Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 15 dokumen yang sesuai dengan query
cover
Agus Harsono
Abstrak :
Dalam analisis yang berhubungan dengan waktu ketahanan sering timbul masalah data waktu ketahanan yang tersensor maka diperlukan metode analisis yang memperhatikan masalah sensoring. Waktu ketahanan individu sangat tergantung dari karakteristik-karakteristik individu yang bersangkutan. Dalam Statistik karakteristik-karakteristik ini dapat disebut Kovariat. Salah satu metode analisis yang dapat mengatasi masalah sensoring dengan memperhatikan kovariat individu (yang berupa variable kategorik) adalah Model Coxs Propotional Hazard. Tugas akhir ini membahas model Coxs Proporsional Hazard dengan focus pada Resiko Kegagalan Relatif (kerusakan/kematian) dan Ketahanan (ketahanan hidup/ketahanan pemakaian). Aplikasinya membahas ketahanan pasien penyakit jantung dengan transplantasi dan usia sebagai kovariatnya
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1991
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramzy Mohammad
Abstrak :

Distribusi Generalized Exponential diperkenalkan oleh Rameshwar D. Gupta dan Debasis Kundu pada tahun 2007. Distribusi  Generalized Exponential tersebut merupakan hasil generalized distribusi Exponential. Skripsi ini menjelaskan distribusi  Generalized Exponential Marshall Olkin yang merupakan hasil dari perluasan distribusi Generalized Exponential menggunakan metode Marshall Olkin. Distribusi Generalized Exponential Marshall Olkin lebih fleksibel dari distribusi sebelumnya terutama pada fungsi hazardnya yang memiliki berbagai bentuk baik monoton (naik atau turun) maupun non monoton (bathub atau upside down bathup) sehingga dapat memodelkan data survival dengan lebih baik. Sifat fleksibelitas ini disebabkan karena penambahan parameter baru ke dalam distribusi Generalized Exponential. Selanjutnya dijelaskan beberapa karakteristik dari distribusi Generalized Exponential Marshall Olkin antara lain fungsi kepadatan peluang (fkp), fungsi distribusi kumulatif, fungsi hazard, momen ke-n, mean, dan variansi. Penaksiran parameter dilakukan dengan metode maximum likehood. Pada bagian aplikasi ditunjukkan data survival yang berasal dari data Aarset (1987) berdistribusi Generalized Exponential Marshall Olkin. Selanjutnya distribusi Generalized Exponential Marshall Olkin dibandingkan dengan distribusi Alpha Power Weibull untuk mencari distribusi mana yang lebih cocok dalam memodelkan data Aarset (1987). Dengan menggunakan AIC dan BIC distribusi Generalized Exponential Marshall Olkin lebih cocok dalam memodelkan data Aarset (1987).

 


Generalized Exponential distribution was introduced by Rameshwar D. Gupta and Debasis Kundu in 2007. Generalized Exponential distribution was generated by generalized transformation of the Exponential distribution. This thesis explained the Generalized Exponential Marshall-Olkin distribution which is the result of the expansion of the Generalized Exponential distribution using the Marshall-Olkin method. The Generalized Exponential Marshall-Olkin distribution has a more flexible form than the previous distribution, especially in its hazard function which has various forms that it can represent survival data better. The flexibility characteristic is due to the addition of new parameters to the Generalized Exponential distribution. Futhermore, some characteristics of the Generalized Exponential Marshall-Olkin distribution was explained such as, the probability density function(PDF), cumulative distribution function, survival function, hazard function, moment, mean, and variance. Parameter estimation was conducted by using the maximum likelihood method. In the application section was shown survival data from Aarset data (1987) which distributed Generalized Exponential Marshall-Olkin distribution. Futhermore, Generalized Exponential Marshall-Olkin distribution was compared with Alpha Power Weibull disstribution to decided theprominent distribution in modeling Aarset data (1987). Using AIC and BIC, Generalized Exponential Marshall-Olkin distribution more suitable in modeling Aarset data (1987).

