Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Iqbal Hadiyan
"PT. Indosat Tbk adalah salah satu perusahaan yang berkembang pada industri telekomunikasi. Namun, PT. Indosat Tbk memiliki permasalahan mengenai customer satisfaction yang cenderung menurun dari tahun ke tahun. Data media sosial, terutama twitter, menawarkan data mengenai opini publik yang sangat padat. Namun data twitter yang masih bersifat unstructured diperlukan proses lebih lanjut untuk dapat menemukan dimensi-dimensi beserta sentimen masyarakat terhadap dimensi tersebut. Latent Dirichlet Allocation (LDA) dengan Generative Statistical modelnya memungkinkan suatu set data pengamatan dapat dijelaskan oleh kelompok yang tidak teramati. Penelitian ini menentukan 30 kelompok kata representatif dari hasil LDA. Hasilnya terdapat 18 dimensi yang paling banyak dibicarakan mengenai Indosat pada linimasa twitter. Dimensidimensi tersebut mewakili 14 dimensi yang sudah ditemukan pada penelitian-penelitian sebelumnya mengenai kepuasan pelanggan pada layanan telekomunikasi, bahkan dengan LDA mendapatkan dimensi lebih detail dan lebih real time. Masing-masing dokumen dalam dimensi tersebut diberi label sentimennya, dan ditentukan akurasinya menggunakan supervised classification, hasilnya adalah 72% akurasi dengan model Naive Bayes Classification. Mengabaikan sentimen netral, sentimen negatif Indosat masih lebih tinggi daripada sentimen positifnya, yaitu dengan 16% sentimen negatif. Persentase negatif tersebut masih didominasi dengan dimensi berkaitan dengan layanan Indosat. Sementara dominasi sentimen positif ada pada dimensi yang berhubungan dengan ketersediaan layanan untuk pengguna.

PT. Indosat Tbk is One of the companies developing in the telecommunications industry. However, PT. Indosat Tbk is very concerned about customer satisfaction which tends to decrease from year to year. Social media media, especially Twitter, offer data about public opinion that is very crowded. However, the twitter data that is still unstructured requires a further process to be able to find the dimensions and sentiments of the community towards that dimension. Latent Dirichlet Allocation (LDA) with the Generative Statistics model allows a monitoring data set to be accessed by unobserved groups. This study determines 30 groups of words that represent the results of the LDA. There are 18 dimensions that are most talked about about Indosat on the Twitter timeline. These dimensions represent the 14 dimensions found in previous studies of customer satisfaction in telecommunications services, even with LDA getting more detailed and more real-time dimensions. Each document in this dimension is labeled sentiment, and its accuracy is determined using a supervised classification, obtained 72% accuracy with the Naive Bayes Classification model. Ignoring the negative sentiment, Indosat's negative sentiment was still higher than the positive sentiment, namely with a 16% negative sentiment. The negative percentage is still a comparison with Indosat services. While the dominance of positive sentiment is in the dimensions associated with service support for users."
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Arman
"ABSTRAK
Ekstraksi topik merupakan tugas utama dalam penambangan teks sebagai upaya mengeluarkan informasi yang terpendam dalam teks secara heuristik. Proses ini dilakukan lewat pemodelan topik yakni sebuah proses mengidentifikasi topik- topik yang ada dalam sebuah objek teks atau menurunkan pola-pola tersembunyi dalam sebuah korpus teks. Dalam penelitian ini pemodelan topik diaplikasikan pada data teks berbahasa Indonesia menggunakan modul program bernama Gensim dalam bahasa pemrograman Python. Dataset terdiri dari 93 dokumen berita daring Kompas dengan beragam klasifikasi. Jumlah topik optimal yang diperoleh diuji menggunakan machine learning clustering k-means. Dalam proses penelitian ini ternyata diperlukan suatu mekanisma umpanbalik manual untuk mereduksi noise agar diperoleh pemodelan topik yang lebih baik. Hasil uji memperlihatkan teknik Latent Dirichlet Allocation LDA yang telah ditingkatkan / dimodifikasi LDA as LSI memiliki koherensi topik yang jauh lebih baik dibanding teknik LDA saja dalam penelitian ini: 0.94 dibanding 0.34 . Koherensi yang tinggi mengindikasikan bahwa topik hasil pemodelan ini merupakan topik yang dapat dijelaskan dengan sedikit label.

