Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Intan Angela Rahayu
"Investasi pengembangan proyek pada Pembangkit Listrik Tenaga Panas Bumi (PLTP) memiliki potensi terdepan di dalam transisi energi fosil menjadi energi baru dan terbarukan (EBT) di Indonesia. Dibandingkan dengan energi lain, panas bumi lebih berkelanjutan dalam jangka panjang dan tidak membutuhkan pembangkit listrik besar lainnya untuk memasok listrik secara nasional. Indonesia merupakan salah satu negara dengan energi panas bumi terbesar di dunia. Pembangunan PLTP di Indonesia memiliki potensi baik dan bersifat berkelanjutan sesuai dengan program pemerintah terkait pembangunan ekonomi berkelanjutan. Dalam mendukung percepatan investasi panas bumi sektor energi baru terbarukan di Indonesia, maka diperlukan konsep perizinan yang cepat, mudah dan terintegrasi. Pemerintah diberikan kewenangan oleh Undang-Undang Nomor 11 Tahun 2020 tentang Cipta Kerja untuk melakukan pembenahan atau perubahan perizinan usaha berbasis risiko melalui sistem perizinan terintegrasi pusat ke daerah dalam Sistem Pengajuan Tunggal Online Berbasis Risiko (OSS-RBA). Tujuannya untuk mempermudah perizinan. Namun dalam praktiknya, upaya pemerintah tersebut menuai penolakan yang meluas, karena Undang-Undang Nomor 11 Tahun 2020 tentang Cipta Kerja dinilai mengabaikan perlindungan lingkungan. Berdasarkan asas kelestarian dan berkelanjutan yang terdapat dalam RUU EBT Pasal 2 huruf d yang menyatakan penyelenggaraan EBT berdasarkan asas kelestarian dan berkelanjutan. Namun dalam penyelenggaraannya masih terdapat masalah terkait perizinan pembangunan PLTP di Indonesia sehingga memperhambat investor dalam berinvestasi di Indonesia, masih banyak masyarakat yang dirugikan dalam pembangunan PLTP. Salah satu indikator asas kelestarian dan berkelanjutan merupakan jaminan agar masyarakat hidup dalam kondisi yang sehat dan layak sehingga mereka memiliki kesempatan yang sama dan memadai untuk bertindak dan bekerja demi kemaslahatan umat manusia.

Project development investment in geothermal power plants (PLTP) has the potential to lead the transition from fossil energy to renewable energy in Indonesia. Compared to other energies, geothermal is more sustainable in the long term and does not require other large power plants to supply electricity nationwide. Indonesia is one of the countries with the largest geothermal energy in the world. Geothermal power plant development in Indonesia has good potential and is sustainable in accordance with government programs related to sustainable economic development. In supporting the acceleration of geothermal investment in the new renewable energy sector in Indonesia, a fast, easy and integrated licensing concept is needed. The government is authorized by Law Number 11 of 2020 concerning Job Creation to reform or change risk-based business licensing through a central to regional integrated licensing system in the Risk-Based Online Single Submission System (OSS-RBA).. Based on the principles of sustainability and sustainability contained in RUU EBT Article 2 letter d which states that the implementation of EBT is based on the principles of sustainability and sustainability. However, in its implementation there are still problems related to licensing for PLTP development in Indonesia so that it hampers investors in investing in Indonesia, there are still many people who are disadvantaged in PLTP development. One indicator of the principle of sustainability and sustainability is a guarantee that people live in healthy and decent conditions so that they have equal and adequate opportunities to act and work for the benefit of humanity."
Jakarta: Fakultas Hukum Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Shighia Ajeng Savitri
"Energi panas bumi Gunung Lawu sebesar 195 MWe dapat dimanfaatkan sebagai pembangkit listrik. Penelitian ini bertujuan untuk mengetahui dimana saja wilayah yang sesuai untuk lokasi power plant PLTP di Gunung Lawu dikaji dari segi keruangan. Analisis spasial dengan metode tumpang tindih overlay digunakan untuk mendapatkan hasil yang menyeluruh. Teknologi SIG dan PJ digunakan karena hemat biaya namun dapat mengkaji secara keseluruhan wilayah kerja. Variabel yang digunakan dalam penelitian ini adalah fungsi hutan, kemiringan lereng, kerapatan vegetasi, sungai, patahan, jaringan jalan, lahan terbangun, wilayah potensi panas bumi, manifestasi, dan sumur. Pengolahan data menghasilkan wilayah kesesuaian yang tersebar ke arah barat dan timur dari letak Sesar Sidoramping-Lawu dengan luas sebesar 372 hektar.

