laterite deposit of the world are mostly found in the tropic such as Indonesia. The initial composition of nickel saprolite ore is characterized by XRF. Saprolte ore was reduced use coal 15% wt at 1000°C for 60 minutes. The result of reduction is characterized by XRD. Effect of roasting reduction to recovery nickel also affect the result leaching use solvent sulphuric acid (H2SO4) for 240 minutes at 100°C with varying concentrations of 0.5 M, 1 M, and 2 M. The content of nickel dissolved in pregnant leach solution calculated using Atomic Absorbance Spectroscopy (AAS).
Result of XRD characterization shows phase transformation into Fe3O4, NiO, and FeNi after reduction roasting. Sulphuric Acid at concentration 1 Molar has the highest nickel recovery with 52.75% in reduced saprolite ore."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63620
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sihotang, Juan Carlos
"Nikel merupakan logam penting yang banyak digunakan dalam paduan, misalnya baja tahan karat, paduan ruang angkasa, dan paduan khusus. Nikel ditambang dari dua jenis bijih: laterit dan sulfida. Laterit banyak ditemukan di daerah tropis seperti di Indonesia dan ditambang untuk memperoleh nikel dan kobalt. Pelindian bijih nikel laterit pada tekanan atmosfer saat ini banyak menarik perhatian karena biaya yang lebih rendah dibanding proses lainnya. Tujuan penelitian ini adalah untuk menentukan pengaruh waktu dan kecepatan agitasi pelindian atmosferik terhadap persentase perolehan nikel dari bijih laterit jenis saprolit. Bijih nikel saprolit dari Halmahera Timur digunakan dalam penelitian. Untuk mengetahui nilai perolehan nikel pada waktu dan kecepatan agitasi yang berbeda, pelindian teragitasi dilakukan selama 1, 3, dan 5 jam dengan kecepatan agitasi masing-masing 250 rpm, 500 rpm, dan 750 rpm. Selama penelitian, berat sampel yang telah dihaluskan (15 g), konsentrasi asam sulfat (5N (240.1 g/L)), volume asam sulfat (75 ml), dan suhu (100°C) dijaga konstan. Dapat dilihat bahwa dalam pelindian teragitasi, peningkatan waktu pelindian dari 1 jam hingga 5 hour memiliki pengaruh positif terhadap perolehan nikel. Peningkatan kecepatan agitasi dari 250 rpm hingga ke 750 rpm juga meningkatkan nilai perolehan nikel.
......Nickel is important metal that is mostly used in alloys, for example, in stainless steels, aerospace alloys and specialty steels. Nickel is mined from two types of ores: laterites and sulfides. Laterites are found mostly in tropical regions and are mined for their nickel and cobalt in countries like Indonesia. Leaching lateritic nickel ores with sulphuric acid at atmospheric pressure (AL) has been recently receiving more attention due to lower cost compared to other processes. The purpose of this study is to determine the effect of duration and agitation speed of atmospheric leaching to the recovery percentage of nickel from saprolitic type laterit ore. Saprolitic nickel ores from Eastern Halmahera were used during experiments. In order to study the recovery values at different time periods and different agitation speeds, agitative leaching experiments were carried out for 1, 3, and 5 hours with agitation speed 250 rpm, 500 rpm, and 750 rpm, respectively. During the experiments, weight of ground ore sample (15 g), concentrations of sulfuric acid (5N (240.1 g/L)), volume of sulfuric acid (75 ml), and temperature (100°C) were kept constant. It was shown that in agitative leaching, increasing leaching time from 1 hour to 5 hour had a positive effect on metal extractions. Increasing agitation speed from 250 rpm to 750 rpm also increased the recovery values of nickel."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63151
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwipuji Rahayu
"Bijih nikel laterit merupakan salah satu sumber mineral terbesar yang terdapat di Indonesia. Bijih ini memiliki potensial yang sangat besar untuk dilakukan proses pengolahan dan pemurnian, namun membutuhkan energi yang tinggi dalam pemisahan mineral ataupun mineral ikutan, sehingga biaya yang dikeluarkan menjadi tinggi pula. Untuk mengatasi hal tersebut, maka dilakukan tahap pra-reduksi yaitu proses reduksi karbotermik. Proses reduksi karbotermik banyak digunakan untuk bijih nikel tipe saprolit, dimana proses tersebut membutuhkan reduktor untuk mereduksi bijih nikel laterit menjadi logam nikel murni.