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lady Amanda Rosa
Abstrak :
Satu parameter distribusi Lindley (𝜃) telah banyak digunakan di berbagai bidang seperti Biologi, teknik, medis, dan industri. Distribusi Lindley mampu memodelkan data dengan tingkat bahaya monoton yang meningkat. Namun, dalam kehidupan nyata, ada situasi di mana tingkat bahaya bukan monoton. Oleh karena itu, untuk meningkatkan kemampuan distribusi Lindley untuk pemodelan data, suatu modifikasi dapat digunakan dengan menggunakan metode transformasi Alpha Power. Hasil dari modifikasi distribusi Lindley biasa disebut distribusi Alpha Power Transformed Lindley (APTL) yang memiliki dua parameter (𝛼, 𝜃). Distribusi APTL baru ini sesuai dalam memodelkan data dengan bentuk pdf menurun atau unimodal dan meningkatkan, mengurangi, dan bak terbalik berbentuk tingkat bahaya. Berbagai sifat dari distribusi yang diusulkan dibahas termasuk kepadatan probabilitas fungsi, fungsi distribusi kumulatif, fungsi survival, fungsi tingkat bahaya, fungsi momen, dan momen r.Parameter model diperoleh dengan menggunakan metode kemungkinan maksimum. Data waktu tunggu digunakan "sebagai ilustrasi untuk menggambarkan kegunaan distribusi APTL"Satu parameter distribusi Lindley (𝜃) telah banyak digunakan di berbagai bidang seperti Biologi, teknik, medis, dan industri. Distribusi Lindley mampu memodelkan data dengan tingkat bahaya monoton yang meningkat. Namun, dalam kehidupan nyata, ada situasi di mana tingkat bahaya bukan monoton. Oleh karena itu, untuk meningkatkan kemampuan distribusi Lindley untuk pemodelan data, suatu modifikasi dapat digunakan dengan menggunakan metode transformasi Alpha Power. Hasil dari modifikasi distribusi Lindley biasa disebut distribusi Alpha Power Transformed Lindley (APTL) yang memiliki dua parameter (𝛼, 𝜃). Distribusi APTL baru ini sesuai dalam memodelkan data dengan bentuk pdf menurun atau unimodal dan meningkatkan, mengurangi, dan bak terbalik berbentuk tingkat bahaya. Berbagai sifat dari distribusi yang diusulkan dibahas termasuk kepadatan probabilitas fungsi, fungsi distribusi kumulatif, fungsi survival, fungsi tingkat bahaya, fungsi momen, dan momen r.Parameter model diperoleh dengan menggunakan metode kemungkinan maksimum. Data waktu tunggu digunakan " sebagai ilustrasi untuk menggambarkan kegunaan distribusi APTL. Satu parameter distribusi Lindley (𝜃) telah banyak digunakan di berbagai bidang seperti Biologi, teknik, medis, dan industri. Distribusi Lindley mampu memodelkan data dengan tingkat bahaya monoton yang meningkat. Namun, dalam kehidupan nyata, ada situasi di mana tingkat bahaya bukan monoton. Oleh karena itu, untuk meningkatkan kemampuan distribusi Lindley untuk pemodelan data, suatu modifikasi dapat digunakan dengan menggunakan metode transformasi Alpha Power. Hasil dari modifikasi distribusi Lindley biasa disebut distribusi Alpha Power Transformed Lindley (APTL) yang memiliki dua parameter (𝛼, 𝜃). Distribusi APTL baru ini sesuai dalam memodelkan data dengan bentuk pdf menurun atau unimodal dan meningkatkan, mengurangi, dan bak terbalik berbentuk tingkat bahaya. Berbagai sifat dari distribusi yang diusulkan dibahas termasuk kepadatan probabilitas fungsi, fungsi distribusi kumulatif, fungsi survival, fungsi tingkat bahaya, fungsi momen, dan momen r.Parameter model diperoleh dengan menggunakan metode kemungkinan maksimum. Data waktu tunggu digunakan sebagai ilustrasi untuk menggambarkan kegunaan distribusi APTL.