Mount Lawu has 195 MWe of geothermal energy that can be utilized as a source for power plant. This research is conducted to find suitable location for geothermal power plant. Spatial analysis used in this research to find the result thoroughly by overlaying method. GIS and remote sensing is used because it is cost effective but still can review the overall of working area. Forest, slope, vegetation density, river, faults, roads, build area, geothermal potential area, geothermal manifestation, and well are being used as variables in this research. The result showed suitable areas is 372 hectares and located spreading to the west and east part from Sidoramping Lawu faults.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68537
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bakhrul Ulum
"Excellence in skilled operation is vital for the efficiency of geothermal power plants. Mount Salak geothermal power plant unit 1-2-3 has consistently produced no less than 180 MWe to the Java-Bali grid since its first commercial operation in 1994, with an equivalent availability factor (EAF) average of 96%. Owing to this long operation period, power plant efficiency must be improved for the sustainable production of electricity. In this study, energy and exergy analysis has been undertaken to ascertain the amount of energy that is used in the power plant’s current condition, and to determine the plant’s overall system losses. Research was carried out by collecting data relating to temperature, pressure, and mass flow rate. Data were analyzed using the control volume to assess the thermal and mass balance and ascertain the value of exergy. Analysis was conducted theoretically and compared with results calculated by Engineering Equation Solver (EES) software. The results showed that from 1069.90 MWe in steam energy entering the system, the total amount of exergy was 302.42 MWe. Mount Salak geothermal power plant unit 1-2-3 had an overall first law efficiency of 16.75% and an overall second law efficiency of 59.27%. The greatest losses - 27.84% of the total exergy - were in the condensers. This was caused by the quality of cooling water entering condensers, which was in turn a result of cooling tower performance. Results suggest that turbine unit 1 should be investigated further to determine causes of decreased capacity."
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:7 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Tania Mentari Desriyani
"Pemeliharaan merupakan hal terpenting dalam menjalankan sebuah sistem produksi yang melibatkan aset yang besar, termasuk pada Pembangkit Listrik Tenaga Panas Bumi. Pemeliharaan mesin berbasis kondisi mesin Condition-Based Maintenance dirasa efektif dalam menjaga performa mesin. Kondisi mesin dapat diketahui melalui data operasi yang ada. Salah satu pendekatan yang dapat mempelajari dan mengolah ribuan data operasi yang terekam oleh sensor-sensor parameter keseluruhan data operasi yang ada adalah dengan pendekatan machine learning. Data operasi tersebut kemudian akan dibagi menjadi beberapa kategori yaitu long, medium dan short dengan batasan berupa lama waktu aset tersebut beroperasi. Data tersebut kemudian akan menjalani proses training menggunakan aplikasi Classification Learner pada software MATLAB. Proses ini memungkinkan MATLAB mempelajari hubungan antar parameter, waktu dan kategori yang dibuat hingga menghasilkan sebuah model klasifikasi kondisi mesin. Model tersebut kemudian digunakan untuk memprediksi kondisi turbin terkini yang kemudian dapat diperkirakan berapa lama lagi turbin dapat beroperasi dengan baik sampai turbin membutuhkan kegiatan pemeliharaan kembali.

Maintenance is the most important thing in running a large production system that is using some machinery such as turbines, pumps and so on. This is also applied for a geothermal power plants that have so many assets to maintain. Condition based maintenance is considered to be the most effective maintenance management to be applied for a big scale industrial company. Machines condition could be known from the machines operation data that is continously recorded by the censors of some parameter. One of the most suitable approach to learn and process the big operation data is machine learning. The operation data will be classified into three categories, there are long category, medium category and short category, which has its limit based on the length of time the machine has been operating. Then, the operation data will be trained using Classification Learner toolbox of MATLAB. This process let MATLAB understands the relationship between each parameter, time and the categories until a classification model of machines condition has been produced. The model later could be used to predict the most recent machines condition so that we can also predict how long the machine could still operate well until it needs to be maintained again. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diva Erenst Nataprawira
"Biaya investasi industri panas bumi dan tarif listrik telah bersaing dengan pembangkit listrik berbiaya yang lebih rendah. Situasi ini menantang semua orang yang bekerja untuk industri untuk mengoptimalkan keandalan pabrik mereka, meningkatkan pendapatan, dan mengurangi biaya. Kegiatan pemeliharaan dapat dianggap sebagai proses penting yang bisa menyebabkan biaya tinggi jika kegiatan tersebut tidak dikelola dengan baik. Bagian dari manajemen pemeliharaan adalah menentukan interval pemeliharaan yang optimal dengan biaya pemeliharaan terendah. Penelitian ini menentukan interval pemeliharaan optimal dari subsistem paling kritis di fasilitas pembangkit panas bumi skala besar di Indonesia. Subsistem yang paling kritis dari fasilitas dipilih berdasarkan nilai keandalan. Salah satu metode yang dipilih dalam industri sebagai kerangka kerja untuk mengevaluasi keandalan sistem adalah Reliability Block Diagram (RBD). Berdasarkan RBD, sub-sistem yang paling kritis adalah Cooling Tower Structure System yang terdiri dari dua peralatan, yaitu Cooling Tower Fan dan Cooling Tower Structure. Interval pemeliharaan optimal dari Cooling Tower Fan dan Cooling Tower Structure dihitung menggunakan persamaan model biaya total. Analisis sensitivitas juga dilakukan dalam penelitian ini untuk menentukan rasio biaya di mana perhitungan biaya pemeliharaan dan biaya kegagalan harus dihitung secara rinci. Resampling data dengan metode bootstrap diterapkan pada data kegagalan peralatan karena jumlah data yang terbatas untuk mendapatkan interval pemeliharaan yang optimal dengan selang kepercayaan tertentu. Interval pemeliharaan optimal untuk Cooling Tower Fan adalah 412 hari dan untuk Cooling Tower Structure adalah 914 hari.