Reduktor yang umum digunakan adalah batu bara dan kokas. Namun, pada penelitian ini dilakukan pengembangan proses reduksi karbotermik bijih nikel laterit tipe saprolit menggunakan reduktor biomassa, yaitu cangkang kelapa sawit. Dalam penelitian, digunakan bijih nikel laterit dari Halmahera Timur dan cangkang kelapa sawit dari limbah perkebunan kelapa sawit di Palangkaraya, Kalimantan Tengah. Bijih nikel laterit direduksi ukurannya hingga menjadi partikel serbuk 270.
Tujuan dari penelitian ini adalah untuk mengetahui pengaruh variasi waktu reduksi terhadap hasil reduksi karbotermik bijih nikel laterit, dengan temperatur dan rasio massa dibuat konstan. Variasi waktu reduksi yang diuji dalam penelitian ini adalah 1 jam, 2 jam, 3 jam dan 4 jam. Seluruh sampel diuji pada temperatur 800oC dan rasio massa 1:4 bijih nikel laterit:cangkang kelapa sawit yang dimasukkan ke suatu krusibel dan reduksi karbotermik dilakukan di dalam melting furnace.
Hasil XRD menyatakan bahwa peak yang terbentuk sudah dapat mereduksi hematite atau magnetite menjadi wustite pada waktu reduksi 1 jam. Hasil XRF menunjukkan bahwa pada waktu reduksi selama 1 jam merupakan waktu optimum karena kandungan unsur Nikel dan Nikel Oksida NiO didapatkan paling tinggi diantara variasi waktu lainnya.
......Lateritic nickel ore is one of the biggest mineral source in Indonesia. There is large potential to acquire high concentration of nickel by processing and refining the ore, but because there is high energy use for mineral separation or gangue minerals processing, the cost will be high. Therefore, to resolve that problems, the pre reduction stage called carbothermic reduction process is carried out. Carbothermic reduction process usually used for saprolite which needs a reductor for the reduction reaction of lateritic nickel ore to produce pure nickel.
Common reductor used are coal and cokes. In this study, development on carbothermic reduction of saprolite type of lateritic nickel ore using biomass reductor palm kernel shell is conducted. The lateritic nickel ore used are obtained from Halmahera Timur and the palm kernel shells are obtained from the waste of palm oil plantation at Palangkaraya, Kalimantan Tengah. Size of the ore are reduced to powder particle with 270 size.
The purpose of this study is to find out the effect of reduction time variation on carbothermic reduction result of lateritic nickel ore with constant temperature and mass ratio value. Reduction time variation used in this study are 1, 2, 3, and 4 hours. All samples are tested at 800oC with mass ratio of 1 4 lateritic nickel ore palm kernel shell which are put into a crucible and then the carbothermic reduction process done in an melting furnace.
Peak formed on XRD results show that the process can reduce hematite or magnetit to wustite within one hour. XRF results show that reduction time of one hour is the optimum time because nickel and nickel oxide NiO content are highest compared to other time variation."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67537
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nolzha Primadha Ilman
"Selama ini, produksi nikel selalu menggunakan bijih sulfida sebagai bahan-bakunya. Padahal Indonesia memiliki cadangan bijih laterit yang kaya, namun cadangan laterit di Indonesia belum diolah secara maksimal. Hal tersebut terjadi karena proses pemurnian laterit membutuhkan biaya yang besar, hal ini dipicu oleh banyaknya energi yang dibutuhkan serta kerumitan dalam proses pemisahan logam pengotor. Dibutuhkan tahap pra-reduksi atau peningkatan kadar nikel dalam konsentrat agar dapat memaksimalkan proses pemurnian nikel. Salah satu metodenya adalah dengan melakukan reduksi karbotermik serta penambahan aditif untuk mengoptimalkan proses reduksi.
Pada penelitian ini akan dilakukan studi pengaruh waktu reduksi, temperatur reduksi, dan kadar reduktor arang cangkang sawit dalam reduksi serta penambahan Na2SO4 sebagai aditif. Hasil reduksi kemudian dilakukan pengujian XRF dan XRD, serta pengamatan mikrostruktur dengan mikroskop optik dan SEM. Hasilnya pada kondisi yang optimal kadar dan perolehan nikel mampu ditingkatkan mencapai 4.601 dan 73.23 . Kondisi optimal untuk melakukan proses reduksi tersebut adalah pada temperatur 1150oC, kadar reduktor 5 wt. , dan waktu reduksi 60 menit.