ABSTRACT
Topic extraction is main task in text mining as an effort to dig buried information within text heuristically. This process is done through topic modeling, a process to identify topics within text object or to derive hidden patterns in a text corpus. In this research, topic modeling is applied to Indonesian language texts using Gensim module in Python programming language. The dataset consists of 93 online news documents from Indonesian national newspaper, Kompas, with several different classifications. The identified optimum number of topics k is visualized using clustering machine learning k means. In the process of this research turned out to need a mechanism of manual feedback for noise reduction in order to get better topic modeling. The test results show that enhanced modified Latent Dirichlet Allocation LDA as LSI has a much better topic coherence than LDA technique alone in this study 0.94 compared to 0.34 . High coherence indicates that topics resulting from this topic modeling is a topic that can be explained with few labels. "
2017
T47943
UI - Tesis Membership  Universitas Indonesia Library
cover
Anindito Izdihardian Wibisono
"Pada tahun 2020, nilai customer satisfaction index (CSI) PT XYZ yang mempresentasi- kan kepuasan konsumen XYZ berjumlah 83.9. Angka ini gagal mencapai target PT XYZ di tahun tersebut yaitu 87, dan turun dari tahun sebelumnya yaitu 86,5 di tahun 2019. Berdasarkan pengambilan data, diketahui bahwa XYZ mengelola aduan konsumen hanya melalui Twitter. Dari ribuan tweet yang diterima akun resmi customer care PT XYZ (@XYZCares) tiap bulan di Twitter, diperkirakan hanya 1-2% yang dideteksi sebagai aduan dengan proses pengawasan manual. Penelitian ini merancang solusi dua langkah berupa implementasi social media listening dalam bentuk sentiment analysis dan topic modelling, untuk mengetahui isu dalam tweet aduan kepada XYZ. Dataset berupa kum- pulan tweet yang menyebutkan @XYZCares pada kurun waktu 1 Januari 2020 - 31 Desember 2020. Data di-scrape dari Twitter menggunakan script Python. Hasil evaluasi secara cross-validation menunjukkan akurasi rerata sentiment analysis dengan algoritme SVM lebih akurat (77%) untuk kasus ini dibandingkan algoritme RF (75%). Untuk task pemodelan topik, algoritme LDA menghasilkan klaster topik sejumlah 4 dengan rerata TPC sebesar 80%. Diketahui bahwa topik yang dominan adalah isu korupsi dan suap di badan PT XYZ. Dengan mempertimbangkan penemuan tersebut, saran yang dapat diberi- kan berdasarkan penelitian ini adalah memberhentikan staf yang diduga terlibat dalam isu-isu tersebut, serta menerapkan good corporate governance berupa aspek pengawasan dan pencegahan korupsi.

The customer satisfaction index (CSI) for the year 2020 is calculated at 83.9. This value fails to reach the company’s target for the year at 87 and is lower than the CSI value for 2019 at 86.5. Data acquired from the company shows that consumer complaints are ac- cepted and processed only through Twitter. It is estimated that of the thousands of tweets processed by PT XYZ’s official customer care account (@XYZCares) each month, only 1-2% of the tweets are considered complaints based on manual searching and classifica- tion. This research proposes a two-step solution by implementing social media listening in the form of sentiment analysis and topic modelling, to detect the most frequent issues addressed to XYZ. The dataset consists of tweets created from January 1st, 2020, to De- cember 31st, 2020 which mentioned @XYZCares. The tweets were scraped from Twitter using Python scripts. The results of cross-validation show that for the task of sentiment analysis, SVM is a more accurate algorithm on average (77%) compared to Random For- est (75%). For the following task of topic modelling, the LDA algorithm model produced 4 topic clusters with an average TPC of 80%. The most dominant topic detected relate to allegations of bribery and corruption within PT XYZ. Taking these finds into considera- tion, this research suggests that PT XYZ immediately dismiss all staff implicated in the aforementioned cases, as well as implementing good corporate governance in the form of tighter supervision and prevention of corrupt dealings."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library