Geothermal industry unit capital cost and electricity tariff has been competing with lower-cost power generators. This situation has challenged all people that work for the industry to optimize their plant reliability, increase revenue, and reduce costs. Maintenance activities can be considered a critical process which can be very costly if those activities are not managed properly. Part of maintenance management is to determine the optimal maintenance interval with the lowest maintenance cost. This paper determines the optimal maintenance interval of the most critical subsystem in Indonesia's big-scale geothermal generation facility. The most critical subsystem of the facility is chosen based on reliability value. One of the tools chosen in the industry as a framework for evaluating system reliability is Reliability Block Diagram (RBD). Based on RBD, the most critical sub-system is the Cooling Tower Structure System which consists of two equipment, the Cooling Tower Fan, and the Cooling Tower Structure. The optimum maintenance interval of the Cooling Tower Fan and Cooling Tower Structure was calculated using the total cost model equation. Sensitivity analysis is also carried out in this paper to determine the cost ratio at which maintenance cost and failure cost calculations must be calculated in detail. The data resampling with the bootstrap method is applied to the equipment failure data due to the limited amount of data to obtain optimum maintenance intervals with a certain confidence interval value. The optimum maintenance interval for Cooling Tower Fan is 412 days and for Cooling Tower Structure is 914 days."
Jakarta: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dwita Sulistyaningsih
"Sehubungan latar belakang dan kondisi Indonesia saat ini, diversifikasi energi sudah saatnya dilakukan dengan lebih intensif. Indonesia merupakan negara dengan sejumlah besar gunung api yang memiliki sumber daya energi panas bumi dalam jumlah melimpah. Pengembangan sumberdaya panas bumi memerlukan investasi yang cukup besar, sehingga pengembangannya relatif sangat lambat, namun demikian ia memiliki keunggulan yaitu emisi CO2 yang sangat rendah.
Protokol Kyoto disusun untuk menentukan target dan cara-cara penurunan konsentrasi Gas Rumah Kaca (GRK) dunia. Di dalam Protokol tersebut telah disepakati bahwa sebagai langkah awal stabilisasi konsentrasi GRK negara-negara maju akan menurunkan emisi GRK sedikitnya sebesar 5% dari tingkat emisi tahun 1990. Penurunan tersebut ditargetkan akan tercapai sekitar tahun 2008-2010. Target penurunan emisi tersebut bersifat mengikat (Legally Binding) bagi negara-negara maju. Negara-negara berkembang tidak memiliki obligasi untuk menurunkan emisinya.
Mekanisme Pembangunan Bersih atau Clean Development Mechanism (CDM) adalah mekanisme dalam Kyoto Protokol berupa kerangka multilateral yang memungkinkan negara maju melakukan investasi di negara berkembang untuk mencapai target penurunan emisinya. Negara berkembang berkepentingan dalam mencapai tujuan pembangunan berkelanjutan. Kerangka tersebut dirancang untuk memberikan aturan dasar bagi kegiatan proyek yang dapat menghasilkan pengurangan emisi yang disertifikasi (Certified Emission Reduction CER). Mekanisme ini merupakan partisipasi negara-negara berkembang untuk terlibat aktif dalam protokol ini.
Dari segi bisnis, pengesahan Protokol Kyoto akan menarik investasi baru melalui Mekanisme Pembangunan Bersih (Clean Development Mechanism/ CDM} dimana kegiatan investasi itu akan memberikan dana tambahan atau insentif sebagai kompensasi atas pembatalan emisi GRK karena proyek tersebut dilaksanakan pada sektor-sektor yang mampu menekan emisi atau meningkatkan penyerapan karbon. Oleh karena itu, bagaimana energi panas bumi dapat berkembang dalam kondisi lingkungan global ini.
Penelitian aplikasi mekanisme CDM pada PLTP Panasbumi ini melihat berapa besar insentif CDM tersebut dalam mendukung pengembangan proyek PLTP Panasbumi dari segi ekonomi serta tatanan kelembagaan yang ada pada sektor energi.