During this time, nickel sulfide ore is the main choice for nickel production. Whereas Indonesia has rich laterite ore deposits, but the reserves in Indonesia have not been processed optimally. This happens because the laterite purification process requires a large cost, due to energy required and the complexity in the process of separation of impurity minerals. A pre reduction or nickel grade promoting process is needed to maximize the nickel purification process. One of the methods used is the selective carbothermic reduction process with the addition of an additive to optimize the process.
This research studied the effect of reduction time, reduction temperature, and grade of palm kernel shell charcoal as the reductor in the reduction process and addition of Na2SO4 as additive. The results of the reduction process are then tested XRF and XRD, as well as observations of microstructures with optical microscopy and SEM. The result on optimal condition of nickel content and recovery can be increased to reach 4,601 and 73.23 . The optimum conditions for the reduction process are at a temperature of 1150oC, 5 wt. reductors, and a reduction time of 60 min.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Robby Samuel S.
"ABSTRAK
Proses reduksi selektif bijih nikel laterit dengan penambahan aditif NaCl dan gas pereduksi CO, diikuti dengan proses separasi magnetik telah dipelajari dalam penelitian ini. Karakterisasi bijih menunjukan kandungan nikel sebesar 1,4% dan besi sebesar 50,5% dengan fasa-fasa dalam bijih yaitu gutit (FeOOH), lizardit (Mg3(Si2O5)(OH)4), olivin ((Fe,Mg)2SiO4), dan kuarsa (SiO2). Proses reduksi dilakukan dengan variasi temperatur 900, 1000, dan 1100 °C, waktu tahan 30-180 menit, dan dengan penambahan 10% aditif NaCl. Proses separasi magnetik yang dilakukan menggunakan metode basah dan kekuatan magnet sebesar 500 gauss untuk memisahkan produk konsentrat dan tailing. Bijih hasil reduksi dikarakterisasi dengan menggunakan pengujian metalisasi, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) yang dilengkapi dengan Energy Dispersive X-Ray Spectroscopy (EDS) serta konsentrat dan tailing diidentifikasi dengan alat uji X-Ray Flourescence (XRF). Fasa yang terdapat dalam bijih hasil reduksi yaitu kamasit (FeNi), magnetit (Fe3O4), wustit (FeO), natrium klorida (NaCl) dan fayalit (Fe2SiO4). Hasil percobaan menunjukkan derajat metalisasi nikel dan besi meningkat seiring dengan meningkatnya temperatur dari 900-1100 °C dan waktu tahan reduksi dari 30-180 menit oleh karena semakin intensnya proses kloridasi, segregasi, dan reduksi pada bijih. Hal ini berdampak pada meningkatnya kadar nikel dan besi pada konsentrat hasil proses separasi magnetik. Perolehan nikel meningkat seiring dengan meningkatnya temperatur dan waktu tahan reduksi oleh karena semakin banyaknya nikel yang terbebas dari fasa pengandungnya, sementara fayalit semakin banyak terbentuk sehingga perolehan besi menurun. Kadar dan perolehan optimum yang didapat yaitu berturut-turut 2,8% dan 59,2% untuk nikel, dan 58,16% dan 34,27% untuk besi. Derajat metalisasi digunakan sebagai parameter kinetika reduksi dan didapatkan model Avrami-Erofeyev sebagai model yang merepresentasikan mekanisme nukleasi pada proses reduksi. Energi aktivasi yang didapat yaitu sebesar 38,1622 kJ/mol atau 9,12 kkal/mol dengan tahapan pengendali laju reaksi yaitu gabungan antara difusi gas dan reaksi kimia antarmuka.