One Lindley distribution parameter (𝜃) has been widely used in fields such as Biology, engineering, medical, and industry. The Lindley distribution is able to model data with an increased level of monotonous danger. However, in real life, there are situations where the level of danger Therefore, to improve Lindleys distribution capabilities for data modeling, a modification can be used using the Alpha Power transformation method. The results of the Lindley distribution modification are commonly called the Alpha Power Transformed Lindley distribution (APTL) which has two parameters (𝛼 , 𝜃) This new APTL distribution is suitable for modeling pdf data in a declining or unimodal form and increasing, reducing, and inverted body in the form of hazard level.The various properties of the proposed distribution are discussed including probability density functions, cumulative distribution functions, survival functions, functions danger level, moment function, and moment r. Parameter model is obtained uh using the maximum likelihood method. Wait time data is used as an illustration to illustrate the usefulness of the APTL distribution. One Lindley distribution parameter (𝜃) has been widely used in fields such as Biology, engineering, medical, and industry. Distribution Lindley is capable modeling data with an increased level of monotonous danger. However, in real life, there are situations where the level of danger is not monotonous. Therefore, to improve Lindleys distribution capabilities for data modeling, a modification can be used using the Alpha Power transformation method. The result of the modification of the Lindley distribution is called the Alpha Power Transformed Lindley (APTL) distribution which has two parameters (𝛼, 𝜃). This new APTL distribution is suitable in modeling data in pdf format in a declining or unimodal form and increasing, reducing, and inverted like a hazard level. Various properties of the proposed distribution are discussed including the probability density function, cumulative distribution function, survival function, hazard level function, moment function, and moment r. Parameter models are obtained using the maximum likelihood method. The waiting time data is used as an illustration to illustrate the usefulness of the APTL distribution. One Lindley distribution parameter (𝜃) has been widely used in fields such as Biology, engineering, medical, and industry. The Lindley distribution is able to model data with an increased level of monotonous danger. However, in real life, there are situations where the level of danger is not monotonous. Therefore, to improve Lindleys distribution capabilities for data modeling, a modification can be used using the Alpha Power transformation method. The result of the modification of the Lindley distribution is called the Alpha Power Transformed Lindley (APTL) distribution which has two parameters (𝛼, 𝜃). This new APTL distribution is suitable in modeling data in pdf format in a declining or unimodal form and increasing, reducing, and inverted like a hazard level. Various properties of the proposed distribution are discussed including the probability density function, cumulative distribution function, survival function, hazard level function, moment function, and moment r. Parameter models are obtained using the maximum likelihood method. Wait time data is used as an illustration to illustrate the usefulness of the APTL distribution.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Olivia Iolana
Abstrak :
Analisis data lifetime sangat penting dalam berbagai bidang ilmu pengetahuan seperti biomedis, teknik, dan ilmu kemasyarakatan. Pemodelan data tersebut dilakukan dengan menggunakan fungsi hazard dari distribusi lifetime seperti distribusi eksponensial, Weibull, lognormal, dan juga gamma. Namun, keempat distribusi tersebut tidak dapat memodelkan fungsi hazard berbentuk bathtub. Padahal, fungsi hazard berbentuk bathtub adalah yang paling sering ditemukan dalam kehidupan nyata. Oleh karena itu, akan dibentuk distribusi generalized Lindley yang lebih fleksibel dalam memodelkan fungsi hazard. Distribusi tersebut merupakan perumuman dari distribusi Lindley dengan menggunakan transformasi exponentiation. Kemudian, karakteristik-karakteristik dari distribusi generalized Lindley juga akan ditelusuri. Selanjutnya, analisis bentuk dari fungsi hazard akan menunjukkan bahwa distribusi generalized Lindley dapat memodelkan data dengan fungsi hazard yang berbentuk monoton naik, monoton turun, dan juga bathtub. Setelah itu, penaksiran parameter distribusi generalized Lindley akan dilakukan dengan metode yang paling umum digunakan yaitu metode maximum likelihood. Simulasi dengan membangkitkan data menggunakan software juga akan dilakukan dengan bantuan metode Newton-Raphson untuk melihat penaksiran parameter dari distribusi generalized Lindley.