Tujuan penelitian ini adalah mendapatkan gambaran ekonomi proyek PLTP panasbumi dari insentif CDM yang didapatkan, yaitu dengan cara mendapatkan besar reduksi emisi CO2 PLTP Panasbumi terhadap baselinenya dan mendapatkan perhitungan ekonomi proyek PLTP tersebut, serta tatanan kelembagaannya saat ini.Penelitian ini diharapkan dapat memberikan informasi kontribusi insentif CDM pada PLTP Panasbumi untuk mendukung diversifikasi energi serta pembangunan berkelanjutan sebagai pertimbangan meratifikasi Protokol Kyoto.
Hipotesis dari penelitian ini adalah bahwa kontribusi insentif CDM mampu meningkatkan faktor ekonomi PLTP Panasbumi untuk mendukung perkembangan energi panas bumi sebagai salah satu mekanisme pengelolaan global perubahan iklim, namun tidak cukup besar untuk mempercepat pergembangan PLTP Panasbumi. Kelembagaan pemerintah, masyarakat dan swasta berperan dalam mekanisme CDM.
Penelitian ini merupakan penelitian non-eksperimental atau penelitian deskriptif-analitik dengan menggunakan metode survey dan ekspos fakto. Penelitian deskriptif merupakan penelitian untuk mengumpulkan informasi mengenai status gejala yang ada, pada saat penelitian dilakukan. Penelitian deskriptif tidak dimaksudkan untuk menguji hipotesis tertentu, tetapi hanya menggambarkan apa adanya tetang variabel-variabel, gejala atau keadaaan. Variabel yang satu tidak dihubungkan dengan variabel yang lain, tetapi ingin mengetahui keadaan masing-masing variabel secara lepas, pengumpulan data kualitatif (survey dan wawancara mendalam) dengan dilengkapi data kuantitatif sejumlah sampel dari populasi dalam suatu penelitian, akan saling melengkapi, memperluas ruang lingkup dan kedalaman studi atau kajian.
Berdasarkan hasil dari pembahasan data yang diperoleh dari penelitian ini, maka kesimpulan yang diperoleh adalah:
  1. Besar emisi gas CO2 PLTP Panasbumi diperhitungkan dari jumlah kandungan gas yang tidak terkondensasi (non-condensable gas) dalam sejumlah uap yang dikonsumsi untuk membangkitkan listrik 100 MW. Pada tahun 2003 sebanyak sekitar 23.894 ton gas CO2 setiap tahun diemisikan dari menara pendingin PLTP Panasbumi. Dibandingkan dengan pembangkit listrik untuk menghasilkan listrik yang sama, sistem Jawa-Bali mengemisikan gas CO2 sebanyak 722.365 ton. Dengan demikian PLTP Panasbumi mampu mereduksi sebanyak 698.471 gas CO2 setiap tahun untuk kapasitas 100 MW.
  2. Dengan berkembangnya pasar untuk perdagangan karbon yang telah dilakukan di Eropa saat ini, setiap ton CO2 dihargai antara 5 hingga 10 dollar Amerika. Dengan reduksi emisi CO2 setiap tahunnya, maka PLTP Panasbumi berpotensi untuk mendapatkan insentif CDM sebesar hampir sekitar 3,5 hingga 7,0 juta dollar Amerika setiap tahunnya, atau 100 hingga 200 juta dollar Amerika selama masa kontrak produksinya (30 tahun). Hal ini yang disebut sebagai Certified Emission Reduction (CER) dalam mekanisme Clean Development Mechanism (CDM) pada Kyoto Protokol. Insentif CDM ini mampu meningkatkan IRR 1,5% yaitu dari 15,3% menjadi 16,8% bila dibandingkan dengan tidak adanya CDM, serta meningkatkan NPV sebesar 15,9 juta dollar Amerika yaitu dari 56,8 juta dollar Amerika menjadi 72,7 juta dollar Amerika dengan asumsi pajak CDM sebesar 10%. Mengingat kondisi perpajakan yang berbeda dengan kontrak PLTP Panasbumi, maka pajak CDM tidak dimasukkan dalam perhitungan earning perusahaan, sehingga insentif CDM ini tidak cukup besar untuk dapat mempercepat perkembangan PLTP Panasbumi. Selain itu, jumlah insentif CDM tidak cukup signifikan dibandingkan dengan besar investasi yang harus ditanamkan, namun demikian CER tersebut cukup mampu untuk merangsang perkembangan panas bumi di Indonesia. CDM bila dilihat dari segi energi, mampu meningkatkan tingkat pengembalian bunga investasi proyek atau IRR sebesar 1.5%. Kontribusi ini relatif kecil ketika kepentingan komitmen atas penurunan GRK untuk menekan dampak perubahan iklim dunia terhadap mahluk hidup mulai dirasakan. Sehingga jenis energi yang rendah emisi, terbarukan serta memiliki efisiensi tinggi menjadi pilihan perkembangan diversifikasi energi dimasa mendatang.