ABSTRACTK
Selective reduction process of lateritic nickel ore using CO and NaCl additive were studied in this work. Ore characterization result shows the nickel grade of 1.4% and iron grade of 50,5% with phases contained in the ores were goethite (FeOOH), lizardite (Mg3(Si2O5)(OH)4), olivine ((Fe,Mg)2SiO4) and quartz (SiO2). The temperature of reduction process varied from 900, 1000, and 1100 °C with reduction time of 30-180 min and 10% NaCl additives. Magnetic separation process were done using wet methode and magnetic intensity of 500 gauss to separate concentrate and tailing. The reduced ore were characterisized using metallization test, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-Ray Spectroscopy (EDS) while the concentrate and tailing were identified using X-Ray Flourescence (XRF). Kamacite (FeNi), magnetite (Fe3O4), wustite (FeO), natrium chloride (NaCl) dan fayalite (Fe2SiO4) were the phases present in the reduced ore. The result shows that the degree of metallization of nickel and iron increases with the increasing temperature from 900 to 1100 °C and holding time from 30 to 180 minutes because of the increasing intensity of the chloridization, segregation and reduction process. This has an impact on increasing the grade of nickel and iron on the concentrate. The recovery of nickel was increased along with the increasing temperature and holding time because of the increasing amount of nickel liberated from its bearing phase, while fayalite were increasingly formed so that the recovery of iron was decreased. The optimum grade and recovery resulted from the experiment was 2.8% and 59.2% for nickel respcetively, and 58.16% and 34.27% for iron. The degree of metallization was used as reduction kinetics paramter and the model representing the reduction proces was Avrami-Erofeyef with its nucleation mechanism. The resulting activation energy of 38.1622 kJ/mol or 9,12 kkal/mol with combined gas diffusion and interfacial chemical reaction as the rate-controlling step."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adiyaksa Pratama
"Saat ini, kebutuhan nikel di dunia sangat tinggi. Ada berbagai macam proses ekstraksi, namun kebutuhan energi yang tinggi, masalah terhadap lingkungan, hingga biaya menjadi suatu permasalahan yang utama. Sulfur menjadi salah satu aditif yang digunakan dalam mengoptimasi proses reduksi. Sulfur juga terkandung dalam batubara. Oleh karena itu, dalam penelitian ini dipelajari pengaruh kandungan sulfur dalam batubara dalam proses reduksi selektif bijih nikel laterit dengan aditif sodium sulfat.
Bijih nikel laterit jenis limonit dan batubara antrasit sebagai bahan baku dilakukan penggerusan hingga berukuran 100 mesh. Kemudian dilakukan pencampuran dan peletisasi dengan ukuran pelet sebesar 10 – 15 mm. Kadar sulfur yang digunakan dalam batubara antrasit memiliki besar 2.68% dan 5% dengan penambahan aditif sodium sulfat sebesar 10%. Proses reduksi dilakukan di dalam muffle furnace dengan variasi temperatur sebesar 950°C, 1050°C dan 1150°C dalam waktu reduksi selama 60 menit. Kemudian dilakukan separasi magnetik metode basah (500 gauss) untuk memisahkan antara konsentrat dan tailing. Bahan baku dan hasil reduksi dilakukan karakterisasi dengan XRF, XRD, dan optical microscopy (OM).
Kondisi optimal reduksi selektif terjadi pada suhu 1150°C, dengan jumlah reduktor batubara antrasit 0.5 stoikiometri dan kadar sulfur yang terkandung dalam batubara tersebut sebesar 2,68%. Kadar dan perolehan nikel yang dihasilkan masing-masing sebesar 2,61% dan 91,64%. Seiring mencapai temperatur optimal, kadar maupun perolehan nikel yang didapat akan semakin tinggi. Namun apabila ditambahkan jumlah reduktornya, maka kadar dan perolehan nikel akan menurun sehingga perlu diperhatikan kondisi optimalnya.
Nowadays, the needs of nickel in the world is very high. There are a lot of extraction process, but high energy consumption, environment, and costs are the main problems. Sulphur is one of the additives that optimizing reduction process. Sulphur also contained in a coal. So, in this research we will study about effects of sulphur content in a coal on selective reduction process of lateritic nickel ore with sodium sulphate as an additive.
Limonitic laterite nickel ore and anthracite coal are crushed until the size of 100 mesh, then the raw material is mixed up and pelleted (10 – 15 mm). Sulphur content that used in the coal are 2.68% and 5% respectively with 10% addition of sodium sulphate additives. Reduction process are done in a muffle furnace with temperature variation of 950°C, 1050°C dan 1150°C within 60 minutes. Then it is separated between concentrate and tailing with wet magnetic separation method (500 gauss). Raw material and the reduction products are characterized by XRF, XRD, dan optical microscopy (OM) methods.