Analysis of lifetime data is very important in various fields such as biomedical science, engineering, and social science. The modelling of lifetime data is done by using hazard function of lifetime distributions such as exponential, Weibull, lognormal, and gamma distribution. However, these four distributions cannot model data with bathtub-shaped hazard function even though it is the one mostly found in real life situation. Therefore, more flexible distribution called generalized Lindley distribution is introduced to model hazard function. The distribution is created by using transformation called exponentiation to generalize the Lindley distribution. Afterwards, some characteristics of generalized Lindley distribution will be discussed. Analysis of the hazard function will show that generalized Lindley distribution can models data with increasing, decreasing, and bathtub-shaped hazard function. In addition, parameter estimation of the distribution will be done by the usual method which is maximum likelihood estimation. Lastly, simulation using software-generated data will be displayed with help from Newton-Raphson numerical method to see the parameter estimation of generalized Lindley distribution.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramzy Mohammad
Abstrak :
Distribusi Generalized Exponential diperkenalkan oleh Rameshwar D. Gupta dan Debasis Kundu pada tahun 2007. Distribusi Generalized Exponential tersebut merupakan hasil transformasi generalized dari distribusi Exponential. Skripsi ini menjelaskan distribusi Generalized Exponential Marshall Olkin yang merupakan hasil dari perluasan distribusi Generalized Exponential menggunakan metode Marshall Olkin. Distribusi Generalized Exponential Marshall Olkin lebih fleksibel dari distribusi sebelumnya terutama pada fungsi hazardnya yang memiliki berbagai bentuk, baik monoton (naik atau turun) maupun non monoton (bathub atau upside down bathup) sehingga dapat memodelkan data survival dengan lebih baik. Sifat fleksibelitas ini disebabkan karena penambahan parameter baru ke dalam distribusi Generalized Exponential. Selanjutnya dijelaskan beberapa karakteristik dari distribusi Generalized Exponential Marshall Olkin antara lain fungsi kepadatan peluang (fkp), fungsi distribusi kumulatif, fungsi survival, fungsi hazard, momen ke-n, mean, dan variansi. Penaksiran parameter dilakukan dengan metode maximum likelihood. Pada bagian aplikasi ditunjukkan data survival yang berasal dari data Aarset (1987) berdistribusi Generalized Exponential Marshall Olkin. Selanjutnya distribusi Generalized Exponential Marshall Olkin dibandingkan dengan distribusi Alpha Power Weibull untuk mencari distribusi mana yang lebih cocok dalam memodelkan data Aarset (1987). Dengan menggunakan AIC dan BIC distribusi Generalized Exponential Marshall Olkin lebih cocok dalam memodelkan data Aarset (1987). ......Generalized Exponential distribution was introduced by Rameshwar D. Gupta and Debasis Kundu in 2007. Generalized Exponential distribution was generated by generalized transformation of the Exponential distribution. This thesis explained the Generalized Exponential Marshall-Olkin distribution which is the result of the expansion of the Generalized Exponential distribution using the Marshall-Olkin method. The Generalized Exponential Marshall Olkin distribution has a more flexible form than the previous distribution, especially in its hazard function which has various forms that it can represent survival data better. The flexibility characteristic is due to the addition of new parameters to the Generalized Exponential distribution. Futhermore, some characteristics of the Generalized Exponential Marshall Olkin distribution was explained such as, the probability density function (PDF), cumulative distribution function, survival function, hazard function, moment, mean, and variance. Parameter estimation was conducted by using the maximum likelihood method. In the application section was shown survival data from Aarset data (1987) which distributed Generalized Exponential Marshall-Olkin distribution. Futhermore, Generalized Exponential Marshall Olkin distribution was compared with Alpha Power Weibull distribution to decided the prominent distribution in modeling Aarset data (1987). Using AIC and BIC, Generalized Exponential Marshall Olkin distribution more suitable in modeling Aarset data (1987).