  3. Kementerian Lingkungan Hidup yang merupakan focal point dari mekanisme CDM Kyoto Protokol sangat mendukung dan aktif mendorong terciptanya kelembagaan dan perangkat kesiapan implementasi CDM serta ratifikasi Kyoto Protokol. Tatanan kelembagaan CDM di sektor energi telah berkembang relatif lebih cepat.

Considering the current background and conditions of Indonesia it is already high time that diversification of energy should be applied more intensive. With it chain of several volcanic mountains Indonesia has enormous resources of geothermal energy. The development of these resources requires quite high investment, causing its relative slow development, although its superior very low CO2 emission.
The Kyoto protocol was formulated to stipulate the target and means of reducing the concentration of Greenhouse Gasses (GHG). The protocol stated the agreement that as a preliminary step developed countries should reduce their GHG concentration up to 5.2% of the emission level in 1990. This is targeted to be achieved at around 2008-2010. This emission reduction is legally binding for developed countries. Developing countries are not obligated to reduce their emission.
The Clean Development Mechanism (CDM) is a mechanism in the Kyoto Protocol, a multilateral framework providing the opportunity for developed countries to invest in developing countries to achieve their emission reduction. Developing countries have an interest in achieving their sustainable development. The framework was designed to provide the legal basic for project activities, which could result in a Certified Emission Reduction, CER. A mechanism for developing countries to be actively involved in this protocol.
From the business point of view, the ratification of the Kyoto Protocol should attract new investment through the Clean Development Mechanism, CDM, where the investment activity shall give additional funds or incentive as compensation for the reduction of GHG emission for such project is implemented in sectors reducing emission or improve carbon absorption. This is the reason why geothermal energy will be able to develop in the present global environmental condition.
The research of the CDM mechanism application in this Geothermal Power Station considers the amount of the CDM incentive in supporting the development of such project from its economic aspects and the existing institutional structures in the energy sector.
The objective of this research is to obtain an economic overview of the geothermal power station from the CDM incentive to be obtained that is by the amount of CO2 emission reduction of the geothermal PowerStation against its baseline and obtain the economic calculation of such project, also the institutional structure in the present energy sector.
This study is hoped to provide the CDM intensive contribution on the geothermal Power Station to support energy diversification and sustainable development as consideration to ratify the Kyoto Protocol.
The research hypothesis is that the CDM incentive is able to enhance the economy of the geothermal power station to support the development of geothermal energy as one of the global management mechanism of climatic change, but not powerful enough to accelerate the development of geothermal Power station. The government, community and private institutions also play a role in the CDM.
This research is a non-experimental research or an analytical-descriptive research by using survey methods and facts exposure. A descriptive research is a research to collect information on the status of existing symptoms, at the time of the research. Descriptive research is not intended to test any given hypothesis, only present the facts about variables, symptoms or situations. One variable is not connected to another, just to understand the respective variables independently, collecting qualitative data (in-depth survey and interview) completed by a number of quantitative data of the population, in a research it will supplement one another, extend the scope and depth of the study or research.
Based on the results of the data description obtained from this study, the following conclusion may be drawn:
  1. The amount of emission of the geothermal power station to raise 100 MW is calculated from the amount of vapor consumed and the non-condensed gas containing CO2 gas. 23,894 ton of CO2 gas is annually emitted from the cooling tower of the Geothermal Power Station. Compared to power stations to produce the same amount of electricity, the Java Bali network emits 722,365 ton of CO2 gas. Which mean that the geothermal power station will be able to reduce 698,471 ton of CO2 gas annually to raise 100 MW electricity. This is valued or called Certified Emission Reduction (CER) in the Clean Development Mechanism (CDM) of the Kyoto Protocol mechanism.
  2. With the development of markets for carbon trading presently carried out in Europe, the price of each unit ton of CO2 varies between 5 to 10 US dollars. With a reduction of 698,471 ton CO2 annually, the geothermal power station is potential to receive a CDM intensive of about 3.5 to 7.0 million US dollars annually, or 100 to 200 million US dollar during its production contract (30 years). The CDM incentive is able to increase IRR to 1.5 % which is from 15.3% to 16.8% compared to non-existence of CDM also increases NPV to 15.8 million from 56.8 to 72.7 Million. The insinuative is calculated in the company cash liquidity but not included in the company's earning, due to the difference in the tax condition with the geothermal power station. Besides, the CER provides enough incentive to the development of geothermal sources but will not be able to accelerate its development investment due to its riot significant amount compared to the huge amount of investment. CDM from energy sector overview, it is potential to increase 1.5 Internal Rate Ratio. This contribution relatively low when we compared with Greenhouse Gas reduction commitment to mitigate climate change impact in the world. Therefore, low emission energy technology, renewable energy which is have high efficiency become good choose alternatives in the future to support diversification energy development.