The optimal condition of selective reduction occurs at temperature of 1150°C, with the amount of anthracite coal of 0.5 stoichiometry and the Sulphur content of 2.68%. Grade and recovery that obtained of 2.61% dan 91.64% respectively. Along with the increasing of temperature, grade and recovery of nickel are also increase. But, if we add more redactor, the grade and recovery will be decrease so the optimum condition have to be considered.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Citra Noviasari
"Kendaraan listrik merupakan salah satu solusi dari pemanfaatan energi ramah lingkungan. Sebagian besar negara di dunia telah mewajibkan dan/atau menganjurkan masyarakatnya untuk mulai menggunakan kendaraan listrik. Baterai merupakan salah satu komponen penting dalam kendaraan listrik. Untuk memproduksi baterai tersebut, dapat menggunakan mixed hydro precipitate (MHP), yang merupakan produk antara dari bijih nikel laterit yang diproses dengan metode hidrometalurgi dengan kandungan nikel 30-40%. Saat ini, beberapa perusahaan yang mengolah sumber daya nikel di Indonesia menggunakan teknologi High Pressure Acid Leaching (HPAL). Akan tetapi, metode HPAL menghasilkan residu yang cukup banyak dan beracun sehingga harus diolah terlebih dahulu sebelum dialirkan ke lingkungan. Salah satu metode yang dikembangkan dan berpotensi untuk bersaing dengan teknologi HPAL di Indonesia, yaitu DNi ProcessTM yang menggunakan pelindian dengan asam nitrat. Teknologi DNi ProcessTM ini terdiri dari beberapa tahapan, yaitu leaching, iron hydrolysis, aluminum precipitation, dan Mixed Hydroxide Precipitate (MHP) precipitation. Untuk menguji kelayakan teknologi DNi ProcessTM, dilakukan perbandingan persentase ekstraksi antara kedua teknologi tersebut. Dari hasil penelitian, tahap leaching DNi ProcessTM memberikan persentase ekstraksi Ni 94,76% dan Co 96,36%. Persentase ekstraksi ini lebih tinggi dibandingkan dengan metode HPAL, yang memberikan persentase ekstraksi Ni 93% dan Co 91-95%.
......The electric vehicle is a solution for the utilization of eco-friendly energy. Most countries have required and/or advocated for their citizens to use electric vehicles. The battery is one of the components in electric vehicles. In producing the battery, mixed hydro precipitate (MHP) can be used, an intermediate product from lateritic nickel ore that is processed with hydrometallurgy methods and contains 30-40% nickel. Several companies have processed nickel in Indonesia using High-Pressure Acid Leaching (HPAL) technology. However, this method generates a substantial amount of toxic waste, which must be processed before dumping it into the environment. One method that is being developed dan has the potential to compete with HPAL in Indonesia is DNi ProcessTM, which uses nitric acid for leaching. DNi ProcessTM consists of several stages: leaching, iron hydrolysis, aluminum precipitation, and MHP precipitation. In examining the feasibility of DNi ProcessTM technology, a comparison of extraction percentage between the two technologies was used. From the study, the leaching stage of DNi ProcessTM gave extraction percentage for Ni 94.76% and Co 96,36%. This extraction percentage is higher than HPAL, which gave extraction percentage for Ni 93% and Co 91-95%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Khulud Saekhan
"Perkembangan metode selektif reduksi dilakukan untuk mengolah bijih nikel laterit untuk menghasilkan kadar nikel yang tinggi tanpa menggunakan energi yang besar. Batubara bituminous umum digunakan pada proses selektif reduksi karena kandungan fixed carbon yang tinggi untuk meningkatkan derajat metalisasi nikel dan besi. Penambahan CaO pada basisitas biner dapat membentuk senyawa silikat seperti akermanite. Penelitian ini akan mempelajari proses selektif reduksi bijih nikel laterit menggunakan reduktor batubara bituminous dengan aditif Na2SO4 dan CaO pada basisitas biner. Penelitian ini menggunakan bijih nikel limonit dengan kandungan 1,38% Ni dan 38,2% Fe dengan penambahan aditif natrium sulfat 10% berat (Na2SO4), variasi soikiometri 0,1-0,5 dan variasi penambahan CaO pada basisitas biner 0,1-1,0. Penelitian ini bahwa hasil optimum pada stoikiometri 0,1 dan basisitas 0,1 yaitu 6,142% Ni dengan recovery 89,94%. Grade nikel menurun dengan bertambahnya jumlah CaO pada basisitas biner.