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melvin Putra
Abstrak :
Analisis data waktu tunggu memiliki peran penting pada berbagai disiplin ilmu. Distribusi yang sering digunakan untuk memodelkan data waktu tunggu adalah distribusi Weibull, hal ini karena pola penyebarannya yang menceng. Akan tetapi, distribusi Weibull tidak mampu memodelkan data waktu tunggu dengan fungsi hazard berbentuk non-monoton. Pada kenyataanya, data waktu tunggu sering kali memiliki fungsi hazard non-monoton. Pada skripsi ini, dibahas pembentukan distribusi Alpha Logarithmic Transformed Weibull yang merupakan generalisasi dari distribusi Weibull. Distribusi Alpha Logarithmic Transformed Weibull dikenalkan oleh Nassar (2018) menggunakan metode Alpha Logarithmic Transformation. Metode ini menambahkan suatu parameter bentuk pada fungsi survival distribusi Weibull dengan tujuan meningkatkan fleksibilitas fungsi hazard-nya. Salah satu karakteristik dari distribusi ini adalah fungsi hazard-nya memiliki berbagai macam bentuk, yaitu konstan, monoton naik, monoton turun, bathtub dan upside-down bathtub. Beberapa karakteristik dari distribusi Alpha Logarithmic Transformed Weibull seperti fungsi kepadatan probabilitas, fungsi distribusi, fungsi survival, fungsi hazard dan momen ke-r juga dibahas. Penaksiran parameter distribusi dilakukan dengan metode maximum likelihood. Pada bagian akhir, diberikan ilustrasi dengan data waktu hingga kerusakan alat industri yang dimodelkan dengan distribusi Weibull dan distribusi Alpha Logarithmic Transformed Weibull. Hasil uji Kolmogorov-Smirnov menunjukan bahwa distribusi Weibull tidak mampu memodelkan data tersebut, sementara distribusi Alpha Logarithmic Transformed Weibull mampu memodelkan data tersebut dengan baik. ......Lifetime analysis has an important role in various disciplines. The most common distribution used to model lifetime data is the Weibull distribution, this is because of its skewed distribution. However, the Weibull distribution cannot model lifetime data with a non-monotone hazard function. Most lifetime data have a non-monotone hazard function. This thesis discusses the formation of the Alpha Logarithmic Transformed Weibull distribution, which is a generalization of the Weibull distribution. The Alpha Logarithmic Transformed Weibull was first introduced by Nassar (2018) using the Alpha Logarithmic Transformation. This method adds a shape parameter to the survival function of the Weibull distribution with the purpose of increasing the flexibility of its hazard function. This distribution features a hazard function with various shapes such as constant, increasing, decreasing, bathtub and upside-down bathtub. Some properties of this distribution such as its probability density function, cumulative distribution function, survival function, hazard function and the r-th moment is discussed. Parameter estimation is done with the maximum likelihood method. On the last part, an illustration using time to failure data of industrial devices is modeled by the Weibull distribution and the Alpha Logarithmic Transformed distribution. Results of the Kolmogorov-Smirnov test shows that the Weibull distribution is unable to model the data, while the Alpha Logarithmic Transformed Weibull distribution can model the data well.