  3. The CDM institutional structure in the energy sector has developed relatively more rapid due to the fact that the CDM project is related to renewable energy, which is very low in emission such as geothermal and efficient energy (cogeneration etc.) The Ministry of Living Environment as the focal point of the CDM mechanism of the Kyoto Protocol support and actively boost the creation of institutions and means of implementing the CDM and ratification of the Kyoto Protocol.
"
Jakarta: Program Pascasarjana Universitas Indonesia, 2004
T11981
UI - Tesis Membership  Universitas Indonesia Library
cover
Sembiring, Bremin
"Unit 1 PLTP (Pembangkit Listrik Tenaga Panas Bumi) Gunung Salak mempunyai terget kinerja operasi tinggi. Untuk mencapai target kinerja tersebut dibutuhkan peralatan yang andal. Keandalan sangat ditentukan oleh pola operasi, pemeliharaan dan life time peralatan. Unit 1 PLTP Gunung Salak beroperasi sejak tahun 1994. Beberapa peralatan sudah menunjukkan penurunan performa yang disebabkan oleh life time peralatan. Hal ini diindikasikan oleh spare part yang sudah dinyatakan obsolete oleh manufacturing.
Salah satu peralatan Unit 1 PLTP Gunung Salak yang sudah dinyatakan komponennya obsolete adalah DCS (Distribution Control System). Tipe DCS yang ada saat ini adalah Network90 (N90) yang terpasang pada tahun 1994. Selama ini PLTP Gunung Salak mendapatkan dukungan spare part dari manufacturer, namun pihak manufacture telah menyatakan spare part DCS yang terpasang pada Unit 1 PLTP Gunung Salak sudah obsolete (Assessment & DCS Life Cycle Support oleh ABB tanggal 07 Agustus 2009).
Komponen yang didapatkan selama ini adalah komponen yang didapat dari pasar bebas dan keaslian komponen ini sangat diragukan. Jika kondisi ini tidak diantisipasi, dipastikan suatu saat komponen ini akan menghilang dari pasaran. Hal ini dapat mengakibatkan terhentinya operasi Unit 1 PLTP Gunung Salak untuk jangka waktu yang lama.

Unit 1 Salak Mount Geothermal Power Plant has the high target operating performance, to achieve the performance of the targets needed reliable equipment. Reliability is determined by the pattern of operation, maintanance, life time of the equipment. Unit 1 Salak Mount Geothermal Power Plants in operation since 1994. Several devices have shown a decrease in performance due to the life time of the eqipmepment. This is indicated by the parts that have been declared absolute by manufacturing.
One of the tools Unit 1 Salak Mount Geothermal Power Plant whic has been declared obsolete component is DCS. Type of current DCS is Network 90 (N90) installed in 1994. During the Salak Mount Geothermal Power Plant spare parts support from the manufacture, but the parties have expressed spare part manufacture DCS installed on Unit 1 Salak Mount Geothermal Power Plant obsolete (Assesment and DCS life cycle support by ABB date August 7, 2009).
Some component of the DCS System is classified as a critical component in the material so procured catagorized spare. Components are obtained for the components derived from the free market and this component very doubtful authencity. If this condition isn't anticipate, this components will someday dissappear from the market. This can lead to the cessation of operation of Salak Mount Geothermal Power Plant for long periods."
Salemba: Fakultas Teknik Universitas Indonesia, 2014
T46458
UI - Tesis Membership  Universitas Indonesia Library
cover
Fahmi Firdaus Angkasa
"Pada tahun 2025 pemerintah menargetkan peran energi baru terbarukan (EBT) minimal 23% dari bauran energi nasional ketenagalistrikan. Salah satu jenis EBT adalah panas bumi yang menjadi salah satu potensi yang besar. Berdasakan data Kementiran ESDM, potensi energi panas bumi sebesar 28.579 MWe yang terdiri dari sumber daya sebesar 11.073 MWe dan cadangan sebesar 17.506 MWe. Selain itu berdasarkan RUPTL 2019-2028, komposisi bauran energi listrik regional Sumatera akan mencapai 38,5% bersumber EBT atau mencapai total 2647,1 MW yang terdiri dari air sebesar 20,1%, panas bumi sebesar 19,5%, dan sumber EBT lainnya sebesar 1,9%. Pada tahun 2019-2023, terdapat Pembangkit Listrik Tenaga Panas Bumi (PLTP) yang direncanakan akan memasuki sistem interkoneksi Sumatera Utara pada dengan total kapasitas 240 MW. Oleh karena itu, studi interkoneksi dibutuhkan untuk mengetahui efek dari pembangkit terhadap jaringan interkoneksi dan kesesuaian dengan standar yang ada. Studi interkoneksi yang dilakukan terdiri dari studi aliran daya, studi stabilitas sistem tenaga listrik, dan studi hubung singkat menggunakan perangkat lunak DIgSILENT Power Factory 2019 SP 4. Hasil dari studi aliran daya menunjukan level tegangan pada pembangkit dan dua Gardu Induk (GI) terdekat sesuai dengan aturan yang berlaku pada Aturan Jaringan Sistem Tenaga Listrik Sumatera 2007 2.1.b yang menyebutkan standar tegangan pada jaringan interkoneksi 150 kV harus selalu diantara 135 kV dan 165 kV (±10% tegangan nominal). Selain itu, stabilitas sistem tenaga listrik dilihat dari parameter tegangan, frekuensi dan sudut rotor. Jaringan interkoneksi tetap stabil ketika ada gangguan di salah satu generator pembangkit, gangguan di satu atau dua saluran antara pembangkit dan GI terdekat, dan pelepasan beban di salah satu GI. Ketidakstabilan terjadi ketika dua GI terdekat terisolasi dengan jaringan interkoneksi Sumatera yang menghasilkan pemadaman total. Sementara itu, penambahan kapasitas pembangkit pada sistem interkoneksi 150 kV Sumatera Utara menyebabkan nilai arus hubung singkat di GI meningkat. Seluruh nilai arus hubung singkat masih memenuhi standar IEEE Std C37.06-2009.