Selective reduction methods are being developed to process nickel laterite ore to produce nickel with high content with small amount of energy. Bituminous coal is commonly used in selective reduction process because of its high fixed carbon content to increase degree of metallization of nickel and iron. CaO addition on binary basicity can form silicate compound like akermanite. This research was carried out to study selective reduction process nickel laterite ore using bituminous coal with additives Na2SO4 and calcium oxide on binary basicity. This research used limonite ore with 1.38% Ni and 38.2% Fe content. The reduction was conducted at 1150°C for 60 minutes with 10 wt.% additive sodium sulphate (Na2SO4) and 0.71% S bituminous coal with stoichiometric variations of 0.1-0.5 and CaO based on binary basicity variations of 0.1-1.0. This research shows that the reduction process with stoichiometry 0.1 and basicity 0.1 produced the most optimal grade and nickel recovery, 6.142% Ni and 89.94%. The recovery of nickel decline as the ratio of CaO in binary basicity increases."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Ananda
"Tingginya temperatur dalam proses peleburan/smelting bijih nikel laterit menyebabkan tingginya biaya/konsumsi energi. Penggunaan sulfur/sulfat mampu mengoptimalkan proses reduksi pada temperatur rendah melalui pembentukan senyawa FeS. Limbah biomass, yaitu arang cangkang sawit (ACS) memiliki potensi sebagai reduktor dalam proses reduksi bijih nikel laterit dikarenakan memiliki nilai fixed carbon dan nilai kalor yang cukup tinggi di bandingkan biomass yang lain, selain itu limbah ACS semakin melimpah seiring dengan makin tumbuh berkembangnya industri perkebunan sawit Indonesia. Oleh karena itu, dalam penelitian ini akan dipelajari proses selektif reduksi bijih nikel laterit menjadi konsentrat logam ferronikel pada temperatur rendah menggunakan reduktor biomass ACS dengan aditif elemental sulfur dan sodium sulfate.
Bijih nikel laterit kadar rendah (laterit jenis limonit), reduktor ACS, dan aditif sulfur-sodium sulfate digerus hingga berukuran kurang dari 100 mesh, kemudian diaduk secara merata dan di-aglomerasi dalam bentuk pellet berukuran 10-15 mm. Variasi penambahan elemental sulfur dilakukan sebanyak 0-5%S. Variasi jumlah ACS dilakukan berdasarkan stoikiometri sebesar 0,5-1,5% dengan penambahan aditif 10% Na2SO4. Proses reduksi terhadap pellet bijih nikel laterit dilakukan dengan menggunakan muffle furnace pada temperatur 950, 1050, 1150ºC selama 60 menit. Selanjutnya dilakukan proses pemisahan magnet (500 gauss) terhadap pellet hasil reduksi untuk memisahkan konsentrat-ferronikel (magnetik) dengan tailing-pengotor (non-magnetik). Bahan baku, pellet hasil reduksi, produk konsentrat dan tailing akan dikarakterisasi/dilakukan pengujian menggunakan XRF, XRD dan SEM-EDS.
Hasil yang diperoleh yaitu semakin tinggi temperatur reduksi maka terjadi kenaikan kadar dan perolehan nikel dalam konsentrat. Pada penelitian kali ini didapatkan kondisi optimum pada proses reduksi yaitu dengan temperatur 1150 ºC serta penggunaan 0,5% stoikiometri reduktor arang cangkang sawit (ACS) dan aditif 10% Na2SO4 tanpa penambahan sulfur (0%S), dimana kadar nikel yang diperoleh didalam konsentrat yaitu 2,852% dengan perolehan 73,51%. Saat penambahan 2,68% sulfur, kadar nikel yang didapatkan lebih tinggi yaitu 3% namun perolehan yang didapat yaitu hanya 64,84%. Maka dari itu, penambahan arang cangkang sawit (ACS) dan sulfur harus dilakukan dalam jumlah yang optimum.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>