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Giacinta Alessandra Bastoni
Abstrak :
Distribusi Weibull merupakan distribusi yang sering digunakan dalam menganalisis data mengenai lama waktu suatu objek mampu bertahan hingga pada akhirnnya objek tersebut tidak berfungsi lagi. Akan tetapi distribusi Weibull tidak memberikan kecocokan yang bersesuaian dalam beberapa aplikasi data tersebut. Hal ini terjadi, khususnya, pada saat data memiliki fungsi hazard yang berbentuk bathtub. Sehingga dibutuhkan modifikasi pada distribusi Weibull. Suatu distribusi baru, yang disebut dengan Distribusi Alpha Power Weibull (APW), merupakan distribusi yang dibangun dari distribusi Weibull yang ditransfomasi oleh metode transformasi Alpha Power. Keutamaan dalam membangun distribusi ini bertujuan untuk dapat memodelkan data dengan dengan pdf yang menceng kiri dan menceng kanan, serta fungsi hazard yang monoton dan non-monoton. Transformasi Alpha Power merupakan metode baru dalam menambahkan parameter pada distribusi yang sudah ada, dan hasil transformasinya memberikan fleksibilitas yang lebih baik dibandingkan distribusi sebelumnya. Pada skripsi ini, akan dibahas proses pembentukan distribusi APW. Karakteristik-karakteristik yang dibahas meliputi fungsi kepadatan probabilitas, fungsi disribusi, fungsi survival, fungsi hazard, ekspektasi, variansi, moment generating function (mgf), momen ke-r, momen sentral, koefisien skewness dan koefisien kurtosis. Metode penaksiran maksimum likelihood digunakan untuk mengestimasi parameter dari distribusi APW. ......Weibull distribution is a very popular distribution for analyzing data sets about length of object is able to survive until the object is not function. But for some of its applications, Weibull distribution does not provide an acceptable fit, especially, when the hazard rates are bathtub shape. Therefore, Weibull distribution needs modification. A new lifetime distribution called Alpha Power Weibull (APW) distribution is constructed from Weibull distribution that transformed by Alpha Power transformation (APT) method.  The importance of constructing this new distribution comes from the ability to model flexible probability density function, also monotone and non-monotone hazard rate function. APT is a new method for adding parameter to a well-established distribution, and obtain more flexible new distribution compared to the old distribution. In this study, how to construct APW distribution with APT method is discussed. Furthermore, the important characteristics such as probability density function (pdf), cumulative distribution function (cdf), survival function, hazard function, mean, variance, moment generating function (mgf), r-th moment, central moment, skewness coefficient and kurtosis coefficient are also discussed. The maximum likelihood estimation method is used to estimate the parameters of APW distribution.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Detasya Avri Magfira
Abstrak :

Pada sistem reliabilitas atau sistem ketahanan suatu objek penelitian dikenal prinsip sistem seri dimana dari sekumpulan kejadian yang mungkin merupakan penyebab kegagalan pada akhirnya hanya akan ada satu kejadian yang secara nyata berhasil menyebabkan kegagalan pada sebuah sistem. Dalam kehidupan nyata, pada sistem seri, antar kejadian seolah saling berkompetisi untuk dapat menyebabkan kegagalan sistem. Aplikasi sistem seri banyak diimplementasikan pada kasus di bidang medis dan bidang teknik. Oleh karena itu, sebelumnya telah dibangun beberapa distribusi hasil compounding distribusi lifetime yang dapat memodelkan data pada sebuah sistem seri. Namun kelemahannya adalah distribusi-distribusi tersebut tidak dapat memodelkan data dengan fungsi hazard bathtub. Bentuk hazard bathtub sering ditemukan dalam berbagai permasalahan di kehidupan nyata khususnya masalah mortalitas pada manusia. Oleh karena itu dibutuhkan distribusi yang dapat memodelkan data pada sebuah sistem seri dan dapat menganalisis data dengan fungsi hazard bathtub. Distribusi Weibull Lindley merupakan distribusi hasil compounding antara distribusi Weibull dan distribusi Lindley yang dapat memodelkan kegagalan pada sebuah sistem seri dimana objek penelitian dapat mengalami kegagalan disebabkan oleh 2 kemungkinan kejadian dan dapat menganalisis data dengan bentuk hazard naik, turun dan bathtub. Penulisan skripsi ini membahas tentang proses pembentukan distribusi Weibull Lindley, karakteristik dari distribusi Weibull Lindley dan penaksiran parameter dengan metode maximum likelihood. Selain itu, dibahas pula aplikasi distribusi Weibull Lindley pada data masa fungsional mesin yang terdiri dari 2 komponen.