In 2025 the government is targeting the renewable energy at least 23% of the national electricity energy mix. One type of renewable energy is geothermal which has a great potential. Based on the Ministry of Energy and Mineral Resources Republic of Indonesia data, the potential for geothermal energy is 28,579 MWe consisting of resources 11,073 MWe and reserves 17,506 MWe. Further based on 2019-2028 RUPTL, the composition of Sumatra's regional electric energy mix will reach 38.5% from renewable sources or reach a total of 2647.1 MW consisting of water 20.1%r, geothermal 19.5%, and other renewable sources by 1.9%. In 2019-2023, there is a Geothermal Power Plant which is planned to enter the North Sumatra interconnection system with a total capacity of 240 MW. Therefore, an interconnection study is needed to determine the effect of the new power plant on the interconnection grid and compliance with the standards. Interconnection studies carried out consist of power flow, stability, and short circuit study using the DIgSILENT Power Factory 2019 SP 4 software. The results of the power flow study show that the voltage level at the power plant and the two closest substations is in accordance with the Grid code Electricity System Power System 2007 2.1.b which states the voltage standard on the 150 kV interconnection grid must always be between 135 kV and 165 kV (± 10% nominal voltage). In addition, the stability of the electric power system can be seen from the voltage, frequency and rotor angle parameters. The grid remains stable when there is a disturbance in one of the power plant generators, disturbance in one or two cables between power plant and the nearest substation, and the release of load in one of the substations. Instability occurs when it is isolated with the Sumatra interconnection grid which results in total blackouts. Meanwhile, the addition of generating capacity through PLTP in the 150 kV North Sumatra interconnection system causes the value of short circuit current in substations increase. All short circuit current still meets IEEE Std C37.06-2009 standard."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indi Permana Kusuma
"[Salah satu cara untuk mengekspansi penggunaan Energi Panas Bumi secara bersih dan meminimalisir dampak negatif terhadap lingkungan dengan memaksimalkan pemanfaatan sumber daya alam yang tersedia. Membuka kemungkinan lain dari penggunaan konstruksi Bangunan Lepas Pantai sebagai Pembangkit Listrik Tenaga Panas Bumi Terintegrasi. Dengan konstruksi berbasis pada Truss Spar Platform, Pembangkit Listrik Tenaga Panas Bumi Lepas Pantai ini berlokasi di Gunung Laut Kawio Barat, Perairan Sangihe Talaud, Sulawesi Utara, Indonesia. Platform yang memiliki Displacement sebesar 201556 DWT menggunakan 12 Mooring Lines, dengan sistem pertambatan Taut dan kalibrasi chain-polyester-chain. Chain dengan Grade 4 (K4 Studless Chain) berdiameter 5” dan Polyester High-Tech Fibre Ropes berdiameter 11”. Didapatkan hasil Gravity Loads sebesar 201556 N, Resistant Loads 3715.9 N, Current Drag 321448.04, Lift Force 1125068.16 N, Steady and Dynamic Wind Loads on Structures 457520.05 N, Impulse Load (Wave Slamming Load 6.23 N.

Breaking Wave Loads 873.84 N; Wave Run-Up Loads 0.766 N). Analisis RAO (Response Amplitude Operator) terhadap struktur terlampir dalam bentuk grafik. Konversi Energi pada Power Plant dengan siklus Rankine, memiliki kalibrasi 2 set turbine untuk menghasilkan power sebesar 80MW, dengan efisiensi thermal sistem sebesar 60%. Dan Mooring Tension yang terjadi di setiap Mooring Lines masih memiliki nilai yang berada dibawah Allowable Tension, sehingga desain Mooring Lines aman untuk digunakan pada Platform.