 


In reliability systems there are known two types of systems namely series systems and parallel systems. In the series system, failure will occur if any of the possible event happens. Applications of the series system analysis also varies from inspecting the durability of manufactured products to examining diseases in human. Therefore, several distributions have been introduced to model failure data in series system. However, these distributions cannot model data with bathtub shaped hazard function even though it is the one mostly found in real life situation. As a result, distribution which can model lifetime data in series system with bathtub-shaped hazard function has to be developed. Weibull Lindley distribution, which was introduced by Asgharzadeh et al. (2016), is developed to solve the problem. Weibull Lindley distribution describes lifetime data of an object that can experience failure caused by 2 possible events. It can model data with increasing, decreasing and bathtub shaped hazard function. This paper discusses the process of forming the Weibull Lindley distribution, its properties and parameter estimation using the maximum likelihood method. In addition, the application of Weibull Lindley distribution in lifetime data of machine consists of two independent component paired in series also be discussed.

 

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marko Chindranata
Abstrak :
Data waktu tunggu merupakan data waktu hingga suatu kejadian (event) terjadi. Salah satu distribusi yang sering digunakan dalam memodelkan waktu tunggu adalah distribusi Weibull. Namun dalam pengaplikasiannya, distribusi Weibull memiliki sebuah kekurangan, yaitu bentuk fungsi hazard yang terbatas pada bentuk monoton. Oleh karena itu, diperlukan suatu metode untuk menggeneralisasi distribusi Weibull sehingga dapat memperluas variasi data yang dapat dimodelkannya. Salah satu perluasan tersebut adalah distribusi Weibull-Frechet (WFr). Distribusi Weibull-Frechet memiliki kelebihan dibanding distribusi Weibull, yaitu kemampuannya memodelkan data dengan fungsi hazard berbentuk unimodal. Metode yang digunakan dalam membentuk distribusi Weibull-Frechet adalah Weibull-G (WG). Metode Weibull-G menggunakan suatu fungsi W[G(x)] untuk menggabungkan distribusi Weibull dengan suatu distribusi sembarang yang memiliki fungsi distribusi kumulatif G(x). Oleh karena itu, penelitian ini membahas proses pembentukan distribusi Weibull-Frechet. Selain itu, dibahas juga karakteristik dari distribusi Weibull-Frechet beserta penaksiran parameter distribusi Weibull-Frechet dengan menggunakan metode penaksiran maksimum likelihood. Pada bagian akhir diberikan sebuah ilustrasi data menggunakan data waktu tunggu hingga pasien kanker lambung meninggal. Data tersebut dimodelkan menggunakan distribusi Weibull-Frechet, dengan distribusi Weibull dan distribusi Frechet sebagai pembanding. Hasil pemodelan menunjukkan bahwa distribusi Weibull-Frechet merupakan distribusi terbaik dalam memodelkan data waktu tunggu hingga pasien kanker lambung meninggal. ......Lifetime data is a type of data that consists of waiting time until an event occurs. The distribution usually used for modeling lifetime data is the Weibull distribution. However, Weibull distribution has a limitation in its application : it can only model data with a monotonic hazard function. Therefore, a method for generalizing The Weibull distribution is needed so it can model a greater variety of data. One of those generalizations is the Weibull-Frechet distribution (WFr). The Weibull-Frechet distribution has an advantage over the Weibull distribution, due to its capability in modeling data with unimodal hazard function. The method used in generating the Weibull-Frechet distribution is the Weibull-G (WG). The Weibull-G method combines the distribution of a Weibull distribution with an arbitrary distribution with a