One way to expand the use of geothermal energy which clean and minimalizing the negative impacts to the environments by the maximizing the utilization of available resources. Open up another possibility of using the Offshore Constructions for an Integrated Offshore Geothermal Power Plant. With constructions based on Truss Spar Platform, the Offshore Geothermal Power Plant 8 x 80 MW are located in Kawio Barat Seamount, Sangihe Talaud Seas, North Sulawesi, Indonesia. The platform which has the displacement is about 201556 DWT are using the 12 Mooring Lines, with Taut Mooring System and calibrations are chain-polyester-chain. The chain is Grade 4 (K4 Studless Chain) with diameter 5” and Polyester High-Tech Fibre Ropes with diameter 11”. The calculation resulted are 201556 N for Gravity Loads, 3715.9 N for Resistant Loads, 321448.04 for Current Drag, 1125068.16 N for Lift Force, 457520.05 N for Steady and Dynamic Wind Loads on Structures, Impulse Load (Wave Slamming Load 6.23; Breaking Wave Loads 873.84 N; Wave Run-Up Loads 0.766 N). RAO (Response Amplitude Operator) analysis concerning to the structure are proven in graph. Energy Conversion in Power Plant with Rankine cycle, have 2 sets of turbine calibrations to produce 80MW of power, with the thermal efficiency is 60%. And Mooring Tension that occurs in each Mooring Lines are still in the under of Allowable Tension, so that the Mooring Lines Design are safe to be used on the Platform., One way to expand the use of geothermal energy which clean and minimalizing the negative impacts to the environments by the maximizing the utilization of available resources. Open up another possibility of using the Offshore Constructions for an Integrated Offshore Geothermal Power Plant. With constructions based on Truss Spar Platform, the Offshore Geothermal Power Plant 8 x 80 MW are located in Kawio Barat Seamount, Sangihe Talaud Seas, North Sulawesi, Indonesia. The platform which has the displacement is about 201556 DWT are using the 12 Mooring Lines, with Taut Mooring System and calibrations are chain-polyester-chain. The chain is Grade 4 (K4 Studless Chain) with diameter 5” and Polyester High-Tech Fibre Ropes with diameter 11”. The calculation resulted are 201556 N for Gravity Loads, 3715.9 N for Resistant Loads, 321448.04 for Current Drag, 1125068.16 N for Lift Force, 457520.05 N for Steady and Dynamic Wind Loads on Structures, Impulse Load (Wave Slamming Load 6.23; Breaking Wave Loads 873.84 N; Wave Run-Up Loads 0.766 N). RAO (Response Amplitude Operator) analysis concerning to the structure are proven in graph. Energy Conversion in Power Plant with Rankine cycle, have 2 sets of turbine calibrations to produce 80MW of power, with the thermal efficiency is 60%. And Mooring Tension that occurs in each Mooring Lines are still in the under of Allowable Tension, so that the Mooring Lines Design are safe to be used on the Platform.]"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S61570
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Prasetyadi
"RCM merupakan suatu proses untuk menentukan suatu strategi pemeliharaan yang tepat pada setiap equipment pada suatu area produksi, untuk menghemat biaya dan meminimalisir sumber daya manusia. Salah satu proses RCM yang penting adalah menentukan prioritas dari penyebab kegagalan atau dikenal dengan Critical Analysis. Secara umum, critical analysis menggunakan metode FMECA. FMECA merupakan suatu media untuk melakukan prioirtas terhadap komponen-komponen kritikal berdasarkan mode kegagalannya. FMECA menggunakan analisa berdasarkan severity tingkat keparahan, occurrence banyak kejadian, dan detection kesulitan untuk deteksi. Kadang penilaian FMECA menjadi sulit karena tidak ada faktor pembobotan, sehingga penilaian membutuhkan kemampuan analisa yang tinggi dalam menentukan prioritas equipment. FMECA menggunakan fuzzy logic merupakan salah satu media yang memungkinkan adanya faktor pembobotan pada setiap parameter yang dituangkan dalam bilangan linguistik fuzzy dan aturan jika-maka. Penggunaan fuzzy logic akan memudahkan penilaian FMECA serta dapat menghilangkan keraguan dalam penilaian.

Reliability Centered Maintenance is a process used to determine the maintenance requirements of any physical asset in its operating context. One of the process RCM called FMECA has the important role to preference and prioritize critical equipment. FMECA consist of three parameter. Severity, Occurrence and Detection are the analyzing tool FMECA to determine critical parts or equipment. However, FMECA doesn't consider the important value of each parameter. So, the judgment of each experts to determine critical analysis would be difficult. In order to make FMECA analysis have a valuable risk, fuzzy logic is used to solve that problem. Using if then rules based on calculation from weight of each factor, FMECA fuzzy logic would resolve the uncertainty risk.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68414
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>