cumulative distribution function G(x) using a function W[G(x)]. Hence, this thesis studies how to generate a Weibull-Frechet distribution. Furthermore, it also studies the characteristics of the Weibull-Frechet distribution and how to estimate the distribution’s parameters using the maximum likelihood estimation method. At the end of this thesis, lifetime data of gastric cancer patients is given for illustration purposes. The data is modeled using the Weibull-Frechet distribution, and both the Weibull and Frechet distribution for comparison. The model result shows that the Weibull-Frechet distribution is the best distribution for modeling the lifetime data of gastric cancer patients.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jannice Coktama
Abstrak :
Waktu survival adalah waktu dimana seorang individu atau suatu objek bertahan hingga suatu kejadian terjadi. Data waktu survival lebih sering digambarkan dengan fungsi hazard karena kurva fungsi hazard dapat memiliki berbagai bentuk, seperti bentuk naik, turun, konstan, bathtub, dan unimodal. Salah satu distribusi yang dapat digunakan untuk memodelkan data waktu survival adalah distribusi Rayleigh. Distribusi Rayleigh memiliki fungsi hazard yang naik secara linier terhadap waktu. Namun pada praktiknya, tidak semua data waktu survival yang hazardnya mengalami peningkatan, terjadi secara linier. Akan tetapi, terdapat data waktu survival yang hazardnya naik dengan tren cekung ke atas maupun cekung ke bawah, turun, dan konstan. Dalam skripsi ini, dibahas pembentukan distribusi Rayleigh Weibull (RW) sebagai generalisasi dari distribusi Rayleigh dengan menggunakan metode Transformed-Transformer atau metode T-X. Generalisasi ini bertujuan untuk menambah fleksibilitas distribusi Rayleigh dengan menambah satu parameter bentuk (shape parameter). Kemudian, dibahas juga beberapa karakteristik dari distribusi RW, seperti fungsi kepadatan peluang, fungsi distribusi kumulatif, fungsi survival, fungsi hazard, dan momen ke-r. Estimasi parameter dari distribusi RW dilakukan dengan menggunakan metode maksimum likelihood. Sebagai ilustrasi, data pasien leukemia dimodelkan dengan distribusi Rayleigh, distribusi Weibull, dan distribusi Rayleigh Weibull. Hasil pemodelan menunjukkan bahwa distribusi Rayleigh Weibull lebih baik dalam memodelkan data dibandingkan dengan distribusi Rayleigh dan distribusi Weibull. ...... Survival time is the time where an individual or object survives until an event occurs. Survival data is more frequently described with a hazard function because the curve of the hazard function can have various shapes, such as increasing, decreasing, constant, bathtub, and unimodal. Rayleigh distribution is one of the distributions that can be used to model survival data. Rayleigh distribution has a linearly increasing hazard function curve. However, in practice, not every survival data shows a linear increase. There are survival data where the hazard increases with a concave up trend or concave down trend, decreasing, and constant. The Transformed-Transformer method, often known as the T-X method, is used to construct Rayleigh Weibull distribution as a generalization of Rayleigh distribution. This generalization aims to increase the flexibility of Rayleigh distribution by adding one shape parameter. Some characteristics of Rayleigh Weibull distribution, such as probability density function, distribution function, survival function, hazard function, and r-th moment are also discussed. Rayleigh Weibull distribution’s parameters were estimated using the maximum likelihood method. As an illustration, leukemia cancer data is modeled with Rayleigh distribution, Weibull distribution, and Rayleigh Weibull distribution. In comparison to Rayleigh distribution and Weibull distribution, Rayleigh Weibull distribution is better at modeling the